
Exact convergence rates of the last iterate

in subgradient methods

François Glineur and Moslem Zamani

Information and Communication Technologies, Electronics and Applied Mathematics

Institute, and Center for Operations Research and Econometrics

UCLouvain

Results from preprint https://arxiv.org/abs/2307.11134

ALGOPT2024 August 30, 2024, LLN

https://arxiv.org/abs/2307.11134

Contents

Subgradient methods

Last-iterate convergence

Performance estimation

Convergence rates

Extensions

Last-iterate optimal subgradient method

Normalized step sizes

Conclusions

1

Subgradient methods

Subgradient methods

Objective: minimize a function f : Rd → R that is

▶ convex

∂f (x) = {g such that f (y) ≥ f (x)+gT (y −x) for all y} ≠ ∅

▶ B-Lipschitz continous

g ∈ ∂f (x) ⇒ ∥g∥ ≤ B

▶ with minimizer x∗

Method: subgradient method with fixed step sizes {hk}

xk+1 = xk − hkgk for some gk ∈ ∂f (xk)

starting from x0

2

Performance criteria

Target: convergence rate after N iterations, either

▶ min0≤k≤N f (xk)− f (x∗) (method is not monotone)

▶ f (1
N+1

∑N
k=0 xk)− f (x∗) (average)

▶ f (xN)− f (x∗)

Initial iterate assumption:

∥x0 − x∗∥ ≤ R

Homogeneity: rates in function values must be proportional to BR

Lower bound: no method can achieve better rate than

BR√
N + 1

3

Lower bound proof (variation of [Drori, Teboulle 2016])

Consider following function with d = N + 1, B = 1 and x∗ = 0

f (x) = max{0, x1, x2, . . . , xN+1} =
[

max
1≤k≤N+1

xk

]
+

Choose starting point x0 = (1, 1, . . . , 1) with R =
√
N + 1

▶ As long as f (xk) > 0, subgradient gk ∈ ∂f (xk) can be chosen

as a basis vector ei for some 1 ≤ i ≤ N + 1 (and ∥gk∥ = B)

▶ Induction hypothesis (Hk) (easy to check for k = 0)

xk contains at least N + 1− k components equal to 1

▶ Assume (Hk) for k ≤ N. Then f (xk) ≥ 1. So subgradient gk

can be chosen as some basis vector ei , and xk+1 can differ only

by at most one component from xk , implying (Hk+1) holds

▶ Conclusion:
f (xk) ≥ 1 =

BR√
N + 1

for all 0 ≤ k ≤ N

(also for other criteria / for steps with several past subgradients) 4

Standard convergence analysis

Only two ingredients:

(1) subgradient inequality and (2) square distance telescoping

Ingredient (1)

∥xk+1 − x⋆∥2 = ∥xk − hkg
k − x⋆∥2

= ∥xk − x⋆∥2 + h2k∥gk∥2 − 2hk⟨gk , xk − x⋆⟩

≤ ∥xk − x⋆∥2 + h2k∥gk∥2 − 2hk

(
f (xk)− f (x⋆)

)
.

(where we have only used subgradient inequality

f (x⋆)− f (xk) ≥ ⟨gk , x⋆ − xk⟩ between x∗ and xk)

This gives an upper bound on the accuracy f (xk)− f (x∗)

hk
(
f (xk)− f (x∗)

)
≤ 1

2∥x
k − x∗∥2 − 1

2∥x
k+1 − x∗∥2 + 1

2h
2
kB

2

using bound on subgradient norm ∥gk∥ ≤ B 5

Standard convergence analysis (cont.)

