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École Polytechnique de Louvain

Cones and Interior-Point Algorithms

for Structured Convex Optimization

involving Powers and Exponentials
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CHAPTER 1

Introduction

1.1 Motivation and goals

Optimization is the field of applied mathematics where one wants to minimize or
maximize an objective function in several variables. In real-life applications the
variables correspond to parameters that have to be chosen within some range.
The set of all combinations of these parameter choices is called the set of feasible
solutions or feasible set. For example a variable could be the thickness of a bar
in a mechanical construction, or the amount of money invested in a certain asset
of a portfolio. Our goal is to find an optimal choice of the variables in the set
of feasible solutions in the sense that it optimizes the objective function. The
objective could be for example a measure of stability of a construction or the
return of an investment.

These three ingredients – variables, feasible set and objective function – deter-
mine a generic optimization problem. Unfortunately, general optimization prob-
lems are difficult to solve. For almost all problem classes it is impossible to write
down analytically a closed-form optimal solution. Instead, iterative methods have
to be employed in order to generate a sequence of iterates that eventually converge
to an optimal solution. Since the algorithm should stop after a finite amount of
time, it typically only provides an approximation for an optimal solution. But
even worse, that approach of approximating an optimal solution might fail. In
fact, it can be shown (see [46]) that even for rather well-behaved problem classes
(with an objective that is Lipschitz continuous and a feasible set that is the n-
dimensional unit box), any method that makes only use of function values (no
derivatives) has an exponential worst-case complexity. For example if the number
of variables is n = 10 (which is rather small for applications), the objective has a
Lipschitz constant of L = 2 and we require a low absolute accuracy in terms of the
objective value of ǫ = 0.01, then using a computer that can evaluate 1010 times
the objective function per second, it could still take more than 300 years to solve
the problem. Similar results hold when derivatives are available.

Of course, this result is of worst-case nature. Very often methods are much
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2 CHAPTER 1. INTRODUCTION

faster on many instances than predicted by their worst-case complexity bounds,
like for example the simplex method for linear programming. However, the exam-
ple illustrates that too few assumptions in terms of the formulation of the problem
and too little information used in the design of the algorithm might result in bad
performance for some optimization problems. On the other hand, if we provide
more information about the concrete problem (like for example derivatives of an
objective function), we implicitly restrict ourselves to a smaller, less general, class
of problems (such as the class of problems with differentiable objective) and ex-
pect better algorithms to become available. In other words, there is a trade-off
between generality and theoretical and/or practical performance. Unfortunately,
in some situations we might not have much choice when it comes to the methods,
because the problem is extremely large or the function values are the output of
some numerical simulation. In these cases first- and second-order methods are
either not practical or simply not applicable because we have only very limited
information available about the problem. As a consequence we cannot expect a
method for these problems to give a solution with high accuracy in a reasonable
amount of time.

In this thesis we follow the opposite approach: we consider the class of second-
order methods, because up to now these methods have the best known theoretical
properties. Within this class we focus on interior-point methods which are nat-
urally defined for convex optimization problems. We argue that the restriction
to these problems is rewarding. Indeed, there is a huge amount of literature on
convex optimization (see e.g. [3],[6],[5],[9],[24],[15],[66]) showing the great scope
of potential applications, ranging from mechanical and electrical engineering, to
finance, network design, location problems and many more. Moreover, even if the
original problem might not be convex, often it is possible to approximate it well
by some convex problem (see e.g. [64],[45],[25]).

The main objective of this thesis is to establish a unified algorithmic framework
for a principal problem class with the following three properties: 1) any instance of
the chosen problem class should be solvable with a complexity that is polynomial
in the problem size, 2) the chosen problem class should be sufficiently general in
the sense that many sets and functions are representable in terms of that basic
formulation, and 3) the framework should exploit structure to overcome the two
main drawbacks which are inherent to the class of interior-point methods: its
high memory storage and the high cost per iteration, due to the evaluation and
storage of the gradient and Hessian of a multivariate nonlinear function, and the
computation of search directions by solving a linear system at each iteration.

1.2 Some historical remarks

As we outlined above, optimization can be applied in a multitude of areas in every
day’s life. This fact has been known now for a long time. The beginning of the
20th century saw increasing research activity mainly on the theoretical side of
optimization (see e.g. [32],[38],[60]) like duality theory and optimality conditions.

In the late 1940’s, research activity on algorithms for optimization problems
became stronger, driven by an increasing interest from the side of applications.
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In 1947 Dantzig ([13, 14]) proposed the simplex method for solving linear opti-
mization problems. At that time the main criteria for evaluating the quality of
algorithms were the convergence to an optimal solution and finiteness of the al-
gorithm. The simplex method goes from one vertex of the polyhedron of feasible
solutions to a neighbor that improves the objective function. As there is a finite
number of vertices on the boundary of the feasible set and because an optimal
solution must be situated on one of them, it is clear that both above conditions
are satisfied by the algorithm. That is why this method is popular and still very
successfully used today.

In the late 60’s and early 70’s a new concept for evaluating algorithms has
been introduced: the complexity of an algorithm does not only take into account
the convergence to an optimal solution and its finiteness, but it also shows how
the number of iterations depends on the size of the problem. In 1972 Klee and
Minty ([34]) showed by an example that the worst-case complexity of the simplex
method is in fact exponential in the size of the problem. Already in the 1950’s an
increased activity started in the area of nonlinear optimization ([21],[29]) which
culminated in the seminal work of Fiacco and McCormick ([17]). They proposed
in 1968 the method of sequential unconstrained minimization as a technique to
tackle nonlinear constrained problems. Later ([1]) their method was even shown
to be polynomial for linear programming problems. In 1970 Shor ([59]) proposed
the ellipsoid method, used later by Khachiyan in 1979 ([33]) to prove for the first
time polynomial complexity of a method for solving linear programs. In the same
year Nemirovski and Yudin ([43]) proposed a framework for solving the general
class of convex optimization. Among others, they showed that the complexity of
solving this class is in the best case O(n log(1/ǫ)), where n is the number of the
variables and ǫ the desired accuracy. This result is the main tool for showing
optimality of a method for convex optimization problems.

In 1984 started the interior-point revolution with the seminal work of Kar-
markar ([31]) who proposed another practically efficient polynomial-time interior-
point method for linear programming. In 1994 Nesterov and Nemirovski ([52])
generalized this result to convex optimization problems. They introduced the no-
tion of self-concordant functions and barriers. In 1997 and 1998 Nesterov and
Todd ([53],[54]) extended the framework of polynomial interior-point methods to
the conic setting and proposed symmetric primal-dual interior-point methods for a
class of convex problems that nicely generalizes the previously known primal-dual
methods for linear programming to the convex case. Since the polynomial interior-
point breakthrough during the 1990’s there have been thousands of publications
on interior-point methods for specific classes of convex optimization problems and
improvements or extensions of the original results [52, 53, 54].

During the 90’s started some further research activity on the field of interior-
point methods for general nonlinear (and nonconvex) optimization problems (see
e.g. [18], [65]). These methods share similar ideas with the methods from the
convex optimization community, in particular the use of barrier and/or penalty
functions to treat nonlinear constraints and the use of primal-dual optimality
conditions.
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1.3 Thesis overview and main contributions

This thesis is organized as follows. Chapter 2 provides the necessary background
on convex optimization and in particular conic optimization. We present the
key results about path-following interior-point methods to solve generic convex
optimization problems.

One contribution in this chapter is the less commonly encountered generaliza-
tion of known results for convex optimization to the situation where linear equality
constraints are present (Sections 2.3 - 2.5). It is known that the presence of linear
equalities can always be circumvented by removing some of the variables. How-
ever, we kept the original formulations with equality constraints and gave insight
on the overall effect on Newton’s method (in Section 2.3) and on path-following
methods (in Section 2.4 and Section 2.5). Furthermore, with the aim to make
the primal-dual conic frameworks accessible for a large class of convex problems
we propose and analyze a primal-dual predictor-corrector method that exhibits
a polynomial algorithmic complexity. We stress here that this method does not
make use of a pair of barriers for the primal and dual cone that are conjugate to
each other. For that reason this nonsymmetric primal-dual method is applicable
whenever there is a self-concordant barrier for the dual cone at hand1.

The main contribution of Chapter 3 is the proof of self-concordance of a new
barrier for the power cone with parameter ν = 3. As a direct consequence of
this result we obtain a self-concordant barrier for the epigraph of convex power
functions with an improved self-concordance parameter. The previously known
barrier had a parameter that was clearly non-optimal, which was stated already
by Nesterov in [46, Section 4.3.5.4] (however, the obtained parameter value is still
not optimal, e.g. for the power cone with α = 1

2 ). In view of that observation
we mention numerical tests which suggest that a scaling of the barrier for the
power cone is possible which results in a self-concordance parameter between 2
and 3. In a similar vein we compute numerically the universal barrier for the
three-dimensional p-cone. Our numerical tests suggest that the self-concordance
parameter is situated between 2 and 3. The self-concordance proof for the new
barrier for the power cone and its generalizations as well as its direct implications
(improved self-concordance parameter of convex powers) can be found in [10], a
paper entitled New self-concordant barriers for the power cone.

The third chapter provides the stepping stone for the rest of the thesis, in that
we give in Chapter 4 a clear description of the scope of the power cone by listing
power cone representable sets and functions. It turns out that many convex con-
straints involving powers, exponentials and logarithms are representable using the
power cone. The conic reformulation has the advantage that it allows the design
of polynomial-time interior-point methods. In order to benefit additionally from
the primal-dual framework, we compute the dual cones of the power cone itself
and of a limit of the power cone. Knowledge of these dual cones is essential when
one wants to use the primal-dual predictor-corrector method proposed earlier in
Section 2.5. We present two important problem classes (that is, generalized loca-
tion problems and geometric programs) that can be cast in conic form using power

1The primal variant of the proposed method has been presented earlier by Nesterov [49] for
the case where the primal cone is proper, i.e. where there are no primal free variables present.
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cones, with numerical results that compare the dual and primal-dual interior-point
methods to other solvers for these problem classes. We show that the dual and
primal-dual interior-point method are competitive with respect to the number of
iterations and reliability, but not with respect to the overall computation time.
This relatively disappointing result can be partially explained by the fact that
the other compared solvers do not rely on methods with polynomial complexity.
Instead, they solve directly the original problem which has the effect that the cost
of one single iteration is much lower compared to the conic reformulation, where
many artificial variables have to be introduced. On the other hand, there are
situations where nonlinear solvers fail even for tiny instances, as we show at the
end of the fourth chapter for problems involving mixed powers. The results from
Section 4.4.1 and Section 4.5.1 in combination with a complete complexity proof
of the proposed path-following method have been published in a paper entitled
An interior-point method for the location problem with mixed norms using a conic
formulation in [9].

Based on the numerical results in Chapter 4 we present in Chapter 5 a new
framework that can be embedded in interior-point methods with the aim to re-
duce the cost per iteration. The underlying motivation is a result which says
that the partial minimization of a self-concordant barrier preserves the property
of self-concordance. Based on this result we propose a two-level interior-point
scheme where in each outer iteration we solve the partial minimization subprob-
lem approximately. Using this approximate solution we compute a direction that
can be thought of as a Newton direction in an affine subspace that is approxi-
mately tangent to the surface of partial minimizers. We show that this sequence
of approximately tangent subspaces approaches the minimizer of the current cen-
tering problem. Eventually, as soon as the Newton decrement for both the partial
minimization subproblem and the outer problems in the sequence of subspaces
are small, we can conclude that the current iterate is a good approximation for
the overall minimizer. We show that polynomial complexity is preserved when
embedding partial minimization into an interior-point scheme, even if the partial
minimization can only be done approximately. In this sense the partial minimiza-
tion framework benefits from the self-concordance of the barrier for the extended
reformulation and the reduction of the problem size by restricting to the sub-
spaces. Moreover, we demonstrate that this new technique also works in practical
implementations, where we observe a reduction in the cost per iteration, and also
in the total number of iterations. The results on partial minimization from Chap-
ter 5 are contained in [11], which covers the generalized implicit barrier theorem,
the entire framework of approximate partial minimization, examples of potential
applications and the numerical results.
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CHAPTER 2

Convex optimization

In this chapter we consider convex optimization problems. We start with the basic
concepts of convexity for sets and functions (Section 2.1). Later we present dif-
ferent classes of convex optimization problems, first convex problems without any
constraints (Section 2.2), then convex problems with linear equality constraints
(Section 2.3), which turns out to be essentially equivalent to the class of uncon-
strained problems. In Section 2.4 we consider convex problems with inequality
constraints. Finally, in Section 2.5 we present a unified format for convex opti-
mization problems: convex problems in conic form.

The first two sections are to a large extent a collection of known results that
can be found in the standard literature on convex optimization (e.g. [56],[6],[2])
and on interior-point methods (e.g. [52],[46],[55]). The results in Sections 2.3 - 2.5
are generalizations of previously known results to the case where linear equality
constraints are present in the model. Instead of removing these constraints (e.g.
by Gaussian elimination) we explicitly keep them in the model and phrase all the
results and their proofs in terms of the original problem. In Section 2.5 we present
a nonsymmetric primal-dual predictor-corrector method, whose primal variant has
been proposed earlier by Nesterov [49]. Our extension is formulated for dual conic
problems with linear equality constrains. Moreover, we give an explicit description
of a safe step length for the primal-dual affine-scaling direction.

2.1 Convexity

In order to analyze convex optimization problems, we need to fix the concepts of
convex sets and convex functions.

2.1.1 Convex sets

Let E be an n-dimensional vector space. Its dual space E∗ is the space of linear
functionals mapping from E to R. Most of the results in this thesis are valid for

7



8 CHAPTER 2. CONVEX OPTIMIZATION

general vector spaces E . However, if nothing else is specified, we consider the
special case E = E∗ = Rn.

Definition 2.1.1. A set C ⊆ E is said to be convex if for any pair of points
x ∈ C and y ∈ C the whole line segment between these two points belongs to C, i.e.
∀λ ∈ [0, 1]

z := λx+ (1− λ)y ∈ C.

Examples

• C = E , C = ∅,

• C is a half-space (for a 6= 0 we have C = {x : aTx ≤ b}) or a hyperplane
(C = {x : aTx = b}, where a 6= 0),

• C is an ellipsoid around some point x0 ∈ E , C = {x : (x−x0)
TS(x−x0) ≤ 1},

where S is a positive definite matrix,

• C is the set of positive semidefinite matrices (here E = Sn the set of sym-
metric matrices).

Operations that preserve convexity

In order to check whether a given set C is convex, one can directly try to verify
Definition 2.1.1. Another way is to show that C is in fact the image of another set
C̃ (which is known to be convex) under a transformation that preserves convexity.
Some of these convexity-preserving operations are listed below. Their proofs can
be found e.g. in [56], [6] or[2].

1. Intersection.

Let C1 ⊆ E and C2 ⊆ E be convex sets. Then C1
⋂ C2 is convex. This

generalizes to any family of convex sets {Cτ}τ∈I for some index set I. Note
that I can have infinite cardinality.

2. Direct product.

Let C1 ⊆ E1 and C2 ⊆ E2 be convex, where Ei are two vector spaces. Then
the direct product (Cartesian product) of C1 and C2 is defined as

C1 × C2 = {(x, y) : x ∈ C1, y ∈ C2}.

It turns out that C1 × C2 is convex.

3. Compositions with affine function.

Let C ⊆ Rn be convex and A : Rn → Rm such that A(x) = Ax+ b for some
A ∈ Rm,n and b ∈ Rm. Then

A(C) := {A(x), x ∈ C} ⊆ Rm

is convex.
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4. Inverse image of affine function.

Let C ⊆ Rn be convex and A : Rp → Rn such that A(y) = By + c for some
B ∈ Rn,p and c ∈ Rn. Then

A−1(C) := {y : A(y) ∈ C} ⊆ Rp

is convex.

5. Conic hull.

Let C ⊆ E be convex. Then its conic hull

cone(C) :=
{

(x, t) ∈ E × R++ :
x

t
∈ C
}

is convex.

6. Polar set.

Let C ⊆ E be convex. Then its polar set Co ⊆ E∗

Co := {s ∈ E∗ : 〈s, x〉 ≤ 1, ∀x ∈ C}

is convex.

