
Performance estimation of optimization methods
A guided tour

François Glineur
Université catholique de Louvain (UCLouvain)

Center for Operations Research and Econometrics and Information and
Communication Technologies, Electronics and Applied Mathematics Institute

joint work with many collaborators, including Nizar Bousselmi,
Julien Hendrickx, Yassine Kamri, Ion Necoara, Panos Patrinos,

Teodor Rotaru, Adrien Taylor and Moslem Zamani
Funding: FNRS/FRIA, KUL GlobalParternship, EU MSCA

Workshop on Nonsmooth Optimization and Applications

in Honor of the 75th Birthday of Boris Mordukhovich

NOPTA 2024 – University of Antwerp – April 8, 2024

1

Performance estimation of an optimization method
Goal of a PEP (Performance Estimation Problem):
compute the worst-case behavior
▶ of a given optimization method

(considering a fixed number of iterations)
▶ applied to any function belonging to a given class

(e.g. convex functions, possibly with some additional
regularity property such as smoothness)

▶ from any starting point
(possibly satisfying some condition w.r.t. a minimizer)

▶ for a given performance criteria
(e.g. objective accuracy, distance to solution, gradient norm)

Example: after computing N steps of the (unconstrained) gradient
method with fixed step-size 1

L applied to a convex function f with
an L-Lipschitz gradient and minimizer x∗ from an initial iterate sat-
isfying ∥x0 − x∗∥ ≤ R, what is the worst (largest) possible objective
function accuracy for the last iterate f (xN)− f (x∗) ?

2

Output of a performance estimation problem

For a given PEP (Performance Estimation Problem) we will

▶ compute the exact value of the performance criteria’s
worst-case = optimal value of PEP problem

▶ identify an explicit function (and starting point) achieving this
worst-case value = primal solution of PEP problem +
interpolation

▶ obtain an independently-checkable proof that this worst-case
value is a valid (upper) bound on the performance criteria =
dual multiplier of PEP problem

▶ all three steps can be done either numerically or analytically

For a large class of first-order methods applied to convex composi-
tive optimization problems, these can be computed exactly using a
semidefinite programming (SDP) problem.

3

Two ingredients to formulate PEP as convex/SDP prob.

1. explicit interpolation inequalities for studied class of functions.

For example, smooth convex interpolation:

Set {(xi , gi , fi)}i∈S is interpolable by a function f ∈ F0,L

⇔ there exists a convex function f with L-Lipschitz gradient
such that f (xi) = fi and ∇f (xi) = gi for all i ∈ S

⇔ fj ≥ fi + gT
i (xj − xi) +

1
2L ||gi − gj ||2 for all i , j ∈ S

2. optimization method defined as constraint over {(xi , gi , fi)}i∈S
For example, gradient step with constant stepsize :

xk+1 = xk − h
L∇f (xk) ⇔ xk+1 = xk − h

Lgk
⇔ ∥xk+1 − (xk − h

Lgk)∥
2 = 0

3. All conditions above must be convex in variables fi and
products between xi and gi (elements of their Gram matrix)
Ideally they must also be SDP-representable

4

What you obtain when you solve a PEP

1. In all cases:
numerical value for worst-case performance
numerical description of worst-case function (interpolate primal)

numerical proof of worst-case performance (dual multipliers)

2. If you are lucky/clever: explicit formulas for some/all of above
→ this requires fitting/guessing algebraic expressions

3. In the best case: a rigorous mathematical proof
→ this requires a proof with (often tedious) reformulation of
worst-case rate as inequality involving sums-of-squares

Note: by theorem, all valid proofs must be writable as
sum-of-squares inequalities based on combinations of
necessary and sufficient interpolation inequalities
(hence any use of another inequality, while also leading to an
upper bound on rate, may destroy its tightness!)

5

Very brief history of performance estimation

▶ Concept of performance estimation introduced by Drori and
Teboulle (2012) who solve a relaxation of a nonconvex
formulation, providing bounds shown to be tight for some
algorithms (using matching worst-case functions)

▶ Taylor, Hendrickx and G. show SDP formulation is exact
(2015), using necessary and sufficient interpolation conditions

▶ Other approaches similar in spirit:
integral quadratic constraints by Lessard, Recht, Packard
(2014); Lyapunov/potential functions by Taylor, Bach (2019)

▶ A growing subfield of algorithmic optimization (above three
seminal papers total 1000+ citations)

▶ This talk mostly focuses on results obtained in UCLouvain,
but there are many other recent exciting results

6

Outline

What is Performance estimation?
The big picture
A worked example: gradient method with 1

L stepsize

Gradient method for smooth functions
Convex, strongly convex and nonconvex/hypoconvex functions

Last iterate convergence in subgradient methods

Software toolboxes: PESTO and PEPit

Beyond (fixed-step) gradient methods
Projected/proximal gradient method
Methods using inexact gradient
Methods involving linear mappings

A few reflections and open questions

7

Obtaining a SDP formulation: a worked example

We explain all steps to obtain an exact SDP formulation on the
following example, dealing with the gradient method with the
simplest so-called ’optimal’ 1

L steps:

What is the worst possible objective function accuracy after applying
N steps of the gradient method with fixed step-size 1

L to a convex
function f with L-Lipschitz gradient and minimizer x∗, from an initial
iterate satisfying ∥x0 − x∗∥ ≤ R ?