Ingredient (2) From

hk
(
f (xk)− f (x∗)

)
≤ 1

2∥x
k − x∗∥2 − 1

2∥x
k+1 − x∗∥2 + 1

2h
2
kB

2

telescoping (summing from k = 0 to k = N) gives

N∑
k=0

hk
(
f (xk)−f (x⋆)

)
≤ 1

2

∥∥x0 − x⋆
∥∥2− 1

2∥x
N+1−x⋆∥2+ 1

2B
2

N∑
k=0

h2k

hence

min
0≤k≤N

f (xk)− f (x⋆) ≤
1
2∥x

0 − x⋆∥2 + 1
2B

2
∑N

k=0 h
2
k∑N

k=0 hk

6

Standard convergence analysis (end.)

min
0≤k≤N

f (xk)− f (x⋆) ≤
1
2∥x

0 − x⋆∥2 + 1
2B

2
∑N

k=0 h
2
k∑N

k=0 hk

▶ Right-hand side is convex and symmetric in stepsizes hk ,

hence optimal values are constant hk = h for all k

min
0≤k≤N

f (xk)− f (x⋆) ≤
1
2∥x

0 − x⋆∥2 + 1
2B

2(N + 1)h2

(N + 1)h

▶ Optimal h is then hk = R
B

1√
N+1

leading to an optimal rate

min
0≤k≤N

f (xk)− f (x⋆) ≤ BR√
N + 1

(same rate holds for average iterate since

f (1
N+1

∑N
k=0 xk) ≤

1
N+1

∑N
k=0 f (xk))

End of story? 7

What about last-iterate convergence?

min
0≤k≤N

f (xk)− f (x⋆) ≤ BR√
N + 1

▶ Says nothing about convergence of last iterate xN
▶ O. Shamir, Open problem: Is averaging needed for strongly convex

stochastic gradient descent? JMLR (2012)

▶ Practitioners often use the last iterate

▶ Storing best iterate might not be feasible

(storage requirements, objective computation)

▶ Algorithm may correspond to a real-word dynamical system

(see for example work by Nesterov and Shikhman)

Goal of this talk: study last-iterate convergence

with and without performance estimation
8

Short history of our results

▶ 2012-2013: Drori and Teboulle introduce performance

estimation problems (PEP)

main idea: compute worst-case convergence rates

▶ 2013-2017: with Taylor and Hendrickx we further develop

SDP-based PEP approach

▶ 2017: Yurii asks us “With your tool, can you tell the

convergence rate of the last iterate in subgradient method?”

We find a purely numerical rate (see next page), and no proof

▶ 2023: with Zamani we get back to the question and obtain a

full PEP proof and a bit later a classic proof

9

Puzzle time

Puzzle: can you guess the convergence rate?

For constant stepsize h = 1 one can compute

using either PESTO (Matlab) or PEPIT (Python) toolboxes

f (xN)− f (x∗) ≤ BR
[
1− N + 1

2

(
sN − s−1

N

)2]
where the rate involves a mysterious sequence {sk}:

s0 = 1, s1 = 2, s2 = 2.5, s3 = 2.9,

10

https://github.com/PerformanceEstimation/Performance-Estimation-Toolbox
https://github.com/PerformanceEstimation/PEPit

Puzzle time

Puzzle: can you guess the convergence rate?

For constant stepsize h = 1 one can compute

using either PESTO (Matlab) or PEPIT (Python) toolboxes

f (xN)− f (x∗) ≤ BR
[
1− N + 1

2

(
sN − s−1

N

)2]
where the rate involves a mysterious sequence {sk}:

s0 = 1, s1 = 2, s2 = 2.5, s3 = 2.9, s4 = 3.24482758621, . . .

or

s0 = 1, s1 = 2, s2 =
5

2
, s3 =

29

10
,

10

https://github.com/PerformanceEstimation/Performance-Estimation-Toolbox
https://github.com/PerformanceEstimation/PEPit

Puzzle time

Puzzle: can you guess the convergence rate?

For constant stepsize h = 1 one can compute

using either PESTO (Matlab) or PEPIT (Python) toolboxes

f (xN)− f (x∗) ≤ BR
[
1− N + 1

2

(
sN − s−1

N

)2]
where the rate involves a mysterious sequence {sk}:

s0 = 1, s1 = 2, s2 = 2.5, s3 = 2.9, s4 = 3.24482758621, . . .

or

s0 = 1, s1 = 2, s2 =
5

2
, s3 =

29

10
, s4 =

941

290
, . . .

