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How to analyze worst-case of optimization methods?

* Optimization method (e.g. gradient method, Newton’s method,...)
* Function class F (e.g. convex, smooth, self-concordant,...)

* Problem : min f(x)
X

Question : Worst-case performance of M on instance of F ?

Example: Worst-case performance of
on L-smooth convex functions after N iterations?

L |y — x| |2
2 2N +1

fly) = f" <



How to construct a convergence rate proof?

Definition of Step 1: Ineggglltles from Step 2: Optimal Guarantee on the
. =N . .
function class F definition of class ¥ [ combination of —! performance of
inequalities via PEP

Step 1: Inequalities

F = {smooth I Step 2: combination
B | f(v) < f(@) + V@) (y—2) + Slly =2l Vo4 | of inequalities and > F(xy) — [ <

convex functions}
flx) z fly) + (VI(y),x —y)

L |lxo = x"|1?
2 2N+1

Two sources of (possible) conservatism on the guarantee:
- combination of inequalities may not be optimal  (PEP problem not solved optimally)
- inequalities may not be sufficient conditions interpolation in the function class (only necessary)

Optimal combination of exact inequalities leads to exact/tight worst-case analysis




Take home messages

Performance estimation (PEP) provides worst-case convergence rates,
proofs for those rates and corresponding explicit worst-case functions,
and crucially rely on exact interpolation inequalities

In this work, we show how to derive exact interpolation inequalities for
higher order classes of functions, such as Hessian Lipschitz functions and
(generalized) self-concordant functions, in the univariate case

Using PEP with those inequalities, we study and find tight rates for
many variants of second-order methods, such Newton’s method and
cubic/adaptive variants



Outline

1. Performance Estimation Problem (PEP) Framework
2. Principled technique to characterize univariate class of functions
3. Interpolation conditions for second-order univariate function class

4. Convergence results for second-order methods



Conceptual PEP: maximizing the worst-case performance

Idea: Finding the worst-case performance as an optimization problem

max Perf(zy, f) Maximize Perf of M’ among the set of functions f € F
To,xr™,
feF Perf(xy, f) canbe : ||xy — x|, || VG|, fv — 7, etc
rn = M(zo, f)
Vf(a:'*)||2 — 0 Issue: untractable since optimization in function space
To —x*[|? <1 Solution: discretize function f and its gradient at iterates
(equivalent for a black-box optimization method)




From conceptual PEP to tractable PEP (1)

Example: Worst-case performance of gradient method on L-smooth convex functions

points x;,.x* function f . R
points x;.x*.f;.f*,g;,9*
St f L-smooth convex, sit. 3f L-smooth convex:  f(x;) =fi, Vf(xi)) = gi,
- foc) =, V) =g
1 1

Xi1 = Xi — va(xr’)a Xit1 = Xi = 70is

X* — xol|* <1,

[Ix* — Xol|* <1, | - ol[* <1,

[leml = 0.

IVfx)II? = 0.

Key concept: necessary and sufficient interpolation conditions




. .. Step 1: Inequalities
Interpolation conditions from definition of 7

Theorem 1: f is L-smooth convex if and only if for all x,y € R"

£9) < 1(@) + V@) (w—2) + 5 |y~ 2l Ve,
fle) = fly) + V), 2 —y)

Theorem 2: f is L-smooth convex if and only if for all x,y € R"

f4) 2 (o) + VI@) (@~ 2) + 57| VI @)~ VIR, Va,y

Proof/PEP does not use all x, y € R™, only x,, ..., Xy, X"

f(XI) - fr Vi

~if,and only if,
vf(Xf) =3, Vi

3 L-smooth convex f such that {

1 .
fi 2 fi+ 0506 — %) + orllgi — aull® V(. ).



From conceptual PEP to tractable PEP (2)

Example: Worst-case performance of gradient method on L-smooth convex functions

~ max fn —f max -f
points x;.x* fi.f*.9;,9* points x; x*.f;.f*,g;,0* fN f
st 3f L-smooth convex:  f(x;) =fi, Vf(X;) = gi. T 1 )
: : : i st f;‘foe+gfe(xf'_xf?)+i”gi_g!e‘ ;
f(x*) =f*, Vf(x*)=g", : :
1
Aig1 = Xi— 79i; ]
I ol <1, S
lg*|”> =o. |1X* — xo > < 1.
%2
g™ = 0.