Formally, this is an infinite-dimensional problem over functions f :

max
f ,x∗,x0,x1,...,xN

f (xN)−f (x∗) s.t.

f is proper and convex

f has an L-Lipschitz gradient

x∗ is a minimizer of f

∥x0 − x∗∥ ≤ R

xi+1 = xi − 1
Lgi for every 0 ≤ i < N

(where gi = ∇f (xi) is the gradient)

8

Step 1: use the black-box property

Performance estimation problem is infinite dimensional but the
gradient method is black-box

(i.e. next iterate only depends on previously obtained oracle
information, consisting of the function value and an (arbitrary)
subgradient for each of the previous iterates)

In general, starting from initial x0, a black-box method computes

x1 = M1 (x0,Of (x0)) ,

x2 = M2 (x0,Of (x0),Of (x1)) ,

...

xN = MN (x0,Of (x0), . . . ,Of (xN−1)) .

Only depends on x0 and the finite list of outputs from the oracle
(Of (xi) = {f (xi),∇f (xi)})

9

Step 1: finite-dimensional reformulation using black-box
Hence infinite-dimensional variable f can be replaced by the list of
oracle outputs, each defining a variable

fi = f (xi) and gi = ∇f (xi) for all i = 0, 1, . . .N as well as i = ∗

and performance estimation problem becomes

max
x∗, x0, x1, . . . , xN
f∗, f0, f1, . . . , fN
g∗, g0, g1, . . . , gN

fN−f∗ s.t.

there exists proper and convex f with

an L-Lipschitz gradient such that

f (xi) = fi and gi = ∇f (xi)

for all i ∈ {∗, 0, 1, . . .N}
g∗ = 0

∥x0 − x∗∥ ≤ R

xi+1 = xi − 1
Lgi for every 0 ≤ i < N

which is finite-dimensional (minimizer condition became g∗ = 0).
Remaining issue: imposing existence of suitable f compatible with
fi and gi requires necessary and sufficient interpolating conditions

10

Step 2: introduce interpolating conditions
We need to express in our problem the fact that

there exists proper and convex f with an L-Lipschitz gradient such
that f (xi) = fi and gi = ∇f (xi) for all i ∈ I = {∗, 0, 1, . . .N}

i.e. given values of xi , fi and gi we must guarantee existence of f

→ we need necessary and sufficient conditions for interpolation

We use the following equivalence [Taylor,Hendrickx,G 2017]

there exists proper and convex f satisfying

f (xi) = fi and gi = ∇f (xi) for every i ∈ I

⇔
fj ≥ fi + gi (xj − xi) +

1
2L∥gi − gj∥2 for every pair i ∈ I , j ∈ I

(can be extended to deal with the smooth strongly convex case,
and the smooth nonconvex/weakly convex cases)

11

Step 2 (cont.): introduce interpolating conditions

Performance estimation problem becomes
(with I = {∗, 0, 1, . . . ,N})

max
{xi ,fi ,gi}i∈I

fN−f∗ s.t.

fj ≥ fi + gT

i (xj − xi) +
1
2L∥gi − gj∥2 ∀i ̸= j ∈ I

x∗ = 0, f∗ = 0, g∗ = 0

∥x0 − x∗∥ ≤ R

xi+1 = xi − 1
Lgi for every 0 ≤ i < N

(note that constraints f∗ = 0 and x∗ = 0 can be added w.l.o.g.)
Worst-case is computed exactly with a finite explicit formulation ;
idea first introduced in Drori and Teboulle (2014)

Unfortunately, problem is nonconvex (inner products gT
i xj)

12

Step 3: convexify using a Gram matrix

max
{xi ,fi ,gi}i∈I

fN−f∗ s.t.

fj ≥ fi + gT

i (xj − xi) +
1
2L∥gi − gj∥2 ∀i ̸= j ∈ I

x∗ = 0, f∗ = 0, g∗ = 0

∥x0 − x∗∥2 ≤ R2∥∥xi+1 − xi +
1
Lgi
∥∥2 = 0 for every 0 ≤ i < N

All terms are quadratic in xi and gi , and linear in fi
→ introduce a Gram matrix for variables fi and gi !