7. Minkowski sum.

Let C1 ⊆ E and C2 ⊆ E be convex sets. Then the Minkowski sum

C1 + C2 := {x+ y, x ∈ C1, y ∈ C2}

is convex.

2.1.2 Convex functions

Definition 2.1.2. A function F : C ⊆ E → R is said to be convex if its domain C
is convex and for any x ∈ C, y ∈ C and λ ∈ [0, 1] we have

F (λx+ (1 − λ)y) ≤ λF (x) + (1− λ)F (y).

A function F : C ⊆ E → R is said to be concave if −F is convex.

If F is differentiable, then we implicitly assume that C = domF is an open
set. In that case we have an alternative definition: F is convex if and only if C is
convex and for any x ∈ C and y ∈ C it holds

F (y) ≥ F (x) +∇F (x)T (y − x). (2.1)

If F is twice differentiable, then we have that F is convex if and only if C is convex
and

∇2F (x) � 0, ∀x ∈ C,
that is, the Hessian of F must be positive semidefinite on C.
Definition 2.1.3. A function F : C ⊆ E → R is said to be strictly convex if C is
convex and for any x ∈ C, y ∈ C, x 6= y and λ ∈ (0, 1) we have

F (λx+ (1 − λ)y) < λF (x) + (1− λ)F (y).
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Just like in the case of convexity (as opposed to strict convexity) we can phrase
Definition 2.1.3 in terms of the derivatives of F (provided that F is differentiable,
of course). If F is differentiable, then we have that F is strictly convex if and only
if C is convex and for any x ∈ C, y ∈ C, x 6= y we have

F (y) > F (x) +∇F (x)T (y − x).

Similarly, if F is twice differentiable then we have that if

∇2F (x) ≻ 0, ∀x ∈ C

then F is strictly convex. Note that the condition ∇2F (x) ≻ 0, ∀x ∈ C is not
necessary for strict convexity of F . For example F (x) = x4 is strictly convex but
F

′′
(0) = 0.

Examples of convex functions

• quadratic functions F (x) = xTAx+ aTx+ α, where A ∈ Sn+, domF = Rn,

• exponential F (x) = exp(x), domF = R,

• logarithm F (x) = − log(x), domF = R++,

• entropy function F (x) = x log(x), domF = R++ (note that we can include
the point x = 0 in the domain by defining F (0) = 0),

• F (x) = |x|p, for p ≥ 1 or p ≤ 0 (with domF = R+ if p ≥ 1 and domF = R++

if p ≤ 0),

• F (x) = ||x||, where || · || is any norm on E , domF = E ,

• F (x) = maxi=1...n{xi}, domF = Rn.

Operations that preserve convexity

Similar to the case of convex sets there are certain operations that preserve con-
vexity of functions. This means that in order to show that a given function F is
convex it suffices to show that F is the image of a convex function under one of
these transformations. We list some of these transformations below. Their proof
can be found e.g. in [56] or [6].

1. Nonnegative weighted sum.

Let Fi : Ci ⊆ E → R, i = 1, . . . ,m be convex functions and αi ≥ 0, i =
1, . . . ,m. Then

F (x) =

m∑

i=1

αiFi(x)

is convex on
⋂n
i=1 Ci.
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2. Nonnegative weighted sum of separable convex functions.

Let Fi : Ci ⊆ Ei → R, i = 1, . . . ,m be convex functions and αi ≥ 0, i =
1, . . . ,m. Then

F (x) =
m∑

i=1

αiFi(xi)

is convex on C1 × . . .× Cm.

3. Composition with affine function.

Let F : C ⊆ Rn → R be convex, B ∈ Rn,p and c ∈ Rn. Then

F̃ (y) = F (By + c)

is convex on dom F̃ = {y ∈ Rp : By + c ∈ C}.
4. Restriction to affine subspace.

Let F : C ⊆ Rn → R be convex, and L = {x ∈ Rn : Ax = b} an affine
subspace, where A ∈ Rm,n and b ∈ Rm for m < n. Then the restriction of
F to L, F |L : (C⋂L)→ R such that

F |L(x) = F (x), for x ∈ L

is convex.

5. Perspective.

Let F : C ⊆ E → R be convex. Then

G(x, t) = tF (x/t)

is convex on domG = {(x, t) ∈ E × R++ : x/t ∈ C}.
6. Pointwise supremum.

Let Fτ : Cτ ⊆ E → R with τ ∈ I, for some index set I, be a family of convex
functions. Then

F (x) = max
τ∈I

Fτ (x)

is convex with domain
⋂

τ∈I Cτ . Note that I can have infinite cardinality.

7. Conjugate function.

Let F : C ⊆ E → R (not necessarily convex). Then its conjugate

F∗(s) = sup
x∈C
{〈s, x〉 − F (x)}

is convex on domF∗, which is the set of all points s ∈ E∗ such that the
supremum above is finite.

8. Partial minimization.

Let F : C ⊆ Rn → R, such that (x, y) 7→ F (x, y), be convex and bounded
from below. Then the partial minimization of F with respect to y

G(x) = inf
y∈Q(x)

F (x, y),

where Q(x) = {y : (x, y) ∈ C}, is convex on domG = {x : Q(x) 6= ∅}.
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9. Composition with non-decreasing convex functions.

Let F1 : C1 ⊆ R → R be nondecreasing and convex, F2 : C2 ⊆ Rn → R be
convex. Then

F (x) := F1(F2(x))

is convex on domF = {x ∈ C2 : F2(x) ∈ C1}.
There are strong links between convex sets and convex functions, relying on

the notion of epigraphs.

Definition 2.1.4. The epigraph of a function F : C ⊆ Rn → R is defined as the
set

epi(F ) := {(x, t) ∈ Rn × R : x ∈ C and F (x) ≤ t}.
A function F is convex if and only if its epigraph is convex:

F convex⇔ epi(F ) convex.

2.1.3 Convex optimization

Convex optimization problems consist in the minimization of a convex objective
function F over a convex set C. There are immediately two advantages of convex
optimization problems over general nonlinear problems.

1. Any locally optimal solution is also globally optimal, i.e. if

F (x∗) ≤ F (x) ∀x ∈ domF
⋂

C
⋂

N (x∗)

holds for some neighborhood N (x∗) around x∗ ∈ C then

F (x∗) ≤ F (x) ∀x ∈ domF
⋂

C.

Therefore for convex optimization problems we do not have to distinguish
between local and global solutions. A globally optimal solution for a convex
problem will be simply called optimal solution.

2. The Karush-Kuhn-Tucker optimality conditions for a local (and thus global)
optimal solution are not only necessary (under the hypothesis that some
constraint qualification is satisfied), but also sufficient. This fact will be
essentially used in Sections 2.2 and 2.3, where we describe algorithms that
directly strive for points satisfying these optimality conditions.

The proofs for the above statements can be found in the standard references for
convex optimization, such as [56] or [6].

We discuss in this chapter the following hierarchy of convex optimization prob-
lems.

1. Unconstrained optimization problems.

2. Equality-constrained optimization problems.

3. Constrained optimization problems.

4. Conic optimization problems.
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2.2 Unconstrained optimization

2.2.1 Problem statement

Let us consider the following unconstrained convex problem with a convex objec-
tive F : domF ⊆ E → R,

min
x∈domF

F (x). (2.2)

Note that domF might be different from Rn, hence (2.2) might have some implicit
constraints. For example the function

F (x) = − log(x)− log(1 − x)

is only defined on the open interval domF = (0, 1). Throughout this chapter we
implicity assume that (2.2) (and the subsequent principal problems, i.e. (2.18) in
Section 2.3, (2.32) in Section 2.4 and the pair (P ), (D) in Section 2.5) are solvable.

Optimality conditions and Newton direction

Let F be continuously differentiable on its domain. We implicitly assume here
that domF is open (and hence full-dimensional). The point x∗ is optimal for (2.2)
if and only if

∇F (x∗) = 0. (2.3)

The aim is to find a point x∗ that satisfies the optimality conditions. However,
these conditions are usually nonlinear in x∗ and therefore it is typically difficult
to find analytically a solution for (2.3). One way to compute a point that at least
approximately satisfies (2.3) is the use of iterative methods that start at some
initial guess x0 and move along a search direction h that reduces the function
value. Let x ∈ domF . Then we wish to find h ∈ E such that x+ h ∈ domF and

F (x + h) < F (x).

Definition 2.2.1. Let x ∈ domF and h ∈ E. The direction h is called a direction
of descent if and only if

∇F (x)Th < 0. (2.4)

The name ”direction of descent” is justified in view of the following arguments.
Let x ∈ domF and h such that (x + h) ∈ domF . If ∇F (x)

T
h ≥ 0, then we have

according to (2.1)

F (x+ h) ≥ F (x) +∇F (x)
T
h ≥ F (x),

which means that the function value at (x + h) is higher than the one at x. This

is why we have to enforce ∇F (x)Th < 0 if we want to achieve a decrease in the
function value of F .

The geometric interpretation of a descent direction is that h must make an
acute angle with the negative gradient of F at x. In that sense −∇F (x) (which is
known to be the direction of steepest descent with respect to the Euclidean norm)
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behaves as a direction of reference. However, note that (2.4) does not guarantee a
decrease when going from x to x+h. In fact, it does not even guarantee feasibility
of x+ h. It only indicates that h is a good direction.

However, we see that it is possible to find a step size ᾱ such that F (x+ ᾱh) <

F (x). Since ∇F (x)
T
h < 0 and F is continuously differentiable, it is possible to

find a parameter ᾱ > 0 such that

(∇F (x + αh))Th < 0

holds for all 0 < α < ᾱ. On the other hand, according to the mean value theorem,
we have that

F (x+ ᾱh) = F (x) + (∇F (x+ θᾱh))Th

for some θ ∈ (0, 1), which means the coefficient α := θᾱ is situated between 0 and
ᾱ. Therefore we conclude that

F (x+ ᾱh) = F (x) + (∇F (x + αh))Th
︸ ︷︷ ︸

<0

< F (x).

Newton’s method

Newton’s method is an iterative method for finding a solution to a nonlinear system
of equations

G(x) = 0,

where G : CG ⊆ Rn → Rm is a nonlinear function in x, defined on some domain
CG. Newton’s method linearizes G

G(x+ ∆x) ≈ G(x) + J(x)∆x,

where J(x) denotes the Jacobian of G, and computes a step ∆x such that

G(x) + J(x)∆x = 0.

We can use Newton’s method to solve the system of equations that is given by
the optimality conditions (2.3) in order to find an optimal solution for (2.2). We
get G(x) = ∇F (x) and J(x) = ∇2F (x). The Newton direction is therefore the
solution to the linear system

∇2F (x)∆x = −∇F (x). (2.5)

Similarly, we can consider directly the Taylor model of F at x ∈ domF , i.e.

f(∆x) := F (x) +∇F (x)T∆x+
1

2
∆xT∇2F (x)∆x.

The optimality conditions for the quadratic function f are

∇f(∆x) = 0,

(see (2.3)), where
∇f(∆x) = ∇F (x) +∇2F (x)∆x.

We see that this leads exactly to (2.5).
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Properties of the Newton direction

Let F be convex and x ∈ domF such that ∇F (x) 6= 0 and ∇2F (x) is nonsingular.
That means x is not optimal for (2.2) and the Newton direction ∆x 6= 0 is defined
according to (2.5). Moreover, ∆x is a direction of descent, because

∇F (x)T∆x = −∆xT∇2F (x)∆x < 0.

We have used here convexity of F implying ∇2F (x) ≻ 0.
A very important property of the Newton direction is its affine invariance.

Suppose we have a nonsingular matrix S and a constant vector t. Let us apply an
affine change of variables (for example a scaling and translation of the variables)
x = Sy + t. Then we can consider the Newton direction for the new (convex)
function

F̃ (y) := F (Sy + t).

It is clear that ∇F̃ (y) = ST ∇F (Sy+ t) and ∇2F̃ (y) = ST ∇2F (Sy+ t)S. There-
fore the Newton direction for F̃ in terms of y becomes

∆y = −
[

∇2F̃ (y)
]−1

∇F̃ (y)

= −
[
ST∇2F (Sy + t)S

]−1
ST∇F (Sy + t)

= −S−1∇2F (x)
−1∇F (x)

= S−1∆x,

where ∆x is the Newton direction for F in terms of x. This means that if x = Sy+t,
then also x+ and y+ are related in the same affine way, i.e.

x+ = x+ ∆x = Sy + t+ S∆y = S (y + ∆y) + t = S y+ + t.

In other words, the Newton directions are independent of the choice of the coor-
dinate system.

Closely related to the above observation is the fact that the Newton direction
is also invariant under a change of the inner product. Indeed, if the inner product
is changed from 〈x, y〉 to 〈x, y〉S := 〈Sx, y〉, where S is a positive definite matrix,
then the gradient of F at x changes from ∇F (x) to S−1∇F (x) and the Hessian
changes from ∇2F (x) to S−1∇2F (x) (for a reference, see [55, Theorems 1.2.1 and
1.3.1]). As a consequence we get as the ”new” Newton direction in terms of the
inner product 〈·, ·〉S :

−
[
S−1∇2F (x)

]−1
S−1∇F (x) = −∇2F (x)

−1∇F (x),

which is exactly the Newton direction ∆x in terms of the inner product 〈·, ·〉.
The following theorem provides the standard result of quadratic convergence

of Newton’s method in close proximity to an optimal solution x∗.

Theorem 2.2.2. Let F be twice continuously differentiable. We assume that there
exist an optimal solution x∗ such that ∇F (x∗) = 0 and a constant l > 0 such that
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∇2F (x∗) � l · I (where I denotes the identity matrix) and that the Hessian of F
is Lipschitz continuous with constant M , i.e.

||∇2F (x)−∇2F (y)|| ≤M ||x− y||, ∀x, y ∈ domF.

Let x such that

||x− x∗|| < 2l

3M
.

Then the full Newton step
x+ = x+ ∆x,

where ∆x is the solution of (2.5), is feasible, i.e. x+ ∈ domF . Moreover, the
method converges quadratically:

||x+ − x∗|| ≤ M ||x− x∗||2
2(l −M ||x− x∗||) .

Proof. e.g. [46, Theorem 1.2.5].

Since ||x − x∗|| < 2l
3M

(
< l

M

)
, it follows 3M ||x− x∗||2 < 2l||x− x∗|| (by mul-

tiplying both sides with the positive number 3M ||x − x∗||), which is equivalent
to

M ||x− x∗||2 < 2 (l −M ||x− x∗||)
︸ ︷︷ ︸

>0

||x− x∗||.

Dividing both sides of the inequality by the positive number 2(l −M ||x − x∗||)
yields

M ||x− x∗||2
2(l −M ||x− x∗||) < ||x− x

∗||.

In view of Theorem 2.2.2 we see that as soon as x is close enough to an optimal
solution x∗, then the method converges monotonically towards x∗. Moreover, the
method converges quadratically, since

||x+ − x∗|| ≤ M ||x− x∗||2
2(l−M ||x− x∗||) <

3M

2l
||x− x∗||2.

That means if we have in the current iteration an optimality gap of ǫ = ||x− x∗||,
then the optimality gap in the the next iteration will be O(ǫ2).

However, Theorem 2.2.2 can only be applied in a rather small neighborhood
around the optimal solution. On the other hand, since the Newton direction ∆x
is a direction of descent, by introducing a step size parameter α that is sufficiently
small, we can always guarantee an actual decrease in the function value when going
from x to x+ α∆x.

Another drawback of Theorem 2.2.2 is that the region of quadratic convergence
seems to depend on the choice of the norm || · || (or underlying inner product 〈·, ·〉).
However, we have shown before that the Newton directions are invariant under
a change of the inner product, and therefore the region of quadratic convergence
should not depend on the chosen inner product (for a thorough discussion we refer
the reader to [46, Section 4.1.2]).

Let us summarize the damped Newton method for minimizing a convex func-
tion F (Algorithm 1).

At this moment there are some issues that are still unclear for Algorithm 1.
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Algorithm 1 Standard damped Newton method for minimizing a convex function

repeat

1) solve (2.5) to get the Newton direction ∆x,
2) update x+ = x+α∆x, where α is a suitable stepsize such that F decreases,

until stopping criterion is met

1. What is a good stopping criterion that guarantees proximity to an optimal
solution?

2. How to choose the step size parameter α so that the iterates form a sequence
that converges to an optimal solution?

3. Can we find a closed form description of the region of quadratic convergence?

We answer these three questions in Section 2.2.3.