Non-convex Quadratically Constrained Quadratic Problem (QCQP)

Linearon f; and x{g;, x{x;, g{9;

Can be sometimes be formulated as convex semidefinite program, hence efficiently solvable

PEP gives the exact worst-case numerically (which helps to prove it analytically) [Drori, Teboulle 14]

It gives all the answers, but we should ask the relevant questions [Taylor, Hendrickx, G 17]



Convex formulation of PEP

Convex formulation of PEP when: ‘ Only First-Order methods

* Method analyzed is linear combination of (previous or future) gradients g; and iterates x;.
e Interpolation conditions are convex in f; and x{ g;, xl-ij, ging

h
1. Gradient method : %1 = % — V(@)

Yit1 = T — ;;Vj'(xi)
L4 AT Key idea: lift products of variables (Gram)
29 1 — efficiently solvable semidefinite

Oy Wit~ ) optimization problem

2. Fast gradient method :

Oiy1 =

Tit1l = Yigr1 +

3. Proximal method: x;11 = proxgy(x;)) = x; — Vf(x;1q1)

[Drori, Teboulle 14]

[Taylor, Hendrickx, G 17a]
Uit1 = ProX, g« (u; +oM(2wi1 — x5)), [Taylor, Hendrickx, G 17b]
[Bousselmi, Hendrickx, G 23]

T
Li+1 — pI‘OXTf (33'1 —TM uz) y

4. Chambolle-Pock method: {



This work: PEP to analyze second-order methods (1)

Example: Analysis of Newton’s method

max l[xy — x*||?
Xk E]Rd,gk ERd,hk ERdXd,pk €eRd

s.t. df € F s.t. f(Xk) = f, Vf(Xk) = Gk, VQf(xk) = hy,

Xk+1 = Xk — Pk,

hkpk = 9k,
X0 — x*|I> < R?,
lg*|I> =0,
Or any other second order scheme:
[Nesterov, Polyak 2008]
. . / 1 1 M 3
* Cubic Newton method :  7u(x) € Argmin [(f (), y=x)+ 2 {f1 O =2), y=x)+ = lly x| ] (2.4)

e Damped Newton method: Xk+1 = Xk — 1+Mfllf(m[sz(xk)]_"Vf(xk)

Ak =/ HI[V f(z")]
et =ab — (V2 f (%) + D)7V f(27)

[Mishchenko 2022]
* Gradient Regularized Newton method:



This work: PEP to analyze second-order methods (2)

Two main issues to extend PEP to second-order methods:

1) Interpolation conditions for second-order function class
(e.g. Hessian Lipschitz, self-concordant functions)

Solution: Principled technique to provide interpolation conditions
for univariate generalized self-concordant functions

2) PEP formulation is non-convex
Solution: Solve the non-convex problem with global non-convex solver (e.g. Gurobi)

" Lose nice properties of convex (lifted) PEP but allows more flexibility
(e.g. non-convex/integer constraints, use of exponential functions)
= Non-convex PEPs have been solved previously in other settings
(e.g. [Ryu, Taylor, Bergeling, Giselson 2020] and [Das Gupta, Van Parys, Ryu 2023])
= [de Klerk, G, Taylor 2020] used convex PEP to analyze a single iteration
of a Newton step for self-concordant functions (with a trick to deal with Hessian norm)



Outline

1. Performance Estimation Problem (PEP) Framework
2. Principled technique to characterize univariate class of functions
3. Interpolation conditions for second-order univariate function class

4. Convergence results for second-order methods



Univariate generalized self-concordant functions

10

Focus on univariate functions (easier and still interesting) ()] < A" (2)°

(univariate) generalized self-concordant functions [Sun, Tran-Dinh 2019 F(z) > 0
x

includes Hessian Lipschitz, self-concordant, quasi-self-concordant, etc

Definition 1 (« 1-point def » univariate generalized self-concordant functions)
1 .
/ T < b ]\/f T Oz’ _ 1ia lf « ?é 1
Pl < B@IM@e, 5(a) { fazl

f € Ma & {ﬂ@zn,

Theorem 1 (« 2-points def » generalized Lipschitz functions)

\f(’r) - f(y)| < Mz —y|, Vz,y, where f(af;) = {

fle)t=,  ifa#1,
J € Ma = {f(:(,) >0 Vzr

log(f(z)), #fa=1.

Theorem 2 (Interpolation conditions without gradient and function values)

S = {(xi, hi) biciny @5 Far,a-interpolable if and only if
11—« .
fo— f ; fi if a # 1
Foof <Ml i where =401 o TeFL
fi >0, Vi log(fi), if a=1.