10

https://github.com/PerformanceEstimation/Performance-Estimation-Toolbox
https://github.com/PerformanceEstimation/PEPit

Puzzle time

Puzzle: can you guess the convergence rate?

For constant stepsize h = 1 one can compute

using either PESTO (Matlab) or PEPIT (Python) toolboxes

f (xN)− f (x∗) ≤ BR
[
1− N + 1

2

(
sN − s−1

N

)2]
where the rate involves a mysterious sequence {sk}:

s0 = 1, s1 = 2, s2 = 2.5, s3 = 2.9, s4 = 3.24482758621, . . .

or

s0 = 1, s1 = 2, s2 =
5

2
, s3 =

29

10
, s4 =

941

290
, . . .

Answer: sk+1 = sk +
1
sk

10

https://github.com/PerformanceEstimation/Performance-Estimation-Toolbox
https://github.com/PerformanceEstimation/PEPit

This talk

Take-home messages:

▶ Performance estimation applied to subgradient methods

▶ Exact convergence rates can be obtained for the last iterate:

suboptimal by a factor O(
√
log(N))

▶ New last-iterate optimal method can be designed

with linearly decreasing step sizes

▶ Extensions to constrained case, to normalized steps

▶ Inspiration for results provided by performance estimation

but ultimately all proofs converted to classical style

using a new key lemma

11

Contents

Subgradient methods

Last-iterate convergence

Performance estimation

Convergence rates

Extensions

Last-iterate optimal subgradient method

Normalized step sizes

Conclusions

12

Last-iterate convergence

Tool: performance estimation

For a given PEP (Performance Estimation Problem) we can

▶ compute the exact value of the performance criteria’s

worst-case = optimal value of PEP problem

▶ identify an explicit function (and starting point) achieving this

worst-case value = primal solution of PEP problem +

interpolation

▶ obtain an independently-checkable proof that this worst-case

value is a valid (upper) bound on the performance criteria =

dual multiplier of PEP problem

▶ all three steps can be done either numerically or analytically

For a large class of first-order methods, including fixed-step subgra-

dient methods, these can be computed exactly using a semidefinite

programming (SDP) problem.
13

Interpolation conditions for nonsmooth convex functions

To perform PEP for subgradient methods on a class of functions

we need the corresponding interpolation conditions explicitly

given a list of values (xi , fi , gi)i∈I ,

does there exist a convex f with B-bounded subgradients such that

f (xi) = fi and gi ∈ ∂f (xi) for all i ∈ I = {∗, 0, 1, . . .N}

Necessary and sufficient conditions:

f (xi) = fi and gi ∈ ∂f (xi) for every i ∈ I

⇔
fj ≥ fi + gT

i (xj − xi) for every i , j ∈ I

∥gi∥ ≤ B for every i ∈ I

Leads to a convex, tractable formulation as a SDP 14

Results: average iterate with constant stepsize

Worst-case for constant stepsize subgradient method

xi+1 = xi − h(RB)gi

applied to convex function with B-bounded subgradients

▶ For average value of iterates f̂N = f (x0)+f (x1)+...+f (xN)
N+1 , tight

worst-case is

f̂N − f (x∗) ≤

BR
(
1
2h + 1

2(N+1)
1
h

)
when h ≥ 1

N+1

BR
(
1− N

2 h
)

when h ≤ 1
N+1

(recovers result shown earlier for large h)

▶ Optimal constant step-size is then h∗ = 1√
N+1

(belongs to

”large step” case) leading to tight worst-case

f̂N − f (x∗) ≤
BR√
N + 1 15

Results: last iterate with constant stepsize

▶ Define sequence {si}i≥0 = {1, 2, 52 ,
29
10 , . . .} with

s0 = 1, si+1 = si +
1

si
for all i ≥ 0

▶ No closed form but s2N grows like 2(N + 1) + 1
2 log(N), also

appears in [Nesterov 2009] (again!) for primal-dual subgradient

▶ For value of last iterate f (xN), tight worst-case is

f (xN)− f (x∗) ≤

BR
[
(12s

2
N − N)h + 1

2s2N

1
h

]
when h ≥ 1

s2N

BR(1− Nh) when h ≤ 1
s2N

▶ No previous result with correct asymptotic rate for last iterate

▶ [Harvey,Liaw,Plan,Randhawa 2019] prove a logN

32
√
N

lower bound

when B = 1 with stepsize hi =
1√
i
, and prove a high

probability O(logN√
N
) upper bound in stochastic case 16

Results: optimal stepsize and variants

▶ To perform N subgradient iterations, optimal stepsize is then

h∗ =
1

sN

√
s2N − 2N

and corresponding exact worst-case convergence rate becomes

f (xN)− f (x∗) ≤ BR

√
1− 2N

s2N
≲ BR ·

√
1 + 1

4 log(N)

N + 1

▶ Using h = 1√
N+1

(now known to be suboptimal for last

iterate) leads to slightly worse

f (xN)− f (x∗) ≤ BR ·
(5

4 + 1
4 log(N)

√
N + 1

)

17

Results were obtained using the following PEP

max f N+1 − f ⋆

s. t. f i − f j −
〈

B
Rh (x

j − x j+1), x i − x j
〉
≥ 0 i ∈ {1, . . . ,N + 1, ⋆}, j ∈ {1, . . . ,N}

f i − f N+1 −
〈
gN+1, x i − xN+1

〉
≥ 0 i ∈ {1, . . . ,N + 1, ⋆}

f i − f ⋆ ≥ 0 i ∈ {1, . . . ,N + 1}

R2h2 −
∥∥xk − xk+1

∥∥2 ≥ 0 k ∈ {1, . . . ,N}

B2 −
∥∥gN+1

∥∥2 ≥ 0

R2 −
∥∥x1 − x⋆

∥∥2 ≥ 0.

18

PEP-based proof is ... straightforward?

Define f i = f (x i) and σi =
1

si+1
, i ∈ {0, 1, ...,N} and observe that

f N+1 − BR
(
(12 s

2
N+1 − N)h + 1

2s2N+1h

)
+

N∑
i=1

Bσ2
N−i

2Rh

(
R2h2 −

∥∥x i − x i+1
∥∥2)

+
N∑
i=1

N∑
j=i+1

σN−j (σN−i − σN+1−i)
(
f i − f j −

〈
B
Rh (x

j − x j+1), x i − x j
〉)

+
N∑
i=1

(σN−i − σN+1−i)
(
f i − f N+1 −

〈
gN+1, x i − xN+1

〉)
+

Bσ2
N

2Rh

(
R2 −

∥∥x1∥∥2)
+ σN

N∑
i=1

σN−i

(
−f i −

〈
B
Rh (x

i − x i+1),−x i
〉)

+ Rh
2B

(
B2 −

∥∥gN+1
∥∥2)

+ σN

(
−f N+1 +

〈
gN+1, x i

〉)
= −Rh

2B

∥∥∥∥∥gN+1 − B
Rhx

N+1 + B
Rh

N∑
i=1

(σN−i − σN+1−i) x
i

∥∥∥∥∥
2

≤ 0.
19

Post-PEP reflections

▶ After staring at the PEP proof, we noticed similarities

between inequality multipliers

▶ Grouping similar terms, we obtain Jensen-like inequalities

(insight: applying Jensen ↔ some sum of interpolation inequalities)

▶ Simplifying further we obtain a classic-style proof,

that is no longer looking computer generated

▶ We encapsulate the main part of the proof in a key Lemma

▶ Key Lemma fully reverse-engineered from PEP

but can be easily checked by hand

20

Key Lemma for subgradient methods

Lemma ([Zamani,G 2023])

Consider the subgradient method with fixed step sizes {hk}

xk+1 = xk − hkgk for some gk ∈ ∂f (xk) for k = 0, 1, . . . ,N − 1

Choose hN > 0 and introduce N + 2 weights vk that satisfy

1 = v−1 ≤ v0 ≤ v1 ≤ · · · ≤ vN−1 ≤ vN

Then iterates after N iterations of the subgradient method satisfy

N∑
k=0

(
hkv

2
k − (vk − vk−1)

N∑
i=k

hivi

)(
f (xk)− f (x∗)

)
≤ 1

2

∥∥x0 − x∗
∥∥︸ ︷︷ ︸

R

2
+ 1

2

N∑
k=0

h2kv
2
k

∥∥∥gk
∥∥∥︸ ︷︷ ︸

B

2

21

Why is the key Lemma useful?

Key Lemma inequality:

N∑
k=0

(
hkv

2
k−(vk − vk−1)

N∑
i=k

hivi

)(
f (xk)−f (x∗)

)
≤ 1

2v
2
0R

2+1
2B

2
N∑

k=0

h2kv
2
k

for any weights 1 = v−1 ≤ v0 ≤ v1 ≤ · · · ≤ vN−1 ≤ vN

▶ constant vk = 1 recovers usual (average) rate

▶ but a suitable choice of {vk} allows us to modify coefficients

in front of f (xk)− f (x∗)

▶ in particular one can cancel all coefficients except last one in

front of f (xN)− f (x∗)

22

Idea of the proof of the key Lemma

Inequality to prove:

N∑
k=0

(
hkv

2
k−(vk − vk−1)

N∑
i=k

hivi

)(
f (xk)−f (x∗)

)
≤ 1

2v
2
0R

2+1
2B

2
N∑

k=0

h2kv
2
k

Proof uses a generalization of the standard telescoping proof

1. From weights vk define auxiliary sequence zk recursively

z0 = x∗ and zk =
(
1− vk−1

vk

)
xk +

(vk−1

vk

)
zk−1

This implies

zk = (
v0
vk

)x∗ +
k∑

i=1

(
vi − vi−1

vk
)x i

(note zk is a convex combination of x∗ and iterates x i)
23

Idea of the proof of the key Lemma (cont.)

2. Subgradient inequality between xk and zk (instead of x∗) gives

hkv
2
k

(
f (xk)−f (zk)

)
≤ 1

2v
2
k−1∥xk − zk∥2−1

2v
2
k ∥xk+1 − zk+1∥2+1

2B
2h2kv

2
k

3. Telescoping (summing from k = 0 to k = N) gives that

N∑
k=0

hkv
2
k

(
f (xk)− f (zk)

)
≤ 1

2v
2
−1∥x0 − z0∥2−1

2v
2
N∥xN+1 − zN+1∥2 + 1

2B
2

N∑
k=0

h2kv
2
k

implying

N∑
k=0

hkv
2
k

(
f (xk)− f (zk)

)
≤ 1

2∥x
0 − x∗∥2 + 1

2B
2

N∑
k=0

h2kv
2
k

24

Idea of the proof of the key Lemma (cont.)

4. Finally we need to find a lower bound on f (xk)− f (zk) terms:

zk = (v0vk)x̂ +
∑k

i=1 (
vi−vi−1

vk
)x i

implies, by Jensen’s inequality

f (zk) ≤ (v0vk)f (x̂) +
∑k

i=1 (
vi−vi−1

vk
)f (x i)

hence

hkv
2
k

(
f (zk)− f (x∗)

)
≥ hkvk

∑k
i=1 (vi − vi−1)

(
f (x i)− f (x∗)

)
which combined with inequality from the previous step 3. gives

N∑
k=0

(
hkv

2
k − (vk − vk−1)

N∑
i=k

hivi

)(
f (xk)− f (x∗)

)
≤

N∑
k=0

hkv
2
k

(
f (xk)− f (zk)

)
≤ 1

2∥x
0 − x∗∥2 + 1

2B
2

N∑
k=0

h2kv
2
k

25

Using the key Lemma

So we have proved

Lemma
Iterates of the subgradient methods satisfy

N∑
k=0

(
hkv

2
k − (vk − vk−1)

N∑
i=k

hivi

)(
f (xk)− f (x∗)

)
≤ 1

2R
2 + 1

2B
2

N∑
k=0

h2kv
2
k

Proof of last-iterate convergence rate:

Choose weights vk that cancel all coefficients of f (xk) except

f (xN), which are

vk =
1

sN+1−k 26

Exactness of convergence rate

All PEP rates are exact by design

(cannot be improved, even by a multiplicative/additive constant)

Follows from PEP solution, but can be made constructive by

building an explicit worst-case function

▶ Function of the type f (x) = [maxk{gT
k x}]+

▶ Recursive definition, coefficients gk not straightforward

▶ Sugbradients for all iterates are gk , have maximum norm B

▶ Subgradient inequality is satisfied between all pairs of iterates

▶ Matches exactly the announced convergence rate for the last

iterate

27

Extensions

Last-iterate optimal subgradient method

Define the following new linearly decreasing stepsize schedule

xk+1 = xk − R
B

(N+1−k)

(N+1)3/2
gk

Leads the optimal rate for the last iterate [Zamani,G 2023]

f (xN)− f (x∗) ≤ BR√
N+1

▶ Improves 15BD√
N+1

[Jain,Nagaraj,Netrapalli 2021] for diameter D

▶ Same proof technique, key lemma with optimized weights vk

▶ Schedule dependence on N is forced for optimal method

(already impossible to find fixed stepsizes h1 and h2 that are

optimal for both N = 1 and N = 2)

▶ Open question:

Existence of a last-iterate optimal method with stepsizes

independent from N and with momentum terms? 28

Subgradient method with normalized step sizes

Stepsizes so far feature a R
B factor, require knowledge of R and B

▶ constant stepsizes hk = R
B h for some h

▶ optimal stepsizes hk = R
B

(N+1−k)

(N+1)3/2

Need for B can be removed using normalized step sizes {tk}

xk+1 = xk − tk
gk
∥gk∥

for some gk ∈ ∂f (xk)

▶ All previous results are also valid with exactly the same rates

if we assume tk = hkB

▶ constant stepsizes tk = Rh for some h

▶ optimal stepsizes tk = R (N+1−k)

(N+1)3/2

▶ Proof using key Lemma with adapted weights

▶ Removing dependence on R seems harder (→ parameter-free)

29

Projected subgradient method

Solve convex constrained optimization

min
x∈X

f (x)

with the projected subgradient method with fixed step sizes {hk}

xk+1 = P
[
xk − hkgk

]
for some gk ∈ ∂f (xk)

(P is orthogonal projection on convex set X)

▶ All results are also valid, with exactly the same rates

(both constant and optimal stepsizes, also normalized)

▶ Straightforward adaptation of the key Lemma

using non-expansiveness of the projection operator

30

Conclusions

Conclusions

Take-home messages:

▶ Performance estimation applied to subgradient methods

▶ Exact convergence rates can be obtained for the last iterate:

suboptimal by a factor O(
√
log(N))

▶ New last-iterate optimal method can be designed

with linearly decreasing step sizes

▶ Extensions to constrained case, to normalized steps

▶ Inspiration for results provided by performance estimation

but ultimately all proofs converted to classical style

using a new key lemma

For all your performance estimation needs:

https://github.com/PerformanceEstimation 31

https://github.com/PerformanceEstimation

Thank you Yurii!

32

	Subgradient methods
	Last-iterate convergence
	Performance estimation
	Convergence rates

	Extensions
	Last-iterate optimal subgradient method
	Normalized step sizes

	Conclusions