2.2.2 Self-concordant functions

We present now a family of convex functions that are particularly well-suited
for Newton’s method. Recall that the third assumption on F in Theorem 2.2.2
requires a uniform absolute bound on the variation of the Hessian of F . In fact,
this assumption becomes the defining property of self-concordant functions, and
it can be viewed as a relative bound of the third derivative of F in terms of the
second derivative of F , at any point x ∈ domF , in any direction h ∈ Rn. For a
detailed discussion, read [46, Section 4.1.2].

Definition 2.2.3. A closed convex function F ∈ C3 (three times continuously
differentiable) with open domain C is called self-concordant if

|D3F (x)[h, h, h]| ≤ 2D2F (x)[h, h]
3/2
, (2.6)

for all x ∈ domF and for all h ∈ Rn.
A self-concordant function F is called nondegenerate if its Hessian ∇2F is non-
singular for all x ∈ domF .

Theorem 2.2.4. If F is self-concordant and its domain does not contain a straight
line, then F is nondegenerate.

Assumption:

In the rest of this chapter when we speak of self-concordant functions we
implicitly assume that they are nondegenerate.

The assumption of nondegeneracy guarantees that the Newton directions are de-
fined everywhere. Moreover, since the Hessian is nonsingular and positive semidef-
inite it must be positive definite and therefore F is strictly convex. It follows that
if x∗ is a minimizer of the nondegenerate self-concordant function F , then it is in
fact unique.
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Examples of self-concordant functions

• Affine functions F (x) = aTx+ b are self-concordant (since their second and
third derivatives are constant and equal to 0), but not nondegenerate,

• Convex quadratic functions F (x) = xTAx + aTx + α, where A � 0, are
self-concordant because D2F (x) = A � 0, D3F (x) = 0. If A ≻ 0, then F is
even nondegenerate.

• F (x) = − log(x), because D2F (x)[h, h] = h2

x2 , D3F (x)[h, h, h] = −2h
3

x3 .

Operations that preserve self-concordance

Similar to the class of convex functions, we have operations that preserve the
property of self-concordance (compare to Section 2.1.2). The operations listed
below can be found for example in [46]. Since a self-concordant function F has to
be differentiable, we implicitly always assume that its domain is open.

1. Weighted sum.

Let Fi : Ci ⊆ E → R, i = 1, . . . ,m be self-concordant functions and αi ≥
1, i = 1, . . . ,m. Then

F (x) =

m∑

i=1

αiFi(x)

is self-concordant on domF =
⋂n
i=1 Ci. Note that the coefficients have to be

greater than or equal to 1, as opposed to 0 in Section 2.1.2 (Proof, see [52,
Proposition 2.1.1(ii)]).

2. Weighted sum of separable functions.

Let Fi : Ci ⊆ Ei → R, i = 1, . . . ,m be self-concordant functions and αi ≥
1, i = 1, . . . ,m. Then

F (x) =

m∑

i=1

αiFi(xi)

is self-concordant on C1 × . . .× Cm (Proof, see [52, Proposition 2.1.1(iii)]).

3. Composition with affine function.

Let F : C ⊆ Rn → R be self-concordant, A : Rp → Rn such that A(y) =
By + c for B ∈ Rn,p and c ∈ Rn. Assume A(Rp)

⋂ C 6= ∅. Define

C+ = A−1(C) = {y ∈ Rp : A(y) ∈ C} ⊆ Rp.

Then F̃ : C+ → R defined as

F̃ (y) = F (A(y))

is self-concordant on dom F̃ = C+ (Proof, see [52, Proposition 2.1.1(i)]).

4. Restriction to affine subspace.

Let F : C ⊆ Rn → R be self-concordant and L = {x ∈ Rn : Ax = b} an
affine subspace, where A ∈ Rm,n, b ∈ Rm and m < n. Then the restriction
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of F to L, which we denote by F |L, is self-concordant on its domain. We
define domF |L = ri(C⋂L), where ri(·) denotes the relative interior of a set.
Note that we consider domF |L as a full-dimensional object in the lower-
dimensional space Rn−m, embedded in Rn. This ensures that domF |L is an
open set which we need in order to make sure that the derivatives of F |L
are well defined. We discuss this operation of restricting a self-concordant
function in more detail below.

5. Partial minimization.

Let F : C ⊆ Rn → R, such that (x, y) 7→ F (x, y), be self-concordant and
bounded from below. We assume that C does not contain a straight line.
Then the partial minimization of F with respect to y

G(x) = inf
y∈Q(x)

F (x, y),

where Q(x) = {y : (x, y) ∈ C}, is self-concordant on domG = {x : Q(x) 6= ∅}
(Proof, see [50, Theorem 3]).

Note that 4. is in fact a consequence of 3. In order to see that, let us define
p = n−m. Let B ∈ Rn,p be any matrix such that such that range(B) = null(A)
and let x̄ be any particular solution to the linear system Ax = b, i.e. x̄ ∈ L. Define
c = x̄. Then we can parametrize L in the following way:

L = {x ∈ Rn : Ax = b} = {By + c : y ∈ Rp} ⊆ Rn.

The parametrization of L corresponds to the elimination of m = n − p variables
xi. Using this definition, we get that

C+ = {y ∈ Rp : By + c ∈ C} ⊆ Rp.

In view of 3. we have that F̃ : C+ → R, defined as

F̃ (y) = F (By + c),

is self-concordant on C+, which is open because C is open.
Let us give an interpretation of the set C+ in our case. For y ∈ Rp we define the

point xy = By + c ∈ Rn. Then y ∈ C+ if and only if xy ∈ C. The latter condition
is the same as xy− c = By, or equivalently xy− c ∈ range(B). By assumption, we
have range(B) = null(A), so we get xy − c ∈ null(A) which means A(xy − c) = 0.
Since x̄ = c ∈ L, it follows

A(xy − c) = Axy −Ac = Axy − b = 0,

or Axy = b. In other words, xy ∈ L. From above we have additionally that xy ∈ C.
It follows that y ∈ C+ if and only if xy = By + c ∈ C⋂L.

Note that we have to be careful when speaking about restrictions of self-
concordant functions to affine subspaces. Even though C+ is open (in Rm) the
set C⋂L ⊆ Rn is not open (neither is its relative interior ri(C⋂L)). Strictly
speaking functions defined on ri(C⋂L) cannot be differentiable, as differentiabil-
ity implicitly assumes that the domain is open.
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Therefore, when we speak of the restriction of a self-concordant function F to
the affine subspace L = {x : Ax = b}, we understand it in the following way: find a
matrix B such that range(B) = null(A) and c ∈ L. The restriction F |L : C+ → R
is defined as

F |L(y) = F (By + c)

on domF |L = C+ := {y : By + c ∈ C} ⊆ Rp.

Example 2.2.5. Let F : C ⊆ R3 → R be self-concordant with C = int{x ∈ R3 :
||x||2 ≤ 1}. Let L = {x ∈ R3 : x1 +x2+x3 = 1}. We see that C⋂L is the unit ball
intersected with some hyperplane. In the above notation we have that A = [1, 1, 1]
and b = 1. Moreover, null(A) = {x = (x1, x2, x3) : Ax = x1 + x2 + x3 = 0} ⊆ R3.

If we define now

B =





1 0
0 1
−1 −1



 , c =





0
0
1



 ,

we can check that range(B) = {x ∈ R3 : x = By = (y1, y1,−y1−y2), for some y ∈
R2}. We see immediately that null(A) = range(B). Furthermore, we can check
that c ∈ L.

By virtue of the above arguments, we have that the restriction of F to L is in
fact given by F (A(y)), where A(y) = By + c, that is

F |L(y) = F (y1, y2, 1− y1 − y2)

with domF |L = {y ∈ R2 : A(y) ∈ C}.

Properties of self-concordant functions

For the rest of this section, when we say that F is self-concordant, we mean that
F : C ⊆ E → R is a nondegenerate self-concordant function with open domain C.

The following theorem states that every self-concordant function is in fact a
barrier for its domain.

Theorem 2.2.6. Let F be self-concordant. For any sequence {xk} ⊂ C converging
towards cl(C)\C we have

F (xk)→ +∞.
Proof. [46, Theorem 4.1.4].

Any (nondegenerate) self-concordant function F induces a family of intrinsic
inner products in E : for any x ∈ C, h1, h2 ∈ E we define

〈h1, h2〉x :=
〈
∇2F (x)h1, h2

〉
.

Analogously, we can define the intrinsic inner product in the dual space E∗: for
x ∈ C and g1, g2 ∈ E∗ we define

〈g1, g2〉x :=
〈

g1,∇2F (x)
−1
g2

〉

.

Using the intrinsic inner products, we can define a so-called local norm in E and
E∗ with respect to x ∈ C.
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Definition 2.2.7. Let F be self-concordant, x ∈ C. We define the local norm of
h ∈ E as

||h||x := 〈h, h〉x1/2
, h ∈ E

and the (dual) local norm of g ∈ E∗ as

||g||∗x := 〈g, g〉x1/2
, g ∈ E∗.

One can verify that || · ||∗x is indeed the norm which is dual to || · ||x, i.e.

||g||∗x = max
||h||x≤1

〈g, h〉.

As || · ||x and || · ||∗x are dual to each other, we automatically have the Hölder
inequality with respect to the reference point x ∈ C, for any h ∈ E and any g ∈ E∗,
i.e.

|〈g, h〉| ≤ ||g||∗x · ||h||x.
If we use the local norms to measure the size of a point h ∈ E (or g ∈ E∗)

then these values depend obviously on the choice of the reference point x ∈ C. For
the same reason the neighborhoods around a fixed point h̄ ∈ E (with respect to
the local norm) are dependent on the reference point x ∈ C. If we consider the
neighborhood around x ∈ C measured with the local norm with respect to the
same point x, we get the so-called Dikin ellipsoids. They are important objects to
describe the topology of F , as we will see later.

Definition 2.2.8. Let F be self-concordant. For given x ∈ C the Dikin ellipsoid
with radius r > 0 is defined as

D(x, r) = {y : ||y − x||x ≤ r}.

We denote the interior of the Dikin ellipsoid by D0(x, r), i.e.

D0(x, r) = {y : ||y − x||x < r}.

The following result is essential for the analysis of the behavior of self-concordant
functions inside C. It says that the Dikin ellipsoid is always contained in C.

Lemma 2.2.9. Let F be self-concordant. For any x ∈ C and 0 < r < 1 we have

D(x, r) ⊆ C = domF.

Proof. [46, Theorem 4.1.5].

For the next theorem, let us introduce some piece of notation. Let A ∈ Sn,
B ∈ Sn. Then we denote

A � B
if and only if A − B � 0, that is the difference A − B is positive semidefinite.
Analogously, we write A ≻ B if and only if A−B ≻ 0.

Inside the Dikin ellipsoid self-concordant functions are well-behaved. The fol-
lowing theorem states that the Hessian of a self-concordant function (and hence
the local norm) does not vary too much inside D(x, r).
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Theorem 2.2.10. Let F be self-concordant, x ∈ C, y ∈ D(x, r), r < 1 and h ∈ E.
Then

(1− r) · ||h||x ≤ ||h||y ≤
1

(1− r) · ||h||x,

or equivalently

(1− r)2∇2F (x) � ∇2F (y) � 1

(1− r)2∇
2F (x).

Proof. [46, Theorem 4.1.6].

We have the following two bounds on the variation of the gradient of F inside
D(x, r).

Lemma 2.2.11. Let F be self-concordant, x ∈ C, y ∈ D(x, r), r < 1. Then it
holds

||∇F (y)−∇F (x)−∇2F (x)(y − x)||∗x ≤
r2

1− r .

Proof. [49, Lemma 1].

For the following theorem we need to introduce the local norm of a linear
operator.

Definition 2.2.12. Let M : E → E∗ be a linear operator, F self-concordant and
x ∈ C. Then we define the local norm of M as

||M ||x := sup
h:||h||x≤1

||M h||∗x.

Theorem 2.2.13. Let F be self-concordant, x ∈ C, y ∈ D(x, r), r < 1. Then it
holds

||∇F (y)−∇F (x)||∗x ≤
r

1− r .

Proof. Let us define y(θ) = x+ θ(y − x) for θ ∈ [0, 1]. Then we have

∇F (y)−∇F (x) =

∫ 1

0

∇2F (y(θ)) (y − x) dθ.

Using the above representation and subadditivity of norms, we get

||∇F (y)−∇F (x)||∗x = ||
∫ 1

0

∇2F (y(θ)) (y − x)dθ||∗x

≤
∫ 1

0

||∇2F (y(θ))dθ (y − x)||∗x.

In other words, the norm of the integral is less than or equal to the integral of the
norm. A formal proof of the inequality that we have used above, can be found for
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example in [55, Theorem 1.5.4]. In view of Definition 2.2.12, and using the fact
that y ∈ D(x, r) means ||y − x||x ≤ r < 1, we obtain

∫ 1

0

||∇2F (y(θ))dθ (y − x)||∗x ≤ sup
y:||y−x||x≤1

∫ 1

0

||∇2F (y(θ))dθ (y − x)||∗x

=

∫ 1

0

sup
y:||y−x||x≤1

||∇2F (y(θ))dθ (y − x)||∗x

=

∫ 1

0

||∇2F (y(θ))||xdθ · ||y − x||x.

Further, since θ ∈ [0, 1], we have that y(θ) ∈ D(x, r̄), where r̄ = θr ≤ r < 1. Using
Theorem 2.2.10, it follows

∇2F (y(θ)) � 1

(1− θr)2∇
2F (x),

which implies

||∇2F (y(θ))||x ≤
1

(1− θr)2 ||∇
2F (x)||x.

But since

||∇2F (x)||x = max
||h||x≤1

||∇2F (x) h||∗x = max
||h||x≤1

||h||x = 1,

we conclude

||∇F (y)−∇F (x)||∗x ≤
∫ 1

0

r

(1− θr)2 dθ

=

∫ r

0

r

(1 − t)2
1

r
dt

=
1

r

[
r

1− t

]r

t=0

=
1

r

(
r

1− r − r
)

=
1

r

r2

1− r =
r

1− r .

Let us define the following convex functions that will be useful in the analysis
of self-concordant functions.

ω(t1) := t1 − log(1 + t1), t1 > −1, ω∗(t2) := −t2 − log(1− t2), t2 < 1.

Lemma 2.2.14. We have for 0 ≤ t1 and 0 ≤ t2 < 1

ω′(t1) =
t1

1 + t1
, ω′

∗(t2) =
t2

1− t2
, (2.7)

ω′
∗(ω

′(t1)) = t1, ω′(ω′
∗(t2)) = t2, (2.8)

ω∗(t2) = t2ω
′
∗(t2)− ω(ω′

∗(t2)), ω(t1) = t1ω
′(t1)− ω∗(ω

′(t1)). (2.9)
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Figure 2.1: solid: ω(t), dashed: ω∗(t).

Proof. [46, Lemma 4.1.4].

Note that ω and ω∗ are in fact conjugate to each other (see [46, Lemma 4.1.4]),
that is

ω∗(t2) = sup
t1≥1
{t1t2 − ω(t1)},

ω(t1) = sup
t2<1
{t1t2 − ω∗(t2)}.

Moreover, in view of (2.8) we have that ω′ and ω′
∗ are inverse to each other.

We have for 0 ≤ t1, t2
ω(t1) + ω(t2) ≤ ω(t1 + t2), (2.10)

Indeed

ω(t1) + ω(t2) = tt − log(1 + t1) + t2 − log(1 + t2)

= t1 + t2 − log((1 + t1)(1 + t2))

= t1 + t2 − log(1 + t1 + t2 + t1t2
︸︷︷︸

≥0

)

≤ t1 + t2 − log(1 + t1 + t2)

= ω(t1 + t2).

With the same arguments we get for 0 ≤ t1, t2 such that t1 + t2 < 1

ω∗(t1) + ω∗(t2) ≤ ω∗(t1 + t2). (2.11)

The following two theorems give convex lower and upper bounds on both the
function value of F and the variation of the gradient of F around a point x ∈ C.
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Theorem 2.2.15. Let F be self-concordant, x ∈ C and y ∈ C. Denote r =
||y − x||x. Then

F (y) ≥ F (x) + 〈∇F (x), y − x〉+ ω(r), (2.12)

〈∇F (y) −∇F (x), y − x〉 ≥ r2

1 + r
. (2.13)

Reversely, let (2.12) or (2.13) be true for any x ∈ C and y ∈ C. Then F is
self-concordant.

Proof. [46, Theorem 4.1.7 and 4.1.9].

Theorem 2.2.16. Let F be self-concordant, x ∈ C and y ∈ D(x, r), r < 1. Then

F (y) ≤ F (x) + 〈∇F (x), y − x〉+ ω∗(r), (2.14)

〈∇F (y)−∇F (x), y − x〉 ≤ r2

1− r . (2.15)

Reversely, let (2.14) or (2.15) be true for any x ∈ C and y ∈ D(x, r), r < 1. Then
F is self-concordant.

Proof. [46, Theorem 4.1.8 and 4.1.9].

2.2.3 Newton’s method for minimizing self-concordant func-

tions

We have mentioned above that the class of self-concordant functions is particularly
well-suited for Newton’s method. We are going to demonstrate that now. An
important object that gives us a lot of information about F is the so-called Newton
decrement.

Definition 2.2.17. Let F be self-concordant and x ∈ C. We define the Newton
decrement at x as

δx = 〈∇F (x),∇2F (x)
−1∇F (x)〉

1/2
.

In view of the definition of the local norms (see Definition 2.2.7), we have

δx = ||∇F (x)||∗x.

On the other hand we can also write

δx =




∇F (x)T ∇2F (x)

−1∇F (x)
︸ ︷︷ ︸

=−∆x






1/2

=
(
−∇F (x)T∆x

)1/2
,
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where ∆x denotes the Newton direction. Finally, we can introduce the identity
I = (∇2F (x))−1∇2F (x) in the last expression. We get

δx =




−∇F (x)T∇2F (x)

−1

︸ ︷︷ ︸

=∆xT

∇2F (x)∆x






1/2

=
(
∆xT∇2F (x)∆x

)1/2

= ||∆x||x.

That means we have three different representations of the Newton decrement δx,
that is

δx = ||∇F (x)||∗x =
(
−∇F (x)T∆x

)1/2
= ||∆x||x.

If we want to find a point x that is close (in some sense) to the optimal solution
x∗, there are several ways of measuring this proximity: we could compare the
objective values F (x) and F (x∗) and if the difference F (x)− F (x∗) is sufficiently
small, we accept x as an approximation for x∗. Another way would be to look at
the (local) norm of the error term e = x − x∗, i.e. ||x − x∗||x and accept x if the
norm is small enough.

However, we see that both measures involve the knowledge of the (unknown)
optimal solution x∗ (or its function value). The following theorem shows how
the readily computable Newton decrement can be used to bound these optimality
measures.

Theorem 2.2.18. Let F be self-concordant and x ∈ C such that δx < 1. Then

ω(δx) ≤ F (x)− F (x∗) ≤ ω∗(δx), (2.16)

ω′(δx) ≤ ||x− x∗||x ≤ ω′
∗(δx). (2.17)

Proof. [46, Theorem 4.1.13].

Note that the lower bounds in (2.16) and (2.17) are valid even if δx ≥ 1.
The upper bounds provided by Theorem 2.2.18 are particularly useful. Unfor-

tunately, an upper bounding in terms of the Newton decrement is only possible if
δx is small. If δx ≥ 1, there is no immediate way to bound these distance measures.
We will address this issue at the end of this section.

If the Newton decrement is small (which means we are close to x∗), we have
quadratic convergence of Newton’s method in terms of δx.

Theorem 2.2.19. Let F be self-concordant and x ∈ C such that δx < 1. Then the
full Newton step

x+ = x+ ∆x,

where ∆x is the solution of (2.5), is feasible and we have

δx+ ≤
(

δx
1− δx

)2

.

Proof. [46, Theorem 4.1.14].
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The quadratic convergence of Newton’s method can also be phrased in terms
of the distance to an optimal solution x∗. We have the following theorem.

Theorem 2.2.20. Let F be self-concordant and x ∈ C with x∗ ∈ D0(x, 1). Then
the full Newton step

x+ = x+ ∆x,

where ∆x is the solution of (2.5), is feasible and we have

||x+ − x∗||x ≤
||x− x∗||2x

1− ||x− x∗||x
.

Proof. [55, Theorem 2.2.3].

Note the similarity to the standard result on quadratic convergence (Theo-
rem 2.2.2). The difference to Theorem 2.2.2 is that all distances are now phrased
in terms of the local norm || · ||x with respect to the current iterate x.

Let us phrase the bound on ||x+ − x∗||x from Theorem 2.2.20 in terms of the
Newton decrement δx.

Theorem 2.2.21. Let F be self-concordant and x ∈ C such that δx <
1
2 . Then we

have

||x+ − x∗||x ≤
δ2x

2δ2x − 3δx + 1
.

Proof. For 0 < δx <
1
2 we have δx

1−δx
< 1. In view of the right-hand side inequality

of (2.17) it follows then

||x− x∗||x ≤
δx

1− δx
< 1,

which means x∗ ∈ D0(x, 1). Therefore we can apply Theorem 2.2.20 and get

||x+ − x∗||x ≤
||x− x∗||2x

1− ||x− x∗||x
.

In view of the right-hand side inequality of (2.17) we have

||x− x∗||2x
1− ||x− x∗||x

≤ (ω∗(δx))2

1− ω∗(δx)

=

(
δx

1−δx

)2

1− δx

1−δx

=
δ2x

(1− δx)2
1− δx
1− 2δx

=
δ2x

(1− δx)(1− 2δx)

=
δ2x

1− 3δx + 2δ2x
.
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Renegar ([55, Theorem 2.2.5]) has established a similar bound on the error of
the new iterate x+ with respect to the local norm at the current iterate x. The
bound is the following. If δx ≤ 1

4 , then

||x+ − x∗||x ≤
3δ2x

(1− δx)3
.

Note that the upper bound from Theorem 2.2.21 is tighter than the one provided
by Renegar. This can be seen in Figure 2.2, where we have plotted both upper
bounds as functions of δx. Moreover, Theorem 2.2.21 is valid for δx <

1
2 , while

Renegar requires δx ≤ 1
4 .

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ
x

 

 
New bound
Renegar’s bound

Figure 2.2: Two bounds on ||x+ − x∗||x. Solid: new bound
δ2x

1−3δx+2δ2x
, dashed:

Renegar’s bound
3δ2x

(1−δx)3 .

Theorem 2.2.20 and Theorem 2.2.21 provide bounds on the quantity ||x+ −
x∗||x, which is the error at the new iterate x+ = x + ∆x, measured with respect
to the local norm in terms of the old iterate x. The following result provides a
bound on the distance of x∗ to the new point x+ with respect to the ”correct”
local norm at x+.

Corollary 2.2.22. Let F be self-concordant and x ∈ C such that δx <
1
2 . Then

we have

||x+ − x∗||x+ ≤ δ2x
(1 − δx)2(1− 2δx)

.

Proof. The inequality is an immediate consequence of Theorem 2.2.21 and the fact
that ||x+ − x||x = ||∆x||x = δx <

1
2 implies in accordance with Theorem 2.2.10

||x+ − x∗||x ≥ (1− δx)||x+ − x∗||x+ .
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As we have mentioned before, the Newton direction ∆x is a direction of descent
(unless we are already at some optimal solution), and we have argued that it should
be possible to find a step size α such that we can globalize the method: from any
starting point we can apply several damped Newton steps, thus decrease the func-
tion value and eventually reach the region of quadratic convergence. Once in that
region, few full Newton steps suffice to compute an arbitrarily good approxima-
tion for an optimal solution. The following theorem gives an explicit description
of such a step size.

Theorem 2.2.23. Let F be self-concordant and x ∈ C. We define the new iterate

x+ = x+
1

1 + δx
·∆x.

Then x+ ∈ C and

F (x+) ≤ F (x)− ω(δx).

Proof. [46, Theorem 4.1.12].

We are coming back now to the three questions we have posed right after
formulating the basic version of Newton’s method (Algorithm 1).

Theorem 2.2.19 and Theorem 2.2.20 settle the third question related to the
description of the region of quadratic convergence of Newton’s method. Theo-
rem 2.2.19 phrases the quadratic convergence in terms of the Newton decrement
δx, which is a quantity that we can observe. Theorem 2.2.20, on the other hand,
illustrates quadratic convergence of the method in terms of the errors ||x− x∗||x,
which might be of higher interest (as they describe the actual distance to the
optimum) but are not directly accessible.

The second question, related to a suitable step size, is answered by Theo-
rem 2.2.23 and again Theorem 2.2.19 (or Theorem 2.2.20). As long as the Newton
decrement is large, which means we are far from an optimal solution (in view of
the left-hand side inequalities of Theorem 2.2.18), we can also achieve a relatively
large improvement in terms of the function value (see Figure 2.1). If δx is small
(that is, δx < 1 for Theorem 2.2.19 and δx <

1
2 for Theorem 2.2.20) we can do full

Newton steps, i.e. we can choose as step size parameter α = 1.

To answer the first question concerning the stopping criterion, we refer to the
right-hand side inequalities of Theorem 2.2.18. If we desire an accuracy in terms
of the objective value of, say ǫ1 > 0, then we can stop as soon as we have found a
point x ∈ C such that δx ≤ ω−1

∗ (ǫ1). Analogously, if we wish to find a point such
that ||x − x∗||x ≤ ǫ2, for some ǫ2 > 0, then we can stop the algorithm as soon as
we have encountered a point x ∈ C such that δx ≤ (ω′

∗)
−1(ǫ2) = ω′(ǫ2). In view

of Theorem 2.2.19 and Theorem 2.2.23, it becomes clear how a globalized Newton
method for minimizing a self-concordant function should look like. It consists of
2 phases.

1. Damped phase.

As long as the Newton decrement is large, we reduce the function value by
a nontrivial amount according to Theorem 2.2.23.
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2. Quadratically convergent phase.

If the Newton decrement is sufficiently small, we are in the region of quadratic
convergence and we can do full Newton steps according to Theorem 2.2.19.

We only have to decide when to switch from phase 1 to phase 2. We would like to
enter the second phase as soon as possible to profit from the rapid convergence to
the optimal solution.

Theorem 2.2.19 can be applied as soon as δx < 1, but this alone does not
guarantee a decrease of the Newton decrement δx. Additionally, we need that
δx+ < δx to ensure monotonic (and fast) convergence. In view of Theorem 2.2.19
the latter inequality is guaranteed if

(
δx

1− δx

)2

< δx,

which is true whenever δ2x < (1 − δx)2δx. Since we need that δx < 1, we get that

a decrease δx+ < δx is ensured as soon as 0 < δx <
3−

√
5

2 = ǫ0. That means at
the beginning of the algorithm (as long as δx ≥ ǫ0) we do not necessarily have
a decrease in terms of the Newton decrements. This is only guaranteed when
δx < ǫ0. On the other hand this condition will be met eventually because of
Theorem 2.2.23 in combination with the left-hand side inequality of (2.16).

Let us summarize the overall complexity result of the globalized Newton method
in the following theorem.

Theorem 2.2.24. Let F be self-concordant, x0 ∈ C, 0 < ǫ < ω∗(1/2) and choose

β̄ ∈
(

0, 3−
√

5
2

)

. Then we can find a point x̄ ∈ C such that

F (x̄)− F (x∗) ≤ ǫ

in no more than
N = N1 +N2

iterations, where

N1 ≤
F (x0)− F (x∗)

ω(β̄)

N2 = O (log2 (log2 (1/ǫ))) .

Proof. Indeed, as long as δx ≥ β̄, we can apply damped Newton steps with α =
1

1+δx
, as described in Theorem 2.2.23. By doing so, in each iteration we can

reduce the function value by ω(δx) ≥ ω(β̄). That means the original optimality
gap F (x0)− F (x∗) will be reduced at most

F (x0)− F (x∗)

ω(β̄)

times before δx < β̄. If ǫ ≥ ω∗(β̄), then we have in view of (2.16)

F (x) − F (x∗) ≤ ω∗(δx) < ω∗(β̄) ≤ ǫ,
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which means that x is an ǫ-solution and we can stop here.

Otherwise, as soon as δx < β̄ < 3−
√

5
2 =: ǫ0, we switch to the full Newton

method with step size α = 1. Once we have entered phase 2, we have according
to Theorem 2.2.19

δx+ ≤
(

δx
1− δx

)2

≤ 1

(1 − ǫ0)2
︸ ︷︷ ︸

=:κ

·δ2x < κ · ǫ0
︸ ︷︷ ︸

=1

·δx = δx.

Note that κ ǫ0 = 1 because ǫ0 is a solution to the nonlinear equation x
(1−x)2 = 1.

If we denote now by δ
(k)
x the Newton decrement in the k-th step of phase 2, we

get for all k > 1 that 1/(1− δ(k)x )2 ≤ κ (because δ
(k)
x < δ

(1)
x < ǫ0), and recursively

δ(k)x ≤ κ · (δ(k−1)
x )2 ≤ κ ·

[

κ
(

δ(k−2)
x

)2
]2

≤ (κ · δ(1)x )2
k−1 · κ−1,

where δ
(1)
x is the first Newton decrement such that δ

(1)
x < ǫ0. We apply the

quadratically convergent phase of Newton’s method until the decrement is less
than ǫ. To achieve that it suffices to make sure that

(κ · δ(1)x )2
k−1 ≤ ǫ · κ,

which in turn is satisfied when

log2

(

(κ · δ(1)x )2
k−1
)

= 2k−1 · log2



κ · δ(1)x
︸ ︷︷ ︸

<1





︸ ︷︷ ︸

<0

≤ log2( ǫκ︸︷︷︸
<1

)

︸ ︷︷ ︸

<0

.

This is true if and only if

2k−1 · log2

(
1

κ · δ(1)x

)

≥ log2

(
1

ǫκ

)

.

It follows that we have to ensure

2k−1 ≥ log2

(
1
ǫκ

)

log2

(
1

κ·δ(1)x

) = O (log2 (1/ǫ))

We conclude that it suffices to run at most

k = O (log2 (log2 (1/ǫ)))

iterations in phase 2 to guarantee δ
(k)
x ≤ ǫ. This means we need very few iterations

to achieve basically any desired accuracy. For example, for ǫ = 10−10, we need no
more than 6 iterations.

It remains to note that if we want to find a point x such that F (x)−F (x∗) ≤ ǫ,
then in accordance with (2.16), this can be guaranteed by satisfying ω∗(δx) ≤ ǫ.
Finally, for ǫ < ω∗(β̄) < 0.1 we have that ω∗(ǫ) < ǫ (see Figure 2.1), which finishes
the proof.
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Remark 2.2.25. The bound on the number of iterations in phase 1 is rather pes-
simistic. In fact, Theorem 2.2.23 guarantees an absolute decrease in the function
value F (x) of at least ω(δx) which can in fact be much larger than ω(β̄). More-
over, it could be possible to find a larger step size than 1

1+δx
that achieves a higher

functional decrease. For example, one can implement a simple line search along
the Newton direction ∆x that starts with the safeguard step length of α0 = 1

1+δx

and that gradually increases α until the function values of F are increasing again.
This results in a better practical performance of the algorithm.

2.3 Equality constrained optimization

From now on we consider the underlying vector space E to be Rn. In this section
we want to extend the results from the previous section to the case where we want
to minimize a convex function F subject to linear equality constraints, i.e. we
consider the problem

min
x∈Rn

F (x)

x ∈ L = {x : Ax = b},
(2.18)

where A ∈ Rm,n, b ∈ Rm and F : C ⊆ Rn → R is a convex function defined on
some open domain C.

We have seen in Section 2.2 that if there are no equality constraints present and
if F is well-behaved (that is, F is self-concordant), we can solve the unconstrained
problem (2.2) in with a guaranteed complexity (see Theorem 2.2.24). Therefore
we keep the assumption that the objective F is a nondegenerate self-concordant
function. We will show that we can obtain essentially the same results as in
Section 2.2.