Example N = 1 : P = (x0 | x1 | g0 | g1)

G = PTP =

xT0 x0 xT0 x1 xT0 g0 xT0 g1
xT1 x0 xT1 x1 xT1 g0 xT1 g1
gT
0 x0 gT

0 x1 gT
0 g0 gT

0 g1
gT
1 x0 gT

1 x1 gT
1 g0 gT

1 g1

 ⪰ 0.

13

Step 3: convexify using a Gram matrix

Problem becomes linear in fi and elements of the positive
semidefinite Gram matrix → a semidefinite optimization problem
Convex problem, can be solved globally and efficiently with IPM

Formulation is a priori exact if the Gram matrix reformulation is
equivalent, which happens if dimension of vectors xi and gi (i.e.
dimension of f) is large enough (larger than dimension of G)

→ an exact dimension-free formulation for the large-scale case
(for results valid for small-dimensional f , impose rank constraint
on G ; worst-case can only deteriorate as dimension of f increases)

From G ⪰ 0, we can recover values of xi and gi corresponding to
compute worst-case function ; combined with values fi this allows
to identify an explicit function achieving the worst-case, using
interpolation

Rank of G determines dimension of worst-case f (at most 2N + 2)

14

Step 4: recovering outputs

▶ Exact worst-case value computed by the SDP formulation
(a priori under the large-scale assumption)

▶ Independently-checkable proof is derived from dual solution:
combining interpolating inequalities with the corresponding
dual multipliers provides a proof for the worst-case bound

▶ Explicit worst-case function derived by interpolation from
optimal solution, with dimension equal to rank of G

▶ If G is rank deficient, worst-case result valid for all dimensions
larger than that rank (in particular: if G has rank one,
worst-case unconditionally valid, which is quite frequent)

15

Additional step: use homogeneity

Our performance estimation problem is parameterized by

▶ Lipschitz constant L for gradient

▶ Maximum distance R between starting point and a minimizer

To avoid having to solve for every value of L and R use
homogeneity properties

▶ if L → λL with λ > 0, worst-case is also multiplied by λ
(proof: scale f → λf)

▶ if R → λR with λ > 0, worst-case is also multiplied by λ2

(proof: f → λ2λf (·/λ))
hence worst-case w∗(L,R,N) is proportional to L and R2

→ solve problem for B = R = 1, find worst-case value w∗(1, 1,N)
so that for general L and R we will have

f (xN)− f (x∗) ≤ w∗(L,R,N) =
LR2

2
· w∗(1, 1,N)

Only remaining parameter is N, number of steps

16

Worst-case gradient method with constant 1
L stepsize

Apply PEP to N steps of gradient method with 1
L stepsize:

1. Notice numerical values of worst-case match formula

w∗(1, 1,N) =
1

2N + 1

(easy to see for small N, then verified for large N)

2. Guess from (factor of) Gram matrix the values of gradients gi
Matrix is rank one, interpolating values leads to univariate
piecewise linear-quadratic function fρ (Huber) with ρ = 1

2N+1 :

fρ(x) =

{
ρ|x | − ρ2

2 when |x | ≥ ρ
x2

2 when |x | ≥ ρ

Easy to check performance of method on fρ (starts with
x0 = 1, then xi = 1− iρ), which establishes w∗ ≥ 1

2N+1

17

Worst-case gradient method with constant 1
L stepsize

3. To prove upper bound on w∗, it is sufficient to exhibit a dual
feasible solution with same value
To describe a dual solution it is actually sufficient to give
multipliers λi ,j for each interpolating inequalities i , j ∈ I
Again guess from numerical values ; e.g. for N = 1:

λ0,∗ = λ1,∗ = λ1,0 =
1

2
and all other multipliers zero

4. Finally one needs to prove (analytically) that the above set of
multipliers is feasible (hardest part is proving the slack matrix
is positive semidefinite), leading finally to w∗ ≤ 1

2N+1

(this result was already obtained ∀N in Drori and Teboulle, 2014)

18

Interpretation of proof with dual multipliers
Actually SDP formulation/machinery is not needed to derive a
proof of the upper bound: one can alternatively and equivalently
multiply the interpolating inequalities by the dual multipliers and
simplify the resulting expression

For example when N = 1, one can check that the following identity
holds when x1 = x0 − 1

L∇f (x0):

f (x1)− f (x∗)

= L
6∥x0 − x∗∥2

− 1
2

[
f (x0)− f (x1)−∇f (x1)

⊤(x0 − x1)− 1
2L∥∇f (x0)−∇f (x1)∥2

]
− 1

2

[
f (x∗)− f (x0)−∇f (x0)

⊤(x∗ − x0)− 1
2L∥∇f (x0)−∇f (x∗)∥2

]
− 1

2

[
f (x∗)− f (x1)−∇f (x1)

⊤(x∗ − x1)− 1
2L∥∇f (x1)−∇f (x∗)∥2

]
− L

6

∥∥x0 − x∗ − 3
2L∇f (x0)− 3

2L∇f (x1)
∥∥2 − L

8∥∇f (x0)−∇f (x1)∥2

(hardest part is grouping of slack terms into squares, equivalent to
proving semidefiniteness of slack ; proof is not necessarily unique!)