Principled technique to obtain interpolation conditions (1)

11

Summary:

Given class F for which we have interpolation conditions (e.g., Lipschitz
functions), gives interpolation conditions of the class whose derivative
belongs to F (e.g., smooth functions) called [ F.

(main reason for univariate restriction)

Theorem 3 (Interpolation conditions for Lipschitz functions)
S = {(xi, fi) bieiny is interpolable by a Lipschitz function if and only if

\fi — fil < Mz, — x|, Vi,j

Principled technique ‘

Recovers [Taylor Hendrickx G, 2017]

Theorem 4 (Interpolation conditions for gradient Lipschitz functions)

S = {(xi, fi, 9:) }ic[n) ts interpolable by a gradient Lipschitz function if and only if

M
(1 — )

2 J

1

+ AN Vi, j

2
fi—Tfi—gilz; —zi) 2 (95 — gi + M (x5 — )",




12

Principled technique to obtain interpolation conditions (2)

Gmax (:E)

Gmin (4"'-"')

LII Gmax (f)dt

-
ne
au®
"
ans®
nm®
mam
e
su®
ms
L]
am
-----------
an
llllllllllllllllllllllllllll

l-lﬂ.;'-.l Gmin (?T)d?t

3 4 5

Theorem 1 Let 7 C C™ be an extremally interpolable (Assumption 1) class of
univariate functions, and let [ F C C™ Y (defined in (R)) be extremally com-
pletable (Assumption 2) and order m + 1 connectable (Assumption 4 ).

A set S = {(xi. f2,f1 ... ) ieny, where kg < o < 0 < an s [ F-
interpolable if and only if S is [ F-interpolable without function values, and Vi €
[N],

Tiiq Lit1
] gmin(r)dl‘ < fz—i—l - fz' < / glnax(i‘)df- (l'-l)

where gmin and gmax are defined as in (11).

Th. 2: "initial" interpolation conditions for univariate
generalized self-concordant functions

Principled technique starts from Th. 2 and provides
"complete" interpolation conditions

Theorem 2 (Interpolation conditions without gradient
and function values)

S = {(xi, hi) Yieny @5 Far,a-interpolable if and only if

fi = fi] < M2 — x4,
hi >0, Vi

Vi, J,
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2. Principled technique to characterize univariate class of functions
3. Interpolation conditions for second-order univariate function class

4. Convergence results for second-order methods
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Interpolation conditions for univariate Hessian Lipschitz functions

Step 1: Inequalities
from definition of F

L : : . : : : (2)
Dy univariate functions with Lipschitz continuous Hessian. (Dy = f Fy)

Definition. [ € Dy, if, and only if

|7 (x) = f(y)| < M|z —y| Vz,y. (S)

Theorem. [f f € Dy then, I Not interpolation condition I

/ 1 " y M :
Fy) = fa) = f@)(y =) = 5 (@) (y —2)*| < =y — 2" Vay. (S2)

Theorem. [ € Dy if, and only if

Interpolation condition

1 5 M ,
fly) = f(@) = f@)y —2) = S (@) (y —2)° <ly =l

WS - @ - Sl g
2(M |y — x| — (f"(y) — " (x)))
(Mly — x| = (f"(y) = f"(@)* ,
- 96112 VY-

Challenge: « (S2) implies (S)» is an open question as far as we know




Interpolation conditions for (quasi-)self-concordant functions

Self-concordant functions : |f"'(x)| < 2Mf"' (x)3/2

Vi,j € [N], h; =0 and g; = g;, or ¥i,j € [N],

Corollary 3 A set S = {(wi,9i,hi) bien) 5 Sm,+-interpolable if and only if,

\h.j — !'z?;\ < Ml|z; —x;| and h; >0 (34)
- ~ | 1 1 4
Ifhi+h; > —M(z; —x;), theng; — 9 2 —— + —— — M M :
Mh; ;‘"lfh.-j ﬂf(h—i -+ f?.-j + flf(;rj — ;T-g;))
(35)

where h; = h_l/z.

Quasi-self-concordant functions : [f""'(x)| < Mf"' (x)

Lemma 6 If [ € Tar 4, then Vo, y € R,
P = f (@) = £ @)y = 2) <72t () (M1 = Aty — o] - 1)
2 (
(\/1“"7 \/}cu oM (y— w) .