In this work we assume that there exist points x ∈ C such that Ax = b (oth-
erwise (2.18) is trivially infeasible). The latter condition is true if and only if
rank(A) = rank([A, b]), where [A, b] denotes the matrix where vector b is appended
to the matrix A. This, in turn, is in particular satisfied if A has full row-rank.
However, we want to stress here that the full row rank condition is not necessary.
On the other hand, if A is rank-deficient, although there are solutions to the sys-
tem, it is clear that we can always reduce Ax = b to a system with fewer rows
Ãx = b̃ with a matrix that has full row rank. For convenience we will assume
in the rest of this chapter that A has full row rank. This simplifies the analysis,
for example it has the advantage that we can write down explicitly a generalized
definition of the Newton directions.

2.3.1 From unconstrained to equality constrained optimiza-

tion

A direct application of the KKT conditions to the problem (2.18) yields the fol-
lowing optimality conditions. The point x∗ ∈ C is optimal for (2.18) if and only if
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∃ λ∗ such that

∇F (x∗) = −ATλ∗
Ax∗ = b.

(2.19)

Analogously to the previous section, (2.19) is a nonlinear system of equations in
the variables x∗ and λ∗. Again, we might try to find a solution to the optimality
conditions iteratively by linearizing (2.19) at a given feasible point x ∈ C⋂L. The
only nonlinear term in (2.19) is the left-hand side expression in the first line. Its
linearization becomes

∇F (x+ ∆x) ≈ ∇F (x) +∇2F (x)∆x.

Further, we want to restrict ourselves to points in L. Since Ax = b, we must
therefore impose A∆x = 0. We arrive at the following linear system (also called
the augmented system)

[
∇2F (x) AT

A 0

]

·
[
∆x
λ

]

=

[
−∇F (x)

0

]

. (2.20)

Note that the solution of (2.20) is unique, since F is assumed to be nondegenerate
which implies ∇2F (x) ≻ 0 for all x ∈ C. If we multiply the first equation by

∇2F (x)
−1

, we get

∆x = −∇2F (x)
−1

(∇F (x) +ATλ). (2.21)

Replacing the above term in the second equation of (2.20) yields a reduced linear
system only in terms of λ (also called the normal equation):

A∇2F (x)
−1
AT λ = −A∇2F (x)

−1∇F (x).

We have assumed that A has full row rank. Therefore the system matrixA∇2F (x)
−1
AT

is positive definite too and we get as unique solution for λ

λ = −[A∇2F (x)
−1
AT ]−1A∇2F (x)

−1∇F (x). (2.22)

Replacing this expression in the (2.21) gives the unique solution for ∆x.

Newton direction as a projection

Note that the Newton direction ∆x is now given by the linear system (2.20), whose
unique solution we have computed in (2.21) and (2.22). If we substitute λ from
(2.22) in (2.21), we get

∆x =
[

I −∇2F (x)
−1
AT [A∇2F (x)

−1
AT ]−1A

]

︸ ︷︷ ︸

=PF
L0,x

·
(
−∇2F (x)

)−1∇F (x)
︸ ︷︷ ︸

=∆x(u)

= PFL0,x∆x(u),

where ∆x(u) is the Newton direction for the unconstrained problem minx F (x), i.e.
the solution to (2.5), and PFL0,x

is the projection operator onto L0 = {x : Ax = 0},
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with respect to the local norm. To check the latter interpretation of PFL0,x
, let us

consider the corresponding problem of projecting a given point x0 onto L0 with
respect to the local norm || · ||x for a particular point x ∈ L0, i.e.

min
y∈L0

||y − x0||2x (2.23)

The objective can be written as

||y − x0||2x = (y − x0)
T∇2F (x)(y − x0)

= yT∇2F (x)y − 2yT∇2F (x)x0 + x0∇2F (x)x0

The KKT conditions for the convex quadratic problem (2.23) become then: ∃λ
such that

2∇2F (x) y − 2∇2F (x)x0 = −2AT λ

Ay = 0

From the first equation we get

y = ∇2F (x)
−1 [−ATλ+∇2F (x) x0

]

= −∇2F (x)
−1
ATλ+ x0.

Replacing this term in the second equation of the optimality conditions gives

Ay = A[−∇2F (x)
−1
ATλ+ x0] = 0.

Since A has full row rank, from the last equation we can derive λ and get

λ =
[

A∇2F (x)
−1
AT
]−1

Ax0.

Substituting λ in x yields

y = −∇2F (x)
−1
AT
[

A∇2F (x)
−1
AT
]−1

Ax0 + x0

=
[

I −∇2F (x)
−1
AT [A∇2F (x)

−1
AT ]−1A

]

x0

= PFL0,x x0.

The Newton decrement

Analogously to Section 2.2 the Newton decrement δx is defined as the local norm
of the Newton direction ∆x. The only difference is that ∆x is now defined as the
solution of the linear system (2.20) (as opposed to (2.5) in Section 2.2).

Definition 2.3.1. Let F be self-concordant and x ∈ C. We define the Newton
decrement at the point x as

δx = ||∆x||x
where ∆x is the solution of (2.20).
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Using (2.21), we get two alternative representation of δx.

δx =
(

−∆xT∇2F (x)∇2F (x)
−1

(∇F (x) +ATλ)
)1/2

=
(
−∆xT (∇F (x) +ATλ)

)1/2

=



−∆xT∇F (x)−∆xTAT
︸ ︷︷ ︸

=0

λ





1/2

=
(
−∆xT∇F (x)

)1/2
.

Alternatively, (2.21) yields

δx =
(

(∇F (x) +ATλ)T∇2F (x)
−1

(∇F (x) +ATλ)
)1/2

= ||∇F (x) +ATλ||∗x.
Let us compare the Newton decrement of Definition 2.3.1 (from the equality

constrained problem (2.18)) to the Newton decrement of Definition 2.2.17 (from
the unconstrained problem (2.2)).

Lemma 2.3.2. Let F be self-concordant and x ∈ C such that Ax = b. Denote

by δx the Newton decrement for equality constrained problem (2.18), and δ
(u)
x the

Newton decrement of the unconstrained problem (2.2). Then

δx ≤ δ(u)
x .

Proof. The Newton decrement for (2.18) is given by

δx =
(
−∇F (x)T∆x

)1/2
,

where ∆x is the solution of (2.20). We get

δ2x =−∇F (x)T∆x

=∇F (x)T∇2F (x)
−1∇F (x)

︸ ︷︷ ︸

=
“

δ
(u)
x

”2

+∇F (x)T∇2F (x)
−1
ATλ

=
(

δ(u)
x

)2

−∇F (x)T∇2F (x)
−1
AT [A∇2F (x)

−1
AT ]−1A∇2F (x)

−1∇F (x).

The second term is non-positive because the matrix in the middle [A∇2F (x)
−1
AT ]−1

is positive semidefinite. We conclude that

δ2x ≤
(

δ(u)
x

)2

,

which implies the result.

The above Lemma certainly makes intuitive sense: the Newton decrements

δ
(u)
x and δx are defined as the (local) norms of the unconstrained (∆x(u)) and con-

strained (∆x) Newton directions. Since ∆x is confined to the subspace null(A) =
{x : Ax = 0}, the point x+ ∆x should be closer to x than x+ ∆x(u), which does
not need to be in L = {x : Ax = b}.
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Variable elimination and link to the unconstrained case

We can also derive the optimality conditions in another way. We see that (2.18)
is the minimization of the restriction of a self-concordant function F to the affine
subspace L = {x ∈ Rn : Ax = b}. In view of Section 2.2.2 we can find B ∈ Rn,n−m

such that range(B) = null(A) and c ∈ L and define the unconstrained problem

min
y∈C+

F |L(y) = F (By + c), (2.24)

with domF |L = C+ = {y ∈ Rn−m : By + c ∈ C}, which is in fact equivalent to
(2.18). The optimality conditions for (2.24) are

∇F |L(y) = 0.

Using the definition of F |L, we get

∇F |L(y) = BT∇F (By + c).

That means a point y is optimal for (2.24) if and only if BT∇F (By + c) = 0,
or in other words ∇F (By + c) ∈ null(BT ). Since range(B) + null(BT ) = Rn,
we conclude that range(B) = null(A) is equivalent to range(AT ) = null(BT ).
Therefore, y ∈ Rp is optimal for (2.24) if and only if ∇F (By + c) ∈ range(AT ),
which means we can find multipliers λ ∈ Rm such that

∇F (By + c) = −AT λ.

Moreover, for any y ∈ C+ we have

A(By + c) = AB
︸︷︷︸

=0

y + Ac
︸︷︷︸

=b

= b,

using the fact that range(B) = null(A) is the same as saying AB = 0 ∈ Rm,n−m.
That means if we define x = By+c for any y ∈ C+ the above optimality conditions
are exactly the same as (2.19).

Yey another way of deriving the Newton system (2.20) is to look at the lin-
earization of the optimality conditions of the unconstrained problem (2.24), i.e.

∇F |L(y) +∇2F |L(y)∆y = 0.

We have computed the gradient ∇F |L above. The Hessian becomes

∇2F |L(y) = BT∇2F (By + c)B.

Replacing the expressions for ∇F |L and ∇2F |L in the linearized optimality con-
ditions yields

BT
[
∇F (By + c) +∇2F (By + c)B∆y

]
= 0.

In other words, we need that ∇F (By + c) + ∇2F (By + c)B∆y ∈ null(BT ) =
range(AT ). That means we can find λ ∈ Rm such that

∇F (By + c) +∇2F (By + c)B∆y = −ATλ.
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If we define ∆x = B∆y, we get by construction A∆x = AB∆y = 0 (since AB = 0
in view of the assumption range(B) = null(A)). Denoting x = By + c ∈ C, we
arrive at the following system of equations

∇2F (x)∆x +ATλ = −∇F (x)

A∆x = 0,

which is exactly (2.20).
In view of these observations we could stop here and refer to the results of

Section 2.2, since (2.18) is equivalent to (2.24) and everything can be phrased in
terms of an unconstrained problem of minimizing a self-concordant function (whose
derivatives we can compute). However, we have decided to keep the equality
constrained formulation (2.18) in its explicit form for several reasons.

1. We do not want a potential user to be occupied with the process of eliminat-
ing variables, i.e. with the task of finding a matrix B such that range(B) =
null(A) (we do assume, however, that a particular solution c ∈ Rn to the
linear constraints is known). Moreover, the computation of B might slow
down the total computation time and destroy sparsity.

2. We prefer the equality constrained formulation (2.18) since they explicitly
contain the variables x that have an actual meaning for the original appli-
cation (from where (2.18) has arisen).

3. Later (Chapter 5) we are going to exploit structure in the matrix A and
in the domain of the objective function. This structure gets lost when the
variables are eliminated as in (2.24).

As we have seen in (2.24), the equality constrained problem (2.18) is equivalent
to the unconstrained minimization of the composition of F with an affine operator
A(y) = By+c, where B ∈ Rn,n−m such that range(B) = null(A) and c ∈ L = {x :
Ax = b}. The following result shows the link between the Newton decrements for
both problems.

Let us change a bit our notation here. For the particular solution x = c ∈ L we
denote by fx(y) the objective function of the unconstrained problem (2.24), that
is

fx(y) = F (By + x).

In view of the calculations above the derivatives of fx are given by:

∇fx(y) = BT ∇F (By + x),

∇2fx(y) = BT ∇2F (By + x)B,

and the optimality conditions for (2.24) are

∇fx(y) = 0.

The Newton direction and Newton decrement of fx at the point y = 0 (which
corresponds to the particular x ∈ Rn) are given by

∆y0 = −∇2fx(0)
−1∇fx(0) = −[BT ∇2F (x)B]−1 BT∇F (x),

δy0 = ||∆y0||∇2fx(0) =
(
−∇fx(0)T∆y0

)1/2
.
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Lemma 2.3.3. Let F be self-concordant and x ∈ C such that Ax = b. Let δy0
be the Newton decrement for the unconstrained problem (2.24) at the point y = 0,
and δx the Newton decrement for the equality constrained problem (2.18) at the
point x. Then we have

δx = δy0 .

Proof. We have seen above that B∆y0 ∈ null(A) because AB∆y0 = 0.
Further, let us define

λ = −
[
AAT

]−1
A ·
[
∇F (x) +∇2F (x)B∆y0

]
,

we see that it holds

∇2F (x)B∆y0 +ATλ = −∇F (x).

The latter statement is true because of the following fact. Let us define

M =

[
A
BT

]

∈ Rn,n.

Since AB = 0 implies that rank(M) = rank(A) + rank(B) = m + (n −m) = n
(see e.g. [4, Fact 2.10.25]), we conclude that M is nonsingular. Therefore, when
multiplying the above equation from the left with MT , we get

BT∇2F (x)B
︸ ︷︷ ︸

=∇2fx(0)

∆y0 +BTAT
︸ ︷︷ ︸

=0

λ = −BT∇F (x)
︸ ︷︷ ︸

=∇fx(0)

and
A∇2F (x)B∆y0 + AATλ

︸ ︷︷ ︸

=−A·[∇F (x)+∇2F (x)B∆y0]

= −A∇F (x).

This means the direction B∆y0 is in fact the Newton direction for (2.18), because
together with the λ defined above it satisfies (2.20), i.e. ∆x = B∆y0.

Consequently, the Newton decrement of fx at the point y = 0 is

δ2y0 = −∇fx(0)T∆y0 = −∇F (x)TB∆y0 = −∇F (x)T∆x = δ2x.

However, we want to stress here that the above mentioned result has only
limited practical use because typically we do not have access to an elimination
matrix B (that is expensive to compute). On the other hand, Lemma 2.3.3 will be
useful to generalize some of the results from the previous section to the equality
constrained case.

2.3.2 Newton’s method for equality constrained minimiza-

tion

Analogously to Section 2.2 we can consider Newton’s method for equality con-
strained problems (2.18), where the Newton direction ∆x is the solution of the
linear system (2.20), and the Newton decrement is defined as the local norm of
this direction, i.e. δx = ||∆x||x. In order to analyze such a Newton method we
have the following two observations.
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1. The Newton direction ∆x lies in the null space of A. This means that if some
point x ∈ C satisfies the linear constraints Ax = b, then so do all points along
the Newton direction, i.e. A(x+ γ∆x) = b for any step size γ ∈ R.

2. Using Lemma 2.3.3 we have that the Newton direction ∆x for the equality
constrained problem (2.18) can be expressed as ∆x = B∆y0, where ∆y0
is the Newton direction for the unconstrained problem (2.24) at y = 0.
Moreover, both Newton decrements are the same: δx = δy0 . Using these
two relations, it is straightforward to phrase all the expressions in terms of
the variables x in Theorem 2.2.18, Theorem 2.2.19 and Theorem 2.2.23 from
Section 2.2 in terms of the unconstrained variables y.

For the sake of completeness, let us present here the generalizations of Theo-
rem 2.2.18, Theorem 2.2.19 and Theorem 2.2.23 to the equality constrained case.
The Newton direction ∆x denotes the solution of (2.20) and the Newton decrement
denotes its local norm, i.e. δx = ||∆x||x.

Theorem 2.3.4. Let F be self-concordant, A ∈ Rm,n, b ∈ Rm and x ∈ C such
that Ax = b and δx < 1. Then

ω(δx) ≤ F (x)− F (x∗) ≤ ω∗(δx), (2.25)

ω′(δx) ≤ ||x− x∗||x ≤ ω′
∗(δx), (2.26)

where x∗ denotes an optimal solution for (2.18).

Theorem 2.3.5. Let F be self-concordant, A ∈ Rm,n, b ∈ Rm and x ∈ C such
that Ax = b and δx < 1. Then x+ = x+ ∆x ∈ C with Ax+ = b and

δx+ ≤
(

δx
1− δx

)2

,

where δx+ denotes the (constrained) Newton decrement at the new iterate x+.

Theorem 2.3.6. Let F be self-concordant, A ∈ Rm,n, b ∈ Rm and x ∈ C such
that Ax = b. We define the new iterate

x+ = x+
1

1 + δx
·∆x.

Then x+ ∈ C and Ax+ = b. Moreover, we have

F (x+) ≤ F (x)− ω(δx).

We are ready now to formulate the globalized Newton method for solving
(2.18), the only difference being the Newton direction, that comes now from (2.20).