19

Outline

What is Performance estimation?
The big picture
A worked example: gradient method with 1

L stepsize

Gradient method for smooth functions
Convex, strongly convex and nonconvex/hypoconvex functions

Last iterate convergence in subgradient methods

Software toolboxes: PESTO and PEPit

Beyond (fixed-step) gradient methods
Projected/proximal gradient method
Methods using inexact gradient
Methods involving linear mappings

A few reflections and open questions

20

Gradient method, L-smooth function, constant step-size h
L

Worst-case rate for final iterate accuracy, for any h ∈ [0, 2]

max f (xN)− f ∗ =
LR2

2
max

(
1

2Nh + 1
, (1− h)2N

)
We actually know

▶ analytical expression for worst-case performance

▶ analytical expression of worst-case function (Huber/quadratic)

▶ analytical expression of dual multipliers

but rigorous sum-of-squares proof currently known only for h ≤ 1.5
(Drori and Teboulle 2014, Teboulle and Vaisbourd 2023)

21

Dealing with smooth strongly convex functions

Strongly convex functions ⇔ lower bound µ > 0 on curvature

To tackle smooth strongly convex functions (class Fµ,L) we only
need one new ingredient: suitable interpolation conditions

Correct necessary and sufficient conditions are given by following
Theorem [Taylor, Hendrickx, G. 2016]

Set {(xi , gi , fi)}i∈S is Fµ,L-interpolable if and only

fi − fj − g⊤j (xi − xj) ≥
1

2(1− µ/L)

(
1

L
∥gi − gj∥2 · · ·

+µ∥xi − xj∥2 − 2
µ

L
(gj − gi)

⊤(xj − xi)
)

holds for every pair of indices i ∈ I and j ∈ S

(generalizes conditions for smooth convex interpolation)

22

Gradient method for smooth strongly convex functions

xi+1 = xi −
h

L
∇f (xi)

Linear convergence for all performance criteria, with same rate
ρ = max{(1− Lh)2, (1− µh)2} [Taylor,Hendrickx,G 2018]

∥xk − x∗∥2 ≤ ρk∥x0 − x∗∥2

∥∇f (xk)∥2 ≤ ρk∥∇f (x0)∥2

f (xk)− f (x∗) ≤ ρk
(
f (x0)− f (x∗)

)
▶ All results with fully rigorous PEP-type mathematical proofs

(pure linear rates → sufficient to prove them for one step)

▶ Optimal steplength is h∗ = 2
L+µ with ρ∗ =

(
L−µ
L+µ

)2
▶ Worst-case functions are 1D quadratics µ

2 x
2 and L

2x
2

▶ Same rates also hold for projected/proximal gradient
▶ However linear rate become void when ρ = 0 (giving ρ = 1)

and such rates do not (cannot) work in nonconvex case
→ we move to another setup

23

Dealing with smooth nonconvex functions

Smooth nonconvex actually quite similar to smooth convex:

smooth nonconvex functions ⇔ curvature must belong to [−L, L]

To tackle smooth nonconvex functions (class F−L,L) we only need
one new ingredient: suitable interpolation conditions

It turns out that interpolation conditions for smooth strongly
convex functions in class Fµ,L also work, with exactly the same
expressions, when µ is negative !

Hence smooth nonconvex interpolations conditions are obtained
simply by taking µ = −L

This is used in [Abbaszadehpeivasti,de Klerk,Zamani 2022] to derive
tight rates for gradient method on smooth nonconvex objectives

with stepsize h ≤
√
3
L

24

Dealing with nonconvex and hypoconvex functions
We can even interpolate smoothly between smooth convex (F0,L)
and smooth nonconvex (F−L,L) with all values of µ ∈]−L, 0[

This leads to the class of hypoconvex functions Fµ,L for any µ < 0
(also known as weakly convex)

Necessary and sufficient interpolation conditions can be found in
[Taylor 2017][Rotaru,G,Patrinos 2022][Abbaszadehpeivasti,de

Klerk,Zamani 2022]
Set {(xi , gi , fi)}i∈S is Fµ,L-interpolable if and only

fi − fj − g⊤j (xi − xj) ≥
1

2(1− µ/L)

(
1

L
∥gi − gj∥2 · · ·

+µ∥xi − xj∥2 − 2
µ

L
(gj − gi)

⊤(xj − xi)
)

holds for every pair of indices i ∈ I and j ∈ S

(again generalizes conditions for smooth convex and smooth
strongly convex interpolation)

25

Gradient method for smooth functions

The following rates are all

▶ exact, with explicit analytical expressions,

▶ established using mathematical proofs (PEP-inspired),

▶ cover all constant stepsizes schedules in the standard
(converging) range [0, 2L],

▶ cover convex, strongly convex, nonconvex and hypoconvex
objective functions in a unified way

▶ hence performance criteria we pick is gradient norm
(for last iterate, or smallest among all iterates)

preprint soon to be updated on arxiv [Rotaru,G,Patrinos 2024]

26

Exact rates for gradient method in (strongly) convex case
Gradient method with constant stepsize γ

Theorem (Convex)

f ∈ F0,L (L-smooth and convex):

1
2L∥∇f (xN)∥2 ≤

f (x0)− f (x∗)

1 + γLmin

{
2N ,

−1 + (1− γL)−2N

γL

}
Theorem (Strongly convex)

f ∈ Fµ,L, with µ ∈ (0, L] (L-smooth and µ-strongly convex):

1
2L∥∇f (xN)∥2 ≤

f (x0)− f (x∗)

1 + γLmin

{
−1 + (1− γµ)−2N

γµ
,
−1 + (1− γL)−2N

γL

}

Similar rates, correspond to worst of two simple (quadratic/Huber)
functions (but proof is not simple)

27

Exact rates for gradient method in nonconvex case

Theorem (Weakly convex (hypoconvex))

f ∈ Fµ,L, with µ ∈ (−∞, 0):

1
2L min

0≤i≤N

{
∥∇f (xi)∥2

}
≤ f (x0)− f (x∗)

1 + γLmin

{
PN(γL, γµ) ,

−1 + (1− γL)−2N

γL

}
with PN(γL, γµ) given by

(
2− −γµ γL

γL− γµ

)
N, γL ∈ (0, 1];

(2− γL)(2− γµ)

2− γL− γµ

(
N − −γµ γL

γL− γµ

N∑
k=0

{[Tk(γL, κ)]+

)
, γL ∈ [1, 2).

28

Stepsize thresholds

For any κ ∈ (−∞, 1) and integers k , quantities

Tk(γL, κ) :=
1− (1− γL)−2k

γL
− 1− (1− γµ)−2k

γµ

determine distinct regimes in all theorems,
which are delimited by stepsize thresholds:

γLk(κ) = {γL ∈ (1, 2) |Tk(γL, κ) = 0}

29

Comments on exact rates for gradient method

▶ First proof of a tight convergence rate for the gradient method
covering the full range of constant stepsizes (i.e. h ∈ [0, 2L])

▶ In (strongly) convex case: simple expression for rate
(worst among two simple functions)
but proof is unexpectedly difficult
(reason: hidden distinct regimes behind a single rate)

▶ In nonconvex/hypoconvex case: very complicated rates
(interpolate continuously between convex and nonconvex)

▶ To cover full range need N distinct proofs/regimes

▶ Key element for tightness: use of distance-two inequalities
(same expected for analysis of very recent long-step method,
see Parrilo-Altschuler, Grimmer et at.)

Go see Teodor Rotaru’s poster on Friday!

30

Outline

What is Performance estimation?
The big picture
A worked example: gradient method with 1

L stepsize

Gradient method for smooth functions
Convex, strongly convex and nonconvex/hypoconvex functions

Last iterate convergence in subgradient methods

Software toolboxes: PESTO and PEPit

Beyond (fixed-step) gradient methods
Projected/proximal gradient method
Methods using inexact gradient
Methods involving linear mappings

A few reflections and open questions

31

Nonsmooth optimization: subgradient method

First-order methods can deal with nonsmooth convex functions
using the concept of subgradient

g ∈ ∂f (x) ⇔ f (y) ≥ f (x) + gT (y − x) for all y

Subgradient method startsfrom x0 and performs for all i ≥ 0

xi+1 = xi − higi for some gi ∈ ∂f (xi)

for some stepsize schedule {hi}i≥0

Worst-case rates on objective accuracy require

▶ Distance R from initial iterate x0 to minimizer x∗

▶ Bound B on maximum norm of any subgradient g ∈ ∂f (x)

32

Interpolation conditions for nonsmooth convex functions
We need explicit conditions for the following

there exists proper and convex f with B-bounded subgradients
such that f (xi) = fi and gi ∈ ∂f (xi) for all i ∈ I = {∗, 0, 1, . . .N}

i.e. given values of xi , fi and gi we need to guarantee existence of f

We use the well-known (and easy to show) equivalence

there exists proper and convex f satisfying

f (xi) = fi and gi ∈ ∂f (xi) for every i ∈ I

⇔
fj ≥ fi + gi (xj − xi) for every i , j ∈ I

which can be extended to deal with B-bounded subgradients We
use the well-known (and easy to show) equivalence

there exists proper and convex f with B-bounded subgradients s.t.
f (xi) = fi and gi ∈ ∂f (xi) for every i ∈ I

⇔
fj ≥ fi + gT

i (xj − xi) for every i , j ∈ I

∥gi∥ ≤ B for every i ∈ I

Leads to a convex formulation (using gT
i gi ≤ B2)

33

Results: average iterate
Worst-case for fixed-step subgradient method

xi+1 = xi − h(RB)gi

applied to convex function with B-bounded subgradients

▶ For average value of iterates f̂N = f (x0)+f (x1)+...+f (xN)
N+1 , tight

worst-case is

f̂N − f (x∗) ≤

{
BR
(
1
2h + 1

2(N+1)
1
h

)
when h ≥ 1

N+1

BR
(
1− N

2 h
)

when h ≤ 1
N+1

(recovers a well-known result for large h)

▶ Optimal constant step-size is then h∗ = 1√
N+1

(belongs to

”large step” case) leading to tight worst-case

f̂N − f (x∗) ≤
BR√
N + 1

34

Results: last iterate
▶ Define sequence {sN}N≥0 = {1, 2, 52 ,

29
10 , . . .} with

s0 = 1, si+1 = si +
1

si
for all i ≥ 0

▶ No closed form, sN grows like
√

2(N + 1) + 1
2 log(N), also

appears in [Nesterov 2009] for primal-dual subgradient

▶ For value of last iterate f (xN), tight worst-case is

f (xN)− f (x∗) ≤

BR
[
(12s

2
N − N)h + 1

2s2N

1
h

]
when h ≥ 1

s2N

BR(1− Nh) when h ≤ 1
s2N

▶ No previous result with correct asymptotic rate for last iterate
▶ [Harvey,Liaw,Plan,Randhawa 2019] prove a logN

32
√
N

lower bound

when B = 1 with stepsize hi =
1√
i
, and prove a high

probability O(logN√
N
) upper bound in stochastic case

35

Results: optimal stepsize and variants
▶ To perform N subgradient iterations, optimal stepsize is then

h∗ =
1√

s2N(s
2
N − 2N)

and corresponding worst-case value satisfies

f (xN)− f (x∗) ≤ BR

√
1− 2N

s2N
≲ BR ·

√
1 + 1

4 log(N)

N + 1

▶ Using suboptimal h† = 1√
N+1

leads to slightly worse

f (xN)− f (x∗) ≤ BR ·
(5

4 + 1
4 log(N)

√
N + 1

)

▶ All results also hold for normalized stepsize h
R

gi
∥gi∥

36

Proof technique: PEP no longer needed!
All results are based on the following key Lemma, whose proof
does not require PEP-style interpolation inequalities manipulations,
only Jensen’s inequality (based on tracking the distance between
the current iterate and a different reference point at each iteration)

Lemma ([Zamani,G 2023])

Suppose that x̂ ∈ X , hN+1 > 0 and weights vk satisfy
0 < v0 ≤ v1 ≤ · · · ≤ vN ≤ vN+1 Then iterates of the subgradient
methods with starting point x1 ∈ X generating {(xk , gk)} satisfy

N+1∑
k=1

(
hkv

2
k − (vk − vk−1)

N+1∑
i=k

hivi

)(
f (xk)− f (x̂)

)
≤ v2

0
2

∥∥x1 − x̂
∥∥︸ ︷︷ ︸

R

2
+ 1

2

N+1∑
k=1

h2kv
2
k

∥∥∥gk
∥∥∥︸ ︷︷ ︸

B

2

Still credit for the inspiration of the proof goes to PEP!
37

Optimal last-iterate subgradient method
▶ Using the following new linearly decreasing stepsize schedule

xk+1 = xk − R
B

(N+1−k)

(N+1)3/2

leads the optimal rate for the last iterate [Zamani,G 2023]

f (xN)− f (x∗) ≤ BR√
N+1

(improves 15BD√
N+1

[Jain,Nagaraj,Netrapalli 2021] for diameter D)

▶ Same proof technique, using key lemma with other weights vk

▶ Schedule dependence on N is forced for optimal method
(already impossible to find fixed stepsizes h1 and h2 that are
optimal for both N = 1 and N = 2)

▶ Existence of a last-iterate optimal method with momentum?

Go see Moslem Zamani’s poster on Friday!

38

Outline

What is Performance estimation?
The big picture
A worked example: gradient method with 1

L stepsize

Gradient method for smooth functions
Convex, strongly convex and nonconvex/hypoconvex functions

Last iterate convergence in subgradient methods

Software toolboxes: PESTO and PEPit

Beyond (fixed-step) gradient methods
Projected/proximal gradient method
Methods using inexact gradient
Methods involving linear mappings

A few reflections and open questions

39

Toolboxes
Please visit https://github.com/PerformanceEstimation
for toolboxes: PESTO (in MATLAB) [Taylor,Hendrickx,G] and
PEPit (in Python) [Goujaud,Moucer,G,Hendrickx,Taylor]

40

https://github.com/PerformanceEstimation

Example: subgradient method with hk =
1√
N+1

1 P = pep();

2

3 param.R = 1;

4 F = P.DeclareFunction(

5 ’ConvexBoundedGradient ’,param);

6 [xstar ,fstar] = F.OptimalPoint ();

7

8 x0 = P.StartingPoint ();

9 P.InitialCondition ((x0 -xstar)^2 <=1);

10

11 N=5;

12 x=x0;

13 for i=1:N

14 [g,f] = F.oracle(x);

15 x = x - 1/sqrt(N+1)*g;

16 end

17

18 xN = x;

19 fN=F.value(xN);

20 P.PerformanceMetric(fN -fstar);

21

22 P.solve()

23 disp(double(fN - fstar))

41

Contains numerous introductory examples
(tries to keep up with literature, current count is 80+)

42

Outline

What is Performance estimation?
The big picture
A worked example: gradient method with 1

L stepsize

Gradient method for smooth functions
Convex, strongly convex and nonconvex/hypoconvex functions

Last iterate convergence in subgradient methods

Software toolboxes: PESTO and PEPit

Beyond (fixed-step) gradient methods
Projected/proximal gradient method
Methods using inexact gradient
Methods involving linear mappings

A few reflections and open questions

43

Projected gradient and proximal methods

We can actually handle with little extra effort

▶ first-order methods for smooth constrained convex
optimization i.e. express projection steps in our formulation

xk+1 = PC

[
xk −

1

L
∇f (xk)

]
▶ proximal algorithms i.e. express proximal steps

xk+1 = proxLf (xk) = argmin
u

(
f (u) +

1

2L
∥u − xk∥2

)
▶ composite minimization: min f (x) + h(x) where f is smooth

and h is proximable, using proximal gradient method

xk+1 = proxLh(xk − 1
L∇f (xk))

44

Projected gradient and proximal methods

x+ = proxLf (x) = argmin
u

(
f (u) +

1

2L
∥u − x∥2

)
▶ Key idea: proximal steps can be formulated as

x+ = proxLf (x) ⇔ x+ − 1
Lg+ = x and g+ ∈ ∂f (x+)

which is a linear condition involving iterates and oracle outputs

▶ Proximal gradient for composite optimization min f (x) + h(x)
can be decomposed in two successive, independent steps:
x+ = proxLh(x − 1

L∇f (x)) is equivalent

y = x − 1
L∇f (x) then x+ = proxLh(y)

▶ Projected gradient = proximal gradient using indicator
function of set C for nonsmooth term h

▶ Requires corresponding interpolation conditions
(e.g. for indicator function IC (x) of a convex set)

▶ Linear rates unchanged in smooth strongly convex case!
45

Methods using inexact gradient
Instead of computing xk+1 = xk − 1

L∇f (xk) with exact gradient
assume gradient is computed inexactly with bounded error

g̃k ≈ ∇f (xk) such that ∥g̃k −∇f (xk)∥ ≤ ∆

Key technique: rewrite step with inexact gradient

xk+1 = xk − g̃k

as
xk+1 = xk −∇f (xk)−

(
g̃k −∇f (xk)

)
and then observe it is equivalent to

L(xk −∇f (xk)− xk+1) = g̃k −∇f (xk)

which can be written using the assumption on the error as

L∥xk −∇f (xk)− xk+1∥ ≤ ∆

Leads to a convex SDP formulation (after squaring both sides)
46

Methods involving linear mappings
[Bousselmi, Hendrickx,G 2023]

We want to minimize g(Mx) (alone/in composite objective)
where M is a linear mapping with some characteristics

▶ M symmetric and constraints on minimum/maximum
eigenvalues [µ, L]

▶ M non-symmetric (possibly rectangular) with maximum
singular value S

A gradient step on F (x) = g(Mx) requires gradient

∇F (x) = MT∇g(Mx)

which can be decomposed as three successive operations:

y = Mx

u = ∇g(y),

v = MTu = ∇F (x).

47

Gradient of function composed with linear mapping

In order to compute worst-case for methods involving

y = Mx

u = ∇g(y),

v = MTu = ∇F (x).

we need to interpolate the following

yi = Mxi ,

ui = ∇g(yi),

vi = MTui = ∇F (xi).

New expressions: yi = Mxi and vi = MTui

Requires interpolability of two sequences {xi , yi} and {ui , vi}
by a linear mapping M and its transpose MT

48

Interpolation theorem for linear mappings

For simplicity of notation we represent sequence {xi} as a matrix
X (columns are xi), same for {yi}, {ui}, {vi}

Let X ∈ Rm×N1 , Y ∈ Rn×N1 , U ∈ Rm×N2 and V ∈ Rn×N2 .
(X ,Y ,U,V) is Rm×n

S -matrix-interpolable if, and only if,
XTV = Y TU,

Y TY ⪯ S2XTX ,

V TV ⪯ S2UTU.

(where ⪯ denotes the Lowner = positive semidefinite order)

Moreover, if U = X and V = Y (resp. V = −Y), the interpolant
matrix can be chosen symmetric (resp. skew-symmetric).

[Bousselmi,Hendrickx,G 2023]

49

Result: gradient method

min g(Ax) vs. min f (x)

when g is strongly convex, but f = g ◦ A is not

50

Result: Chambolle-Pock method
Let f and g convex and ||M|| ≤ LM . If τσ ≤ 1

L2M
, then after N ≥ 1

iterations of the Chambolle-Pock algorithm started from x0 and u0
we have, for any x and u, that the primal-dual gap satisfies

L(x̄N , u)− L(x , ūN) ≤
1
τ
∥x−x0∥2+ 1

σ
∥u−u0∥2−2(u−u0)TM(x−x0)

2(N+1)

Tight result with analytical proof
(slight improvement over previous proof showing 1

2N)

Many variants can be analyzed, e.g.

L(x̄N , u)− L(x , ūN) ≤
1
τ ∥x − x0∥2 + 1

σ∥u − u0∥2

N + 1

and others for which we have no analytical rate yet

Go see Nizar Bousselmi’s poster on Tuesday!

51

Outline

What is Performance estimation?
The big picture
A worked example: gradient method with 1

L stepsize

Gradient method for smooth functions
Convex, strongly convex and nonconvex/hypoconvex functions

Last iterate convergence in subgradient methods

Software toolboxes: PESTO and PEPit

Beyond (fixed-step) gradient methods
Projected/proximal gradient method
Methods using inexact gradient
Methods involving linear mappings

A few reflections and open questions

52

Reflections

▶ Automated procedure to compute worst-case rates
But: is a PEP proof the final goal?

▶ More than once, these steps actually happened

1. Numerical rate computed, analytical expression
guessed/identified/confirmed

2. Using insight provided by worst-case/proof, a closer look at
rate/proof provides further intuition and new ideas

3. Result can now be derived in standard way
(and its “PEP” origin becomes unnoticeable!)

▶ Even when such simplifications are not found, shouldn’t the
goal of mathematical optimization theory first and foremost to
increase our understanding?

53

To conclude: a few open questions

▶ Some rates are known explicitly (including multipliers) but no
proof available

max f (xN)− f ∗ = LR2

2 max
(

1
2Nh+1 , (1− h)2N

)
for h > 1.5

(should not underestimate difficulty, even with explicit expressions:

original proof by Drori and Teboulle for gradient method with h ≤ 1

required six pages of matrix analysis/algebra)

▶ Can we design first-order methods using PEP?

Main difficulty: considering method coefficients to be variable
(e.g. stepsizes hk) destroys convexity of PEP formulation

Attempts to (and succeeds in) solving resulting nonconvex
SDP [Das Gupta,Van Parys,Ryu 2022]

Is there a non obvious convex formulation for method design?

54

Convergence of N = 2 steps of gradient method
[Daccache 2019] Stepsizes (h1, h2), convex objective, L = 1-smooth,
initial distance ∥x0 − x∗∥ ≤ 1; contour plot of 2(f (x2)− f∗)

55

To conclude: a few open questions

▶ Some classes lack necessary and sufficient interpolation
conditions

Example: convex functions with coordinate smoothness
More generally: intersections of two or more classes
(grouping conditions is necessary, but not always sufficient)

▶ How come worst-case functions are univariate/low-dimensional
for so many (but not all) methods ?
Is there a fundamental reason for that?

▶ Can we go beyond first-order methods with fixed steps?
Nonlinear stepsize rules: some recent success for nonlinear
conjugate gradient [Das Gupta,Freund,Sun,Taylor 2023]

What about second-order methods? Interior-point methods?
Higher order/tensor method?

56

Thank you again for your attention!

Python toolbox PEPit and Matlab toolbox PESTO available at

https://github.com/PerformanceEstimation

Interested in gradient method for nonconvex?
Go see Teodor Rotaru’s poster on Friday!

Interested in ADMM convergence?
Go see Moslem Zamani’s poster on Friday!

Interested in methods using linear operations?
Go see Nizar Bousselmi’s poster on Tuesday!

57

https://github.com/PerformanceEstimation

	What is Performance estimation?
	The big picture
	A worked example: gradient method with 1L stepsize

	Gradient method for smooth functions
	Convex, strongly convex and nonconvex/hypoconvex functions

	Last iterate convergence in subgradient methods
	Software toolboxes: PESTO and PEPit
	Beyond (fixed-step) gradient methods
	Projected/proximal gradient method
	Methods using inexact gradient
	Methods involving linear mappings

	A few reflections and open questions