38)

14
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Global convergence rate of Cubic Newton Method

: 1 ‘
Tir1 = arg m}nj(:r) + f(x)(x — ;) + 5)"”(3:,{-_)(3: — ;)% +

Theorem 6 ([38], Theorem 1) The iterates of the Cubic Reqularized Newton
method (CNMN) on Hessian M -Lipschitz univariate functions satisfy

12 M "3 M

[Nesterov, Polyak 2008] (in multivariate case)

1"y 3
flag) = [(@r41) 2 Mmax{ I[f'are)] 2 f (-Ik+1)} _ (47)

Theorem 7 (Improved descent lemma and gradient convergence rate)
The iterates of the Cubic Regularized Newton method (CNM) on Hessian M-
Lipschitz univariate functions satisfy

', 3
fler) — f(zri1) = 5321 |/ (R;”H)' .

(49)

[Rubbens, Bousselmi, Hendrickx, G 2025]

15

M . )
|z — xi]. (CNM)
6
Step 1: Inequalities
from definition of F
Step 2: combination
of inequalities and
Iteration of
25 1 I —Old descent lemma [NéslS}
—New descent lemma
- e PEP with cubic bound
= o PEP with exact interpolation conditions
/:_“ 2
T s
E
£
|l 1L 1
05 | 1 L | | | | |
0 1 2 3 4 5 6 7 8 10

Number of iterations N
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Local quadratic convergence rate of Newton Method

Theorem. If
e [ has a M-Lipschitz continuous Hessian,
o Jx* such that Vf(x*) =0, V2f(x*) = pul = 0,
o Mgyt < 2,
then all Newton iterations xi11 = v — V2 f(x) 'V f(x1) satisfy

%Ha‘.k — a*|)?

2 (l — %H:}:k — '1*”)

[Nesterov 2018]

Observation: PEP numerical results exactly match the bound

Theorem. Theorem above is light and attained by the following univariate cubic by parts function.

Maz* x? ;
— 4+ U5 if <0,
filz) = { o 7. Y

Ma? x> f
_Tf + /;,*:7 ?,f T > 0.

[Rubbens, Bousselmi, Hendrickx, G 2024]

Univariate case is « sufficiently rich » to attain the worst-case performance




Local convergence of Gradient Regularized Newton method on 1/

quasi-self-concordant functions

f () = NM.
) o ' GNM1
k+1 k f"(zr) + M| f'(zr) | |

Lemma 9 The iterations of (GNMI1) on univariate M -quasi-self-concordant func-

tions satisfy
n(zy)

N(rre1) < en@Eo+t (n(rg) — 1) + 1 (85)

here i) — A7 (@)
where n(x) = M () -

—F‘easible rel,gion allolwed by (I:Iassical éonditionls

2r @ Optimal point of PEP with classical conditions
——Feasible region allowed by interpolation conditions
@ Optimal point of PEP with interpolation conditions

In this simple case, we can reduce PEP
or 1 toatwo-dimensional problem
and solve it ‘by hand’

hi

05 | | | | | | | | | |
-02 -01 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

a1
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Newton method on self-concordant functions

O o o
I o oo

O
N

Newton decrement Ay (zs)

0

= :[44, Theorem 5.2.2.1]
|==[9, Equation (11)]

e PEP

i / .
@
:I ) ®

0

o
7
: / ’ .‘f.......

0.1

02 03 04 05 06 0.7
Initial Newton decrement As(z)

0.8

[Nesterov 2018, Nesterov & Nemirovski 1998]
[Hildebrand 2021, tight for N=1]

Fig. 11: Worst-case performance A(z2) for varying initial A(xq) of two iterations of
Newton method (black dots) compared to bounds [36, Theorem 5.2.2.1] (dashed
lines), [28, Equation (11)] (solid lines), and the PEP results (dots).



Optimal step size of fixed damped Newton method

£ (xr)

Fixed Damped Newton method : X, = X, — @

fri(xg)
a that optimize the worst-case performance on convex Hessian Lipschitz functions
| @ PEP results for Damped Newton Method
| ==Regime 1: p;(a)
|===Regime 2: ps(a)
B
1@
g L
S
-
a¥]
:
S
3
ol
10"

0 0.2 04 06 038 1 12 14 16 1.8 2

Damped coefficient «

Fig. 1: M =y =1and |xy — x| =§



Take home messages

Performance estimation (PEP) provides
proofs for those rates and correspondin
and crucially rely on exact interpolation

In this work, we show how to derive exz:
higher order classes of functions, such
(generalized) self-concordant functions,

Using PEP with those inequalities, we s
many variants of second-order method
cubic/adaptive variants
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