We have again two phases:

1. Damped phase:

As long as δx ≥ β̄ with β̄ < 3−
√

5
2 we can choose α = 1

1+δx
which guarantees

in each iteration a functional improvement of at least ω(β̄).
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Algorithm 2 Damped Newton method for minimizing a self-concordant function
subject to linear equality constraints

Input: A ∈ Rm,n, b ∈ Rm, F self-concordant
Initialize: ǫ > 0, initialize x0 ∈ C

⋂{x : Ax = b}.
loop

1) compute Newton direction ∆x from (2.20)
2) x← x+ α∆x, where α is a suitable step length
3) δx = ||∆x||x

end loop

2. Quadratically convergent phase:

If δ < β̄ < 3−
√

5
2 , then we can choose α = 1 and we have quadratic conver-

gence with respect to the Newton decrement.

Theorem 2.3.7. Let F be self-concordant, x0 ∈ C, such that Ax0 = b, ǫ > 0 and

choose β̄ ∈
(

0, 3−
√

5
2

)

. Then we can find a point x̄ ∈ domF = C such that Ax̄ = b

and

F (x̄)− F (x∗) ≤ ǫ

in no more than

N = N1 +N2

iterations, where

N1 ≤
F (x0)− F (x∗)

ω(β̄)
,

N2 = O (log2 (log2 (1/ǫ))) .

2.3.3 Cost per iteration

The main cost per iteration in Algorithm 2 constitutes the process of solving
(2.20). Now we are going to determine the complexity of this operation for the
general case and several special situations. We estimate the complexity in terms
of the floating-point operations (flops) that have to be carried out. A floating-
point operation is an addition, a subtraction, a multiplication or a division of two
floating-point numbers.

We will assume here that the matrix A has full row rank. We have argued
at the beginning of this section that this assumption is – strictly speaking – not
necessary. On the other hand it is not too restrictive either, because we can always
reduce (2.18) to the minimization of a convex function subject to a linear system
of equations with a matrix of full row rank.

The general case

One way of solving the system (2.20) is by using an LU factorization of the sys-
tem matrix. The complexity of the factorization and the forward and backward
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substitutions to compute the final solution is

2

3
(n+m)3 + 2(n+m)2 (2.27)

flops (see, e.g. [6, Appendix C.3.1]).
However, we see that the system matrix has a special structure that can be

exploited. The Hessian block ∇2F (x) is assumed to be positive definite and A has
full row rank. We have seen above that the solution of (2.20) is given by (2.21)
and (2.22), i.e.

∆x = −∇2F (x)
−1

(∇F (x) +ATλ),

where

λ = −[A∇2F (x)
−1
AT ]−1A∇2F (x)

−1∇F (x).

We see that computing λ and ∆x involves the solving of linear systems with
the system matrix ∇2F (x), which is positive definite. For this solving process we
can make use of a Cholesky factorization of ∇2F (x), whose complexity is 1

3n
3 (see

[6, Appendix C.3.2]). The complexity of the forward and backward substitution

for computing ∇2F (x)
−1
AT and ∇2F (x)

−1∇F (x) is 2(m+1)n2 flops (one forward
substitution costs n2 flops, the same for the backward substitution, in total there
are (m+ 1) right-hand side vectors). The next operations are the multiplications

of A with the vector ∇2F (x)
−1∇F (x) (2nm flops) and the matrix ∇2F (x)

−1
AT

(2m2n flops). The following step is the factorization of the positive definite matrix

A∇2F (x)
−1
AT (1

3m
3 flops) and the forward and backward substitution to com-

pute λ, its complexity is 2m2. Finally, we have to execute the multiplication of

∇2F (x)
−1
AT with λ (2nm flops) and add two vectors of size n (n flops).

If we count all the floating-point operations, we get the following complexity
of solving (2.20) using a Cholesky factorization of the system matrices:

1

3
n3 +

1

3
m3 + 2n2m+ 2nm2 + 2n2 + 4nm+ 2m2 + n

which can be written in the more compact form

1

3
(n+m)3 + 2(n+m)2 + n2m+ nm2 + n. (2.28)

If we compare (2.28) and (2.27), we see that solving (2.20) using a Cholesky
factorization of the system matrices is cheaper as compared to solving it using an
LU factorization, since

n2m+ nm2 + n <
1

3
n3 + n2m+ nm2 +

1

3
m3 =

1

3
(n+m)3,

unless n = 1 and m = 0.
Typically, the system (2.20) is not dense, which means that the actual com-

plexity of solving it is much lower. Below, we analyze the complexity of solving
(2.20) if the system matrix has a particular structure which we can exploit. These
results will be used later in Section 5.3.5.
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Diagonal Hessian

Let us consider now the special case where ∇2F (x) is not only positive definite,
but additionally diagonal. This situation will occur e.g. in Section 5.3.1 when com-
puting the Newton directions for the partial minimization subproblems. In that
special case some of the operations above are significantly cheaper. In particular, it

is not necessary to factorize ∇2F (x). Instead, ∇2F (x)
−1
AT and ∇2F (x)

−1∇F (x)
can be computed by only nm + n flops (each component of ∇F (x) and of AT is
simply scaled). The rest is unchanged as compared the the previous case. We get
that the complexity of solving (2.20) with a diagonal Hessian is

1

3
m3 + 2nm2 + 5nm+ 2n+ 2m2. (2.29)

Diagonal Hessian and sparse A

Let us consider now the very particular situation of a diagonal positive definite
Hessian∇2F (x) and a matrix A with full row rank and at most one nonzero in each

column. As in the previous case the complexity of computing ∇2F (x)
−1∇F (x)

is n flops. Since A has in total at most n nonzeros the complexity of computing

∇2F (x)
−1
AT is also at most n. For the same reason the complexity of multiplying

A with the vector ∇2F (x)
−1∇F (x) is at most 2n flops. Moreover, ∇2F (x)

−1
AT

has the same sparsity pattern as A. Since A has at most one nonzero in each

column, we conclude thatA∇2F (x)
−1
AT must be diagonal. The cost of computing

these diagonal elements is 2n flops. The complexity of solving a linear system with

the diagonal matrix A∇2F (x)
−1
AT is m flops. Finally, the cost of multiplying

∇2F (x)
−1
AT with λ is n and additionally we need to perform the addition of two

vectors of size n to get the solution (cost: n flops). If we sum all the floating-point
operations we get a total complexity of solving (2.20) with a diagonal Hessian and
a sparse matrix A of

8n+m. (2.30)

Multiple right-hand sides

Let us finally consider the situation of a diagonal positive definite Hessian ∇2F (x),
a sparse matrix A with full row rank and at most one nonzero in each column and
with several (say: k) right-hand sides, i.e.

[
D AT

A 0

]

·
[
J
L

]

=

[
M
N

]

where D ∈ Rn,n is a diagonal matrix, A ∈ Rm,n, M ∈ Rn,k and N ∈ Rm,k. With
the same reasoning as above, we get that the solutions of the above system are

L = [AD−1AT ]−1 (AD−1M −N),

J = D−1 (M −AT L).

We can see that the complexity of computing D−1M is kn flops (since M has
kn components). As in the previous case, the complexity of computing D−1AT
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is n and of AD−1AT is 2n flops. Since A has at most n nonzeros we have that
the complexity of multiplying A with the matrix D−1M is at most 2kn flops.
The addition of AD−1M with −N costs mk flops. Since AD−1AT is diagonal,
we conclude that the complexity of solving a linear system with that diagonal
matrix is m flops. Finally, the cost of computing the solution (one multiplication
of D−1AT with L and one addition) is 2kn flops. We conclude that the complexity
of solving several systems of the form (2.20) with the same system matrix is

3n+ 5nk + 2mk. (2.31)

We see that if N = 0 and k = 1 we recover the same complexity as in (2.30),
because the addition AD−1M + (−N) is not needed if N = 0 (i.e. −m flops).

2.4 Constrained optimization

We have seen in Section 2.3 that equality constrained convex optimization prob-
lems are essentially equivalent to unconstrained convex problems, both with re-
spect to the formulation (formally we can always eliminate some of the variables to
generate an unconstrained convex problem) and with respect to Newton’s method
that nicely generalizes to the equality constrained situation. If convex inequalities
are present instead of linear equalities, then the situation changes. On the one
hand it is not possible anymore to remove these inequalities simply by eliminating
some of the variables. On the other hand, Newton’s method cannot be applied
directly to the inequality constrained problem since its optimality conditions are
not anymore a nonlinear system of equations. Instead, they additionally involve
inequalities.

2.4.1 Problem statement

In this section we consider general convex optimization problems, i.e. the mini-
mization of a linear objective function subject to constraints defined by a closed
convex set C and linear equalities, i.e. problems of the form

min
x

cTx

s.t. x ∈ C ⊆ Rn,

Ax = b.

(2.32)

Note that if we have a convex (but not linear) objective function f , then we can
introduce an epigraph variable τ (which will be the objective term) and add the
convex constraint f(x) ≤ τ , which results in the problem

min
x,τ

τ

s.t. x ∈ C, f(x) ≤ τ,
Ax = b.

We see that this optimization problem is of the form (2.32) with the extended
feasible set

C̃ = {(x, τ) : x ∈ C, f(x) ≤ τ}.
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We will impose the following three assumptions, which turn out not to be too
restrictive.

Assumption 1

1. C ⊆ Rn is closed, convex and full-dimensional (the latter is equiv-
alent to: C has nonempty interior).

2. C⋂L (where L := {x : Ax = b}) does not contain a straight line.

3. A has full row rank.

4. C⋂L 6= ∅.

5. (2.32) is bounded.

For the first assumption, if C is not full-dimensional (but convex and closed),
then we know that C can be written as the intersection of a full-dimensional closed
convex set C̄ with an affine subspace L̄. These linear constraints can then be
merged with the already present linear constraintsAx = b. The second assumption
will be needed to ensure that the Newton directions are defined everywhere and
that they are unique. The third assumption is not necessary per se, but as we have
argued at the beginning of Section 2.3, this rank-deficiency can be circumvented
by simply removing some of the constraints. The last two assumptions ensure that
(2.32) admits feasible points and that its optimal value is bounded.

We want to emphasize here that we include the linear equality constraints
Ax = b explicitly in the formulation, even though they do not add generality.
Indeed, as we have seen in Section 2.1.1, the set {x ∈ Rn : Ax = b} is a convex set
and intersections with convex sets are convex too. However, we have decided too
keep these constraints in the model for two reasons:

1. The elimination of some of the variables amounts to finding a particular
point x̄ such that Ax̄ = b and an elimination matrix B such that range(B) =
null(A). Then the constraint {x ∈ C, Ax = b} is the same as saying (By+x̄) ∈
C in the variables y. We do not want a potential user to be concerned with
the elimination process.

2. Later we want to exploit the structure of the convex set C (cf. Section 2.5).
We could eliminate some of the variables x and thereby remove the linear
equality constraints, but by doing so the structure in C gets lost, or it is
more difficult to exploit that structure.

2.4.2 Path-following interior-point methods

Path-following schemes make use of so-called barrier functions whose domains
are the interiors of closed convex sets C. Note the difference to Section 2.2 and
Section 2.3, where the open convex sets C were denoting the domains of the self-
concordant functions F .

Definition 2.4.1. Let C be a closed convex set with nonempty interior. A con-
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tinuous function F is a barrier for C if

domF = int C

and
F (x)→∞ as x→ ∂C.

Remark 2.4.2. We have seen before that self-concordant functions are barriers
for the closure of their domain (cf. Theorem 2.2.6).

The central path

Barrier functions can be used to define an important object, the so-called central
path, which will lead us to an optimal solution of (2.32).

Definition 2.4.3. Let F be a self-concordant function such that domF = int C.
The central path of C⋂L is defined as the set of (unique) solutions {x(t)}, with
t > 0, for the parametrized family of linearly constrained convex problems

min t cTx+ F (x) := ft(x)

Ax = b.
(Pt)

If C is bounded, then also x(0) exists and it is called the analytic center of C.
Intuitively we see that as t grows (Pt) approximates more and more the original

problem (2.32). Indeed, feasibility with respect to C is always maintained since
F is a barrier for C and therefore not defined outside int C. Moreover, for large t
we increase the importance of the original objective term cTx. Therefore we can
expect x(t) to be close to x∗ for large t. Our goal is therefore to trace the central
path as it leads us to an optimal solution.

The concept of path-following methods is the following: starting at some initial
point x0 ∈ int C⋂L and t0 > 0 (t0 ≥ 0 if C is bounded) we solve the corresponding
centering problem (Pt) with t = t0. According to Theorem 2.3.7 this can be
done with guaranteed complexity, provided that the objective function ft is self-
concordant. In view of Definition 2.6 this is the case, since self-concordance is not
affected by adding terms of degree 1.

Given an approximation xt0 for the point x(t0) on the central path we update
the value of t from t0 to t1 and solve the new centering problem (Pt) with t = t1 >
t0, starting at xt0 .

For any t > 0 the optimality conditions for (Pt) are: ∃λ(t) such that

∇ft(x(t)) = −ATλ(t)
Ax(t) = b,

(2.33)

where the gradient of ft at some x ∈ int C⋂L is given by

∇ft(x) = t c+∇F (x).

We will go along Newton directions towards the minimizer of (Pt). To compute
the Newton directions we need also the Hessian of the objective function ft, which
is given by

∇2ft(x) = ∇2F (x).
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The Newton direction ∆x(t) is then defined as the solution of the linear system
[
∇2F (x) AT

A 0

]

·
[
∆x(t)
λ(t)

]

=

[
−t c−∇F (x)

0

]

. (2.34)

We denote the Newton decrement for (Pt) at the point x by

δx,t = ||∆x(t)||x.

If δx,t is small, it means x is close to x(t) (see Theorem 2.3.4).
As the path-following framework is presented above, there are still two open

questions.

1. How shall we update t (and therefore the target point x(t)) so that we can
guarantee on the one hand polynomial complexity but on the other hand
make sure not to lose sight of the central path?

2. What is a good stopping criterion for the process, i.e. at which value of t
shall we stop tracing the path?

2.4.3 Self-concordant barriers

In order to answer the two questions that we have posed above, we need to impose
an additional assumption on the self-concordant function F .

Definition 2.4.4. A self-concordant function F is a ν-self-concordant barrier1

for a closed convex set C ⊆ Rn if

∇F (x)T∇2F (x)−1∇F (x) ≤ ν, ∀x ∈ int C.

The value ν is called the parameter of the barrier F .

In view of Definition 2.2.17 we see that if F is a ν-self-concordant barrier, then
the Newton decrement δx for the unconstrained problem

min
x

F (x)

is bounded by
√
ν for all x ∈ int C. Alternatively, we have

||∆x||x = ||∇F (x)||∗x ≤
√
ν,

where ∆x denotes the Newton direction for the unconstrained problem (2.2). That
means for ν-self-concordant barriers we impose a uniform bound on the size of the
Newton step ∆x for minimizing F .

We want to point out here again that in this section the set C ⊆ Rn is assumed
to be closed, as opposed to Section 2.2 and Section 2.3, where C ⊆ Rn was denoting
the open domain where the self-concordant function F was defined. This change
of notation means that in this section we always assume that domF = int C.

A consequence of Definition 2.4.4 is the following lemma that can be found in
[46, Theorem 4.2.4(1)].

1Some authors (e.g. Jarre [30]) have introduced the notion of self-limiting barriers, which
corresponds to Definition 2.4.4, the only difference being that F is not assumed to be a self-
concordant function.
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Lemma 2.4.5. Let F be a self-concordant barrier. Then we have for any x ∈
domF and any y ∈ domF

∇F (x)T (y − x) ≤ ν.

We have seen in Section 2.2 that convex quadratic functions

F (x) =
1

2
xTAx + aTx+ α

(and therefore also affine functions) are self-concordant functions. However, they
are not self-concordant barriers, even if we assume A is positive definite. Indeed,
we have ∇F (x) = Ax + a and ∇2F (x) = A. Replacing this in Definition 2.4.4,
and we get

∇F (x)T (∇2F (x))−1∇F (x) = (Ax+ a)TA−1(Ax+ a)

= xTAx+ 2aTx+ aA−1a

which is clearly not bounded on Rn.

