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How to analyze worst-case of optimization methods?

• Optimization method  ℳ (e.g. gradient method, Newton’s method,…)

• Function class ℱ (e.g. convex, smooth, self-concordant,…) 

• Problem : min
𝑥

𝑓(𝑥)

Question : Worst-case performance of ℳ on instance of ℱ ?

1

𝑓 𝑥𝑁 − 𝑓∗ ≤
𝐿

2

||𝑥0 − 𝑥∗||2

2𝑁 + 1

Example: Worst-case performance of Gradient Method
on 𝐿-smooth convex functions after 𝑁 iterations?



Step 1: Inequalities from
definition of class ℱ

How to construct a convergence rate proof?

Definition of 
function class ℱ

Step 2: combination
of inequalities and
iteration of ℳ

Guarantee on the 
performance of ℳ

ℱ = {smooth 
convex functions}

Step 1: Inequalities
Step 2: combination
of inequalities and 
𝑥𝑘+1 = 𝑥𝑘 − ∇𝑓(𝑥𝑘)

𝑓 𝑥𝑁 − 𝑓∗ ≤
𝐿

2

||𝑥0 − 𝑥∗||2

2𝑁 + 1

Two sources of (possible) conservatism on the guarantee:
- combination of inequalities may not be optimal (PEP problem not solved optimally)
- inequalities may not be sufficient conditions interpolation in the function class (only necessary)

Optimal combination of exact inequalities leads to exact/tight worst-case analysis

Step 2: Optimal 
combination of 
inequalities via PEP
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Take home messages

Performance estimation (PEP) provides worst-case convergence rates, 
proofs for those rates and corresponding explicit worst-case functions, 
and crucially rely on exact interpolation inequalities

In this work, we show how to derive exact interpolation inequalities for 
higher order classes of functions, such as Hessian Lipschitz functions and 
(generalized) self-concordant functions, in the univariate case

Using PEP with those inequalities, we study and find tight rates for
many variants of second-order methods, such Newton’s method and 
cubic/adaptive variants



1. Performance Estimation Problem (PEP) Framework

2. Principled technique to characterize univariate class of functions

3. Interpolation conditions for second-order univariate function class

4. Convergence results for second-order methods

Outline



Conceptual PEP: maximizing the worst-case performance

Idea: Finding the worst-case performance as an optimization problem

Maximize Perf of ℳ among the set of functions 𝑓 ∈ 𝐹

Perf(𝑥𝑁 , 𝑓) can be : ||𝑥𝑁 − 𝑥∗||, || ∇𝑓 𝑥𝑁 ||, 𝑓𝑁 − 𝑓∗, etc

Issue: untractable since optimization in function space

Solution: discretize function 𝑓 and its gradient at iterates
(equivalent for a black-box optimization method)
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From conceptual PEP to tractable PEP (1)

Example: Worst-case performance of gradient method on 𝐿-smooth convex functions

Key concept: necessary and sufficient interpolation conditions
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Interpolation conditions

Theorem 1: 𝑓 is 𝐿-smooth convex if and only if for all 𝑥, 𝑦 ∈ 𝑅𝑛

Proof/PEP does not use all 𝒙, 𝒚 ∈ 𝑹𝒏, only 𝒙𝟎, … , 𝒙𝑵, 𝒙
∗

Theorem 2: 𝑓 is 𝐿-smooth convex if and only if for all 𝑥, 𝑦 ∈ 𝑅𝑛

Step 1: Inequalities
from definition of ℱ
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[Drori, Teboulle 14] 
[Taylor, Hendrickx, G 17]

From conceptual PEP to tractable PEP (2)

Example: Worst-case performance of gradient method on 𝐿-smooth convex functions

• Non-convex Quadratically Constrained Quadratic Problem (QCQP)

• Linear on 𝑓𝑖 and   𝑥𝑖
𝑇𝑔𝑖 , 𝑥𝑖

𝑇𝑥𝑗 , 𝑔𝑖
𝑇𝑔𝑗

• Can be sometimes be formulated as convex semidefinite program, hence efficiently solvable

• PEP gives the exact worst-case numerically (which helps to prove it analytically)

• It gives all the answers, but we should ask the relevant questions
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Convex formulation of PEP

1. Gradient method : 

2. Fast gradient method :

3. Proximal method:    𝑥𝑖+1 = 𝑝𝑟𝑜𝑥𝑓(.) 𝑥𝑖 = 𝑥𝑖 − ∇𝑓 𝑥𝑖+1
Type equation here.

4. Chambolle-Pock method:

OK 
See more examples in « PEPit’s documentation »

Convex formulation of PEP when:

• Method analyzed is linear combination of (previous or future) gradients 𝑔𝑖 and iterates 𝑥𝑖 .

• Interpolation conditions are convex in 𝑓𝑖 and 𝑥𝑖
𝑇𝑔𝑖 , 𝑥𝑖

𝑇𝑥𝑗 , 𝑔𝑖
𝑇𝑔𝑗

Only First-Order methods

[Drori, Teboulle 14] 
[Taylor, Hendrickx, G 17a]
[Taylor, Hendrickx, G 17b]
[Bousselmi, Hendrickx, G 23]
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Key idea: lift products of variables (Gram)
↦ efficiently solvable semidefinite 

optimization problem



Or any other second order scheme:

• Cubic Newton method :

• Damped Newton method:

• Gradient Regularized Newton method: 

Example: Analysis of Newton’s method

[Nesterov, Polyak 2008]

[Mishchenko 2022]

(Newton step)

This work: PEP to analyze second-order methods (1)
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This work: PEP to analyze second-order methods (2)

2)  PEP formulation is non-convex

Solution: Solve the non-convex problem with global non-convex solver (e.g. Gurobi)