Examples of self-concordant barriers

• F : Rn++ → R, F (x) = −∑n
i=1 log(xi) is an n-self-concordant barrier for

C = Rn+.

• F : int C ⊆ Rn+1 → R, F (x, τ) = − log(τ2 −∑n
i=1 x

2
i ) is a 2-self-concordant

barrier for C = Ln := {(x, τ) ∈ Rn × R : ||x||2 ≤ τ}.

• F : int C ⊆ Sn → R, F (X) = − log(det(X)) is an n-self-concordant barrier
for C = {X ∈ Sn : X � 0}.

• F : int C ⊆ Rn → R, F (x) = − log(ϕ(x)), where ϕ(x) = − 1
2x

TAx+ aTx+ α
with A � 0 is a concave quadratic function. F is 1-self-concordant for
C = {x ∈ Rn : ϕ(x) ≥ 0}.

Operations that preserve self-concordance

Self-concordant barriers are naturally linked to convex sets where they are defined.
We have seen in Section 2.1.1 that certain operations on convex sets preserve
convexity. Therefore it is desirable that similar rules exist on the side of the
barriers that preserve self-concordance.

1. Barrier for intersections of convex sets.

Let C1 ⊆ Rn and C2 ⊆ Rn be closed convex sets, and let Fi be νi-self-
concordant barriers for Ci respectively. Then

F (x) = F1(x) + F2(x)

is a (ν1 + ν2)-self-concordant barrier for C = C1
⋂ C2. This generalizes to

intersections of more than 2 sets (Proof, see [52, Proposition 2.3.1(ii)]).
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2. Barrier for direct products of convex sets.

Let Ci ⊆ Ei, i = 1, . . . ,m be convex sets with νi-self-concordant barriers Fi
respectively. Then

F (x) =

m∑

i=1

Fi(xi)

is (
∑n

i=1 νi)-self-concordant on C1×. . .×Cm (Proof, see [52, Proposition 2.3.1(iii)]).

3. Compositions with affine function.

Let F : int C ⊆ Rn → R be ν-self-concordant, A : Rp → Rn such that
A(y) = By + c for B ∈ Rn,p and c ∈ Rn. Assume A(Rp)

⋂ C 6= ∅. Define

C+ = A−1(C) = {y ∈ Rp : A(y) ∈ C} ⊆ Rp.

Then F̃ : C+ → R defined as

F̃ (y) = F (A(y))

is ν-self-concordant on dom F̃ = C+ (Proof, see [52, Proposition 2.3.1(i)]).

4. Restriction to affine subspace.

Let F : C ⊆ Rn → R be self-concordant and L = {x ∈ Rn : Ax = b} an affine
subspace, where A ∈ Rm,n, b ∈ Rm and m < n. Then the restriction of F to
L, which we denote by F |L, is self-concordant on its domain. The restriction
is understood analogously to the restriction of self-concordant functions in
Section 2.2.2.

5. Conic hull.

Let C ⊆ Rn be a closed convex set with ν-self-concordant barrier F . Then
there exists θ > 0 and τ > 0 such that

F̃ (x, t) = θ [F (x/t)− τν log(t)]

is 25ν-self-concordant2 for the conic hull of C,

cone(C) :=
{

(x, t) ∈ Rn × R++ :
x

t
∈ C
}

.

6. Partial minimization.

Let F : int C ⊆ Rn → R, such that (x, y) 7→ F (x, y), be ν-self-concordant
and bounded from below. We assume that C does not contain a straight line.
Then the partial minimization of F with respect to y

G(x) = inf
y∈Q(x)

F (x, y),

where Q(x) = {y : (x, y) ∈ C}, is ν-self-concordant on domG = {x : Q(x) 6=
∅} (Proof [50, Theorem 3]).

2In fact, the authors show that, with a suitable choice of θ and τ , one obtains a γ ν-self-
concordant barrier for cone(C), where γ is a constant that is situated between 9 and 25.
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We have seen above several examples of self-concordant barriers for convex
sets, and also how certain (convexity-preserving) transformations of convex sets
affect their barriers.

Below we will quote a theoretically highly important result which states that
in principle any convex set admits a self-concordant barrier whose parameter is
proportional to the dimension of the underlying space.

Theorem 2.4.6. Every open convex set C ⊂ Rn containing no straight line admits
a ν-self-concordant barrier Φ (universal barrier), with ν = O(n), defined by

Φ(x) = O(1) · log u(x),

where
u(x) = voln(C0(x)),

voln is the n-dimensional Lebesgue measure and C0(x) is the polar set of C centered
at x, i.e.

C0(x) = {y ∈ Rn : 〈z − x, y〉 ≤ 1, ∀z ∈ C}.
Proof. [52, Theorem 2.5.1].

Note that the value of O(1) in Theorem 2.4.6 is in general unknown (see Sec-
tion 3.2).

Conditions for self-concordance

There are some necessary and sufficient conditions for self-concordance which we
will present below.

Theorem 2.4.7. Let C ⊆ Rn be a closed convex set and F : int C → R self-
concordant. Then F is a ν-self-concordant barrier for C if and only if for any
x, y ∈ int C we have

F (y) ≥ F (x) +∇F (x)T (y − x) + νω∗

(
1

ν
∇F (x)T (y − x)

)

.

Proof. [46, Theorem 4.2.4(2)].

The following result links self-concordant barriers with certain ”well-behaved”
functions that are called compatible with the barrier F . Before we need to intro-
duce the concept of convex cones.

Definition 2.4.8. A cone is a set K ⊆ E, such that

λx ∈ K, ∀x ∈ K, ∀λ ≥ 0,

i.e. the whole ray going through a point x ∈ K also belongs to K.

Any closed convex cone such that K⋂(−K) = {0} and intK 6= ∅ induces an
ordering relation in E in the following way: for x, y ∈ E we denote

x �K y ⇔ (x− y) ∈ K (or: x− y �K 0),

and analogously

x ≻K y ⇔ (x− y) ∈ intK (or: x− y ≻K 0).
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Definition 2.4.9. Let C1 ⊆ E1 be a closed convex set with ν1-self-concordant
barrier F : C1 → R. Let ξ : C1 → E2, K ⊆ E2 a closed convex cone and β ≥ 1. We
call ξ β-compatible with F if ξ is concave with respect to K (i.e. D2ξ(x)[h, h] �K 0
for all x ∈ int dom ξ and for all h ∈ E1) and

D3ξ(x)[h, h, h] �K −3βD2ξ(x)[h, h] ||h||x.

Definition 2.4.10. A direction h ∈ Rn is called recession direction for C ⊆ E if
for all x ∈ C we have

x+ λh ∈ C, ∀λ ≥ 0.

Theorem 2.4.11. Let ξ : C1 ⊆ E1 → E2 be β-compatible with the ν1-self-concordant
barrier F : C1 → R (with respect to the closed convex cone K ⊆ E2). Let the closed
convex set C2 ⊆ (E2×E3) admit the ν2-self-concordant barrier φ and let us assume
that K × {0} ⊂ E2 × E3 only contains recession directions of C2. Then

Ψ(x, z) := φ(ξ(x), z) + β3F (x)

is a (ν2+β
3ν1)-self-concordant barrier for its domain {(x, y, z) : ξ(x) �K y, (y, z) ∈

C2}.

Proof. [47, Theorem 3].

Nesterov [47] used the above result to prove self-concordance of barriers for the
following convex sets:

1. Kα = {(x, z) ∈ R2
+ × R : xα1 x

1−α
2 ≥ |z|}, where 0 ≤ α ≤ 1, with the

4-self-concordant barrier

F (x, z) = − log(x2α
1 x2−2α

2 − z2)− log(x1)− log(x2).

2. Kexp = {(x, y, z) ∈ R × R2
+ : exp(x/z) ≤ y/z} with the 3-self-concordant

barrier

F (x, y, z) = − log(z log(y/z)− x)− log(y)− log(z).

3. The hypograph of the geometric mean
∏n
i=1 x

αi

i , where x ∈ Rn+, α ≥ 0,
∑n

i=1 αi = 1 with the (n+ 1)-self-concordant barrier

F (x, z) = − log

(
n∏

i=1

xαi

i − z
)

−
n∑

i=1

log(xi).

Tracing the central path

Let us come back now to the central path, that is defined as the trajectory of
solutions {x(t)} of the centering problems (Pt). For points on the central path we
can bound the distance to an optimal solution for (2.32). We have the following
result.
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Theorem 2.4.12. For any t > 0 we have

cT (x(t) − x∗) ≤ ν

t
.

Moreover, if δx,t ≤ β < 1, then

cT (x − x∗) ≤ 1

t
(ν + κ(β, ν)) .

where κ(β, ν) = (β+
√
ν)β

1−β .

Proof. This proof is essentially the same as [46, Theorem 4.2.7], the only difference
being additionally we have to take into account the linear equality constraints.

In order to prove the first inequality, we use the fact x(t) is characterized by
the optimality conditions for (Pt), i.e. ∃λ such that

∇ft(x) = −ATλ,
Ax = b.

Since ∇ft(x) = t c+∇F (x), we get c = − 1
t (∇F (x) +ATλ) for some λ. It follows

(using Lemma 2.4.5)

cT (x(t) − x∗) = −1

t
(∇F (x(t)) +ATλ)T (x(t) − x∗)

= −1

t
∇F (x(t))T (x(t) − x∗)− 1

t
λT A (x(t) − x∗)
︸ ︷︷ ︸

=0

≤ ν

t
.

For the second inequality we get

tcT (x− x(t)) = (∇ft(x)−∇F (x))T (x− x(t))
= (∇ft(x) +ATλ−∇F (x)−ATλ)T (x− x(t))
= (∇ft(x) +ATλ−∇F (x))T (x − x(t))− λT A(x− x(t))

︸ ︷︷ ︸

=0

≤ (||∇ft(x) +ATλ||∗x
︸ ︷︷ ︸

=δx,t

+ ||∇F (x)||∗x
︸ ︷︷ ︸

≤√
ν

) · ||x− x(t)||x
︸ ︷︷ ︸

≤ω′
∗(δx,t)

≤ (δx,t +
√
ν)

δx,t
1− δx,t

≤ (β +
√
ν)β

1− β = κ(β, ν).

The desired result follows from a combination with the first inequality.

That means if x is close enough to x(t) (say, β < 0.1) and t is large enough,
then we have a good bound on the difference between the current and the optimal
objective value.

To answer the question how to update t, we need the following result that
describes the so-called short-step algorithm.
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Theorem 2.4.13. Let F be a ν-self-concordant barrier for C, β < ǫ0 = 3−
√

5
2 ,

0 < γ ≤
√
β

1+
√
β
− β and x ∈ int C such that Ax = b and δx,t ≤ β. We define

t+ = t

(

1 +
γ

β +
√
ν

)

,

x+ = x+ ∆x(t+),

where ∆x(t+) is the solution of (2.34) with the new duality measure t+. Then we
have

δx+,t+ ≤ β.
Proof. Again, this proof is very close to the one in [46, Theorem 4.2.8], but we
have to take additionally into account the linear equalities. Let x ∈ int C such
that Ax = b. We denote by ∆x(t) the Newton direction at x towards x(t) and
by ∆x(t+) the Newton direction at x towards x(t+). Similar to Section 2.3 we
can consider the unconstrained problems where some of the variables x have been
eliminated (see (2.24)), i.e. we get as the objective function

fx,t(y) = t cT (By + x) + F (By + x),

relative to x ∈ int C⋂L and t > 0, where B ∈ Rn,n−m is any elimination matrix
such that range(B) = null(A). The gradient of fx,t becomes then

∇fx,t(y) = t BT c+BT∇F (By + x),

and at the point y = 0 this gives

∇fx,t(0) = t BT c+BT∇F (x). (2.35)

According to Lemma 2.3.3, we have δy0,t = δx,t and δy0,t+ = δx,t+ , where δx,t =
||∆x(t)||x, δx,t+ = ||∆x(t+)||x and

δy0,t = ||∇fx,t+(0)||∗y=0,

δy0,t+ = ||∇fx,t+(0)||∗y=0,

where ∆y0(t) denotes the Newton direction at y = 0 towards the minimizer of
fx,t(y) (respectively for t+).

On the other hand, we have in view of the definition of t+

δy0,t+ = ||∇fx,t+(0)||∗y=0

(2.35)
= ||t+BT c+BT∇F (x)||∗y=0

= ||tBT c+BT∇F (x) + t · γ

β +
√
ν
· BT c||∗y=0

≤ ||tBT c+BT∇F (x)||∗y=0
︸ ︷︷ ︸

(2.35)
= ||∇fx,t(0)||∗y=0=δy0,t

+γ
t · ||BT c||∗y=0

β +
√
ν

≤ δy0,t + γ
t · ||BT c||∗y=0

β +
√
ν

.
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Using the definition of the gradient of fx,t at y = 0 (2.35), we see

t · ||BT c||∗y=0 = ||∇fx,t(0)−BT∇F (x)||∗y=0

≤ ||∇fx,t(0)||∗y=0
︸ ︷︷ ︸

=δy0,t=δx,t≤β

+||BT∇F (x)
︸ ︷︷ ︸

=∇fx(0)

||∗y=0

≤ β + ||∇fx(0)||∗y=0.

Since fx(y) = F (By+ x) is a ν-self-concordant barrier, we have in view of Defini-
tion 2.4.4 that ||∇fx(0)||∗y=0 ≤

√
ν. We conclude

t · ||BT c||∗y=0 ≤ β +
√
ν.

It follows, using Lemma 2.3.3 and the above observation, that

δx,t+ = δy0,t+ ≤ δy0,t + γ = δx,t + γ ≤
√
β

1 +
√
β
< 1.

This means the point x is not only close to x(t), but also close to x(t+) in the
sense that δx,t+ < 1.

Using Theorem 2.3.5, we get

δx+,t+ ≤
(

δx,t+

1− δx,t+

)2

=
(
ω′
∗(δx,t+)

)2
.

We conclude, using monotonicity of ω′
∗ and Lemma 2.2.14,

√

δx+,t+ ≤ ω′
∗(δx,t+) ≤ ω′

∗

( √
β

1 +
√
β

)

= ω′
∗(ω

′(
√

β)) =
√

β,

which finishes the proof.

The above theorem says that once we are close to the central path, we can
update t in a moderate way so that one full Newton step brings us back to the
initial proximity.

We see that the increase in t is linear and that it only depends on the barrier
parameter ν (that is given) and algorithm parameters β and γ that we choose.
Ideally we would like to choose γ as large as possible as this guarantees that the
updating coefficient for t is large. In Figure 2.3 we see the upper bound on γ
as a function of β. We can verify that a feasible (and reasonable) choice of the
parameters is β = 1

9 and γ = 5
36 (suggested e.g. in [46, (4.2.22)]).

The following result summarizes the polynomial complexity of the so-called
short-step path-following algorithm for solving (2.32).

Theorem 2.4.14. Let F be a ν-self-concordant barrier for C ⊆ Rn. Let t0 > 0,

ǫ > 0 and β < 3−
√

5
2 . Choose 0 < γ ≤

√
β

1+
√
β
− β. Let x0 ∈ int C⋂{x : Ax = b}

such that

δx0,t0 ≤ β.
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Figure 2.3: The upper bound on γ: γ ≤
√
β

1+
√
β
− β.

Then it is possible to compute a point xN such that

〈c, xN − x∗〉 ≤ ǫ

in no more than

N = O
(√

ν log

(
ν

t0ǫ

))

iterations.

Proof. In view of Theorem 2.4.13 we get recursively

tk =

(

1 +
γ

β +
√
ν

)

tk−1 =

(

1 +
γ

β +
√
ν

)k

t0.

In combination with Theorem 2.4.12 we get that

cT (x− x∗) ≤ ǫ

if

t ≥ κ(β, ν)

ǫ
,

which in turn is satisfied if
(

1 +
γ

β +
√
ν

)k

t0 ≥
κ(β, ν)

ǫ
.

We get

k ≥ log

(
κ(β, ν)

t0ǫ

)

/ log

(

1 +
γ

β +
√
ν

)

.

Let us denote τ = γ
β+

√
ν
. We have then 0 ≤ τ ≤ γ√

ν
≤ γ < 0.15 (see Figure 2.3).

Since log(1 + τ) is concave and because log(1 + 0.15) > 0.15
2 , we conclude that
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log(1 + τ) ≥ τ
2 for all 0 ≤ τ ≤ 0.15. It follows that the stopping criterion is met

after at most

k =
2

τ
log

(
κ(β, ν)

t0ǫ

)

= O
(√

ν log

(
ν

t0ǫ

))

iterations.

Algorithm 3 Short-step path-following interior-point method

Input: A ∈ Rm,n with full row rank, b ∈ Rm, F ν-self-concordant barrier for C
Initialize: k = 0, t0 > 0, ǫ > 0, β < 3−

√
5

2 . Choose 0 < γ ≤
√
β

1+
√
β
− β. Define

κ(β, ν) =
(

ν + (β+
√
ν)β

1−β

)

. Let x0 ∈ int C⋂{x : Ax = b} such that

δx0,t0 ≤ β,

repeat

1) update target tk+1 = tk

(

1 + γ
β+

√
ν

)

2) compute Newton direction ∆x(tk+1) towards x(tk+1)
3) update iterate xk+1 = xk + ∆x(tk+1)
4) k := k + 1

until κ(β, ν) ≤ ǫ · tk

Initialization

Note that we have assumed the availability of an initial point x0 close to the central
path for some value of t0 > 0. In order to find such a point we have two options.

1. We can apply a damped Newton method to solve the initial centering prob-
lem for any value of t0.. The complexity is

O (F (x0)− F (x∗))

iterations, x0 ∈ int C⋂L is any strictly feasible starting point of the auxiliary
process (cf. Theorem 2.3.7).

2. If C⋂L is bounded, we can use an auxiliary path-following scheme to find
the analytic center of C⋂{Ax = b}. The complexity is

O
(√
ν log

(
ν · ||∇F (x0)||∗xF

))
,

where x0 ∈ int C⋂L is any strictly feasible starting point of the process (i.e.
δx0,0 > β) and xF denotes the analytic center, i.e.

xF = argminx:Ax=b F (x),

(for a detailed discussion we refer to [46, Theorem 4.2.11]).

It is not possible to compare directly the complexities of both initialization pro-
cedures, but Nesterov argues at the end of Section 4.2.5 in [46] that the second
approach typically is superior.
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Large updates of t

We can also update t in a more aggressive manner by choosing a parameter θ > 1
(that could possibly be depending on the current iterate) and update t as

t+ = θ t.

It is clear that if θ ≫ 1 + γ
β+

√
ν
, then we can expect fewer updates of t than for

the short-step algorithm. Indeed, for β < 1 we have according to Theorem 2.4.12

cT (x− x∗) ≤ κ(β, ν)

t
.

If we desire an optimality gap of ǫ, i.e. cT (x − x∗) ≤ ǫ, then this is guaranteed

by finding a point x such that δx,t ≤ β and κ(β,ν)
t ≤ ǫ. The latter condition is

satisfied after at most

Nout ≤
log(κ(β, ν)) − log(t0ǫ)

log(θ)
= O

(

log

(
ν

t0 ǫ

))

(2.36)

outer iterations.
On the other hand, there are some drawbacks as compared to Algorithm 3:

1. If θ is large, we cannot apply Theorem 2.4.13 and therefore we cannot guar-
antee that one full Newton restores proximity to the central path, i.e. δx+,t+

is not less than or equal to β.

2. We cannot be sure that a full Newton step is even feasible.

To overcome these two drawbacks one has to do several damped Newton steps
towards the new target point x(t+). The number of damped Newton steps can be
bounded in the following way. Assume x ∈ int C such that Ax = b and δx,t ≤ β
(that is x is close to the point x(t) on the central path). If we update t to θ t and
we impose additionally that β ≤ 1

4 , we have the following bound on the functional
difference to the new target point x(t+):

ft+(x)− ft+(x(t+)) ≤ θ(ν +
√
ν).

The above inequality is proved e.g. by Renegar in [55, Section 2.4.3] for the
case where no equality constraints are present. The same inequality applies to
our setting because we can consider again the function fx,t+(y) = ft+(By + x)
that is parametrized by x ∈ int C⋂L and some matrix B ∈ Rn,n−m such that
range(B) = null(A).

That means if we do damped Newton steps with step size α = 1
1+δx,t+

(and

δx,t+ denotes the Newton decrement in each inner iteration for Newton directions
towards x(t+)), then in accordance with Theorem 2.3.6 it takes no more than

Nin ≤
θ(ν +

√
ν)

ω(β)
(2.37)

inner iterations to compute a point x+ ∈ intC such that Ax+ = b and δx+,t+ ≤ β.
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Algorithm 4 Long-step path-following interior-point method

Input: A ∈ Rm,n with full row rank, b ∈ Rm, F ν-self-concordant barrier for C
Initialize: Choose parameters ǫ > 0, 0 < β ≤ 1

4 , θ > 1, define κ(β, ν) = ν +
(β+

√
ν)β

1−β . Initialize k = 0, i = 0, t0 > 0 and x(0) ∈ intC
⋂{x : Ax = b} such

that δt0(x
(0)) ≤ β.

while ǫ · tk < κ(β, ν) do

1) compute Newton direction ∆x
(i)
tk

from (2.34)

2) compute Newton decrement δtk(x(i)) = ||∆x(i)
tk ||x(i)

while δtk(x(i)) > β do

a) x(i+1) := x(i) + α ·∆x(i)
tk

, where α is a suitable step length
b) i := i+ 1

c) compute Newton direction ∆x
(i)
tk from (2.34)

d) compute Newton decrement δtk(x(i)) = ||∆x(i)
tk ||x(i)

end while

4) update tk+1 := θ · tk
5) update k := k + 1

end while

Note that α = 1
1+δ with δ = δtk(x(i)), is a feasible step length in step a) of the

inner loop.

To describe the algorithm formally, let us introduce some notation. We denote

by ∆x
(i)
tk the Newton direction at the point x(i) towards the target point x(tk) on

the central path. Further δtk(x(i)) = ||∆x(i)
tk ||x(i) is the Newton decrement of ∆x

(i)
tk

with respect to the current iterate x(i).
In principle the centering accuracy β can be chosen more loosely. Since the

long-step algorithm is only using Theorem 2.4.12 (and not Theorem 2.4.13), it is
sufficient to take β < 1. However, note that for β close to 1, κ(β, ν) increases and
therefore also the bound on the number of outer iterations (see (2.36)).

Theorem 2.4.15. Algorithm 4 terminates after at most

N ≤ O
(

ν log

(
ν

t0ǫ

))

iterations with a point xN such that

〈c, xN − x∗〉 ≤ ǫ.

Proof. As we have seen, the number outer iterations (2.36) is bounded by

Nout ≤
log(κ(β, ν)) − log(t0ǫ)

log(θ)
= O

(

log

(
ν

t0ǫ

))

.

On the other hand when updating t to θ t, the number of inner iterations to
generate a central point with accuracy β is according to (2.37) given by

Nin ≤
θ(ν +

√
ν)

ω(β)
= O(ν).
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2.5 Conic optimization

We have seen in Section 2.4 that general convex optimization problems can be
solved using interior-point methods, provided that a ν-self-concordant barrier for
the feasible set (and possibly the epigraph of a nonlinear objective function) is
available. In this section we consider convex problems in conic format, which
allows the design of primal-dual interior-point methods.

2.5.1 From convex to conic optimization

Convex optimization problems in conic form are problems of the form (2.32), where
the closed convex set C ⊆ Rn is a cone (see Definition 2.4.8). If we take for example
C = Rn+, then the corresponding conic problem is simply a primal linear program.

Definition 2.5.1. We define the dual cone K∗ ⊆ E∗ of K ⊆ E by

K∗ := {s ∈ E∗ : 〈s, x〉 ≥ 0, ∀x ∈ K}.

It is easy to see that K∗ is always closed and convex (even if K is not).
We can consider now the primal-dual conic pair defined as

(P̄ ) min
x

cTx

Ax = b

x ∈ K,

(D̄) max
y,s

bT y

s+AT y = c

s ∈ K∗.

We see that (P̄ ) and (D̄) are in fact equivalent to the standard convex format
(2.32). Indeed, (P̄ ) is already of the form (2.32), where C is chosen as the particular
convex set K. On the other hand, any convex problem (2.32) can be brought into
conic form. Indeed, we see that (2.32) is equivalent to

min
x,t

cTx

(x, t) ∈ cone(C)

Ax = b

t = 1.

That means we have introduced one new variable t and added the linear constraint
t = 1, fixing this variable immediately to 1.

Conic duality

We have weak duality between the two problems, because for any primal feasible
point x and any dual feasible point (y, s) we have

cTx− bT y = cTx− xTAT y = cTx− cTx+ sTx ≥ 0.
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using the definition of the dual cone.
However, we have to be a little careful because it might happen that K (or K∗)

is empty or does not have interior points. To characterize this condition we need
the following two notions.

Definition 2.5.2. A cone is said to be pointed if K⋂(−K) = {0}. K is called
solid if intK 6= ∅.

Since K is assumed to be closed and convex, we have the following relations
related to its dual cone K∗ (see [3, Theorem 2.3.1])

K pointed ⇔ K∗ solid

K∗ pointed ⇔ K solid.

Definition 2.5.3. A cone K is called proper if it is closed, convex, pointed and
solid.

We have already seen that between (P̄ ) and (D̄) weak duality holds. Under
slightly stronger assumptions than in the LP case, we can also guarantee strong
duality.

Theorem 2.5.4. 1. Let (P̄ ) be bounded from below and strictly feasible, i.e.
∃ x ∈ intK such that Ax = b. Then (D̄) is solvable and the optimal values
of (P̄ ) and (D̄) are equal.

2. Let (D) be bounded from above and strictly feasible, i.e. ∃ y : (c − AT y) ∈
intK∗. Then (P̄ ) is solvable and their optimal values are equal.

Proof. [3, Theorem 2.4.1].

An immediate consequence of the above theorem is that if both (P̄ ) and (D̄)
are strictly feasible then there exist x∗ ∈ K such that Ax∗ = b and y∗ such that
c−AT y∗ ∈ K∗ and strong duality holds, that is

cTx∗ = bT y∗.

We see that the strong duality result is more restrictive as opposed to the LP
case, where feasibility and boundedness of either the primal or the dual implied
feasibility and boundedness of the other problem, even when no strictly feasible
point is available. Additionally both optimal values are attained and strong duality
holds. For a thorough discussion of this phenomenon, see [3, Section 2.4.1].

Theorem 2.5.4 requires strict feasibility and guarantees only that the optimal
values are equal, not that they are attained for both problems, i.e. the optimum
might be attained only for one of the two problems. In [3] one can find examples
of situations where one problem is bounded and feasible (but not strictly feasible)
and the dual is infeasible. Similarly it is possible that (P̄ ) is strictly feasible and
bounded, but not solvable (in the sense that the optimal value is not attained).
These crucial observations have to be kept in mind when dealing with conic prob-
lems.

Provided that A has full row rank, we see easily that for (P̄ ) the first three
requirements of Assumption 1 (p. 44) are satisfied. Indeed pointedness implies
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that K does not contain straight lines (neither does then K⋂{x : Ax = b}), and
intK 6= ∅ is equivalent to saying K is full-dimensional. In other words, properness
of K is a more compact way of ensuring the first and second part of Assumption 1.
On the dual side we see that for any nondegenerate barrier F (s) for K∗ it holds
that F̃ (y) = F (c − AT y) is nondegenerate too if A has full row rank. The last
statement can easily be seen when considering the Hessian of F̃ , i.e.

∇2F̃ (y) = (−A)∇2F (c−AT y) (−AT ) = A ∇2F (c−AT y)
︸ ︷︷ ︸

≻0

AT .

This means the Newton directions in terms of y are defined for any strictly feasible
point y ∈ {y : c−AT y ∈ intK∗}.

As we have pointed out earlier, in this thesis we only consider feasible problems.
Therefore, we assume that the last two properties in Assumption 1 are satisfied
both for (P̄ ) and (D̄). In fact, to ensure strong duality, we have to impose addi-
tionally strict feasibility for the primal and the dual problem.

Logarithmically homogeneous barriers for proper cones

For proper cones we have a special class of barriers, so-called logarithmically ho-
mogeneous barriers.

Definition 2.5.5. Let K ⊆ E be a proper cone, F : intK → R a twice continuously
differentiable, convex barrier function. F is called ν-logarithmically homogeneous
for K if

F (τ x) = F (x)− ν log(τ) (2.38)

for any x ∈ intK and any τ > 0.

In Definition 2.5.5 we have not assumed that F is a self-concordant function.
The following theorem states that any ν-logarithmically homogeneous function
which is also self-concordant is automatically a ν-self-concordant barrier.

Theorem 2.5.6. Let F : intK → R be both a self-concordant function with
domF = intK and ν-logarithmically homogeneous for K. Then F is a ν-self-
concordant barrier for K.

Proof. [52, Corollary 2.3.2].

As it turns out all the self-concordance-preserving operations presented in Sec-
tion 2.4 also preserve the property of logarithmic homogeneity if the original bar-
riers exhibited this property ([42, p. 208]).

Assumption 2
In the following, when we speak of a cone K, we assume that it is proper.
Similarly, when we speak of ν-self-concordant barriers F for K, then we
implicitly assume that F is ν-logarithmically homogeneous.
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Direct consequences of the definition of logarithmic homogeneity are the fol-
lowing (they can be found e.g. in [53]).

∇F (τ x) =
1

τ
∇F (x), (2.39)

∇2F (τ x) =
1

τ2
∇2F (x), (2.40)

∇2F (x)x = −∇F (x), (2.41)

||x||x =
√
ν, (2.42)

〈∇F (x), x〉 = −ν. (2.43)

Definition 2.5.7. 3 Let F be a ν-logarithmically homogeneous barrier for K. We
define its conjugate to be

F∗(s) = sup
x∈intK

{−sTx− F (x)}.

The following theorem states that the conjugate of a barrier is in fact a barrier
for the dual cone.

Theorem 2.5.8. Let F : intK → R be a ν-self-concordant barrier for the proper
cone K ⊆ E. Then F∗(s) is a ν-self-concordant barrier for K∗ ⊆ E∗.
Proof. [52, Theorem 2.4.4].

That means we have complete symmetry between the primal side with F a
ν-self-concordant barrier for K and the dual side with F∗ for K∗. All the results
listed below for F are therefore applicable for F∗ too, where F∗ is the conjugate
of F .

Example 2.5.9. Examples of convex cones with ν-self-concordant barriers.

1. Nonnegative orthant:

Let E = Rn and E = (Rn)∗ = Rn. We consider the cone K = Rn+. It can
be easily seen that K∗ = Rn+. We know that F (x) = −∑n

i=1 log(xi) is an
n-self-concordant barrier for K and it is clear that F is also n-logarithmically
homogeneous. If we compute the conjugate of F , we get F∗(s) = F (s)− n.

2. Second-order cone:

Let E = Rn+1 and E = (Rn+1)∗ = Rn+1. We consider the second-order
cone (Lorentz cone) K = Ln. It turns out that K∗ = K. We have seen
that F (x) = − log(t2 − ||x||22) is a 2-self-concordant barrier for K. We can
compute F∗(s) = F (s) + 2 log(2)− 2.

3. Cone of positive semidefinite matrices:

Let E = Sn the set of symmetric n × n matrices and E = (Sn)∗ = Sn. We
consider the cone K = Sn+ = {X ∈ S : X � 0}. It turns out K∗ = K. As we
have seen earlier, F (X) = − log(det(X)) is an n-self-concordant barrier for
K. One can also compute F∗(S) = F (S)− n.

3Note that this definition is slightly different from the standard definition of conjugate func-
tions in convex analysis, where the conjugate is defined as maxx∈intK{sT x − F (x)} (see e.g.
[56]).
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The details can be found e.g. in [53].

Let x ∈ intK. Then we have the following identities linking F and F∗, that
can be found for example in [53, (2.7)-(2.12)]:

−∇F (x) ∈ intK∗ = domF∗, −∇F∗(x) ∈ intK = domF, (2.44)

F∗(−∇F (x)) = −ν − F (x), (2.45)

∇F∗(−∇F (x)) = −x, ∇F (−∇F∗(s)) = −s, (2.46)

∇2F∗(−∇F (x)) = ∇2F (x)
−1
, ∇