▪ Lose nice properties of convex (lifted) PEP but allows more flexibility 
(e.g. non-convex/integer constraints, use of exponential functions)

▪ Non-convex PEPs have been solved previously in other settings 
(e.g. [Ryu, Taylor, Bergeling, Giselson 2020] and [Das Gupta, Van Parys, Ryu 2023])

▪ [de Klerk, G, Taylor 2020] used convex PEP to analyze a single iteration 
of a Newton step for self-concordant functions (with a trick to deal with Hessian norm)
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Two main issues to extend PEP to second-order methods:

1) Interpolation conditions for second-order function class 
(e.g. Hessian Lipschitz, self-concordant functions)

Solution: Principled technique to provide interpolation conditions 
for univariate generalized self-concordant functions



1. Performance Estimation Problem (PEP) Framework

2. Principled technique to characterize univariate class of functions

3. Interpolation conditions for second-order univariate function class

4. Convergence results for second-order methods

Outline



Definition 1 (« 1-point def » univariate generalized self-concordant functions)

Univariate generalized self-concordant functions
Focus on univariate functions (easier and still interesting)
(univariate) generalized self-concordant functions [Sun, Tran-Dinh 2019]
includes Hessian Lipschitz, self-concordant, quasi-self-concordant, etc

Theorem 1 (« 2-points def » generalized Lipschitz functions)

Theorem 2 (Interpolation conditions without gradient and function values)
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Theorem 4 (Interpolation conditions for gradient Lipschitz functions)

Principled technique to obtain interpolation conditions (1)

Summary: Given class ℱ for which we have interpolation conditions (e.g., Lipschitz
functions), gives interpolation conditions of the class whose derivative 
belongs to ℱ (e.g., smooth functions) called ∫ 𝑭.
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Principled technique

Theorem 3 (Interpolation conditions for Lipschitz functions)

(main reason for univariate restriction)

Recovers [Taylor Hendrickx G, 2017] 



Principled technique to obtain interpolation conditions (2)

Theorem 2 (Interpolation conditions without gradient 
and function values)
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Th. 2: "initial" interpolation conditions for univariate 
generalized self-concordant functions
Principled technique starts from Th. 2 and provides 
"complete" interpolation conditions



1. Performance Estimation Problem (PEP) Framework

2. Principled technique to characterize univariate class of functions

3. Interpolation conditions for second-order univariate function class

4. Convergence results for second-order methods

Outline



Challenge: « (S2) implies (S)» is an open question as far as we know

Interpolation conditions for univariate Hessian Lipschitz functions
Step 1: Inequalities
from definition of ℱ

Not interpolation condition

Interpolation condition
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(𝐷𝑀 = ∫
(2)

𝐹𝑀)



Interpolation conditions for (quasi-)self-concordant functions
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Self-concordant functions : 𝒇′′′ 𝒙 ≤ 𝟐𝑴𝒇′′ 𝒙 𝟑/𝟐

Quasi-self-concordant functions : 𝒇′′′ 𝒙 ≤ 𝑴𝒇′′ 𝒙



1. Performance Estimation Problem (PEP) Framework

2. Principled technique to characterize univariate class of functions

3. Interpolation conditions for second-order univariate function class

4. Convergence results for second-order methods

Outline



Global convergence rate of Cubic Newton Method

Step 1: Inequalities
from definition of ℱ

Step 2: combination
of inequalities and
Iteration of ℳ

[Nesterov, Polyak 2008] (in multivariate case)

[Rubbens, Bousselmi, Hendrickx, G 2025]

15



Local quadratic convergence rate of Newton Method

[Nesterov 2018] 

[Rubbens, Bousselmi, Hendrickx, G 2024]

Observation: PEP numerical results exactly match the bound

Univariate case is « sufficiently rich » to attain the worst-case performance
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Local convergence of Gradient Regularized Newton method on 
quasi-self-concordant functions
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In this simple case, we can reduce PEP 
to a two-dimensional problem 
and solve it ‘by hand’



Newton method on self-concordant functions
18

[Nesterov 2018, Nesterov & Nemirovski 1998]
[Hildebrand 2021, tight for N=1] 



Optimal step size of fixed damped Newton method

Fig. 1: 𝑀 = 𝜇 = 1 and 𝑥0 − 𝑥∗ =
2

3

Fixed Damped Newton method : 𝑥𝑘+1 = 𝑥𝑘 − 𝛼
𝑓′ 𝑥𝑘

𝑓′′(𝑥𝑘)

𝛼 that optimize the worst-case performance on convex Hessian Lipschitz functions
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Take home messages
Performance estimation (PEP) provides worst-case convergence rates, 
proofs for those rates and corresponding explicit worst-case functions, 
and crucially rely on exact interpolation inequalities

In this work, we show how to derive exact interpolation inequalities for 
higher order classes of functions, such as Hessian Lipschitz functions and 
(generalized) self-concordant functions, in the univariate case

Using PEP with those inequalities, we study and find tight rates for
many variants of second-order methods, such Newton’s method and 
cubic/adaptive variants

Paper: https://arxiv.org/abs/2506.22764

Git: https://github.com/NizarBousselmi/Second-Order-Univariate-PEP

https://arxiv.org/abs/2506.22764
https://github.com/NizarBousselmi/Second-Order-Univariate-PEP
https://github.com/NizarBousselmi/Second-Order-Univariate-PEP
https://github.com/NizarBousselmi/Second-Order-Univariate-PEP
https://github.com/NizarBousselmi/Second-Order-Univariate-PEP
https://github.com/NizarBousselmi/Second-Order-Univariate-PEP
https://github.com/NizarBousselmi/Second-Order-Univariate-PEP
https://github.com/NizarBousselmi/Second-Order-Univariate-PEP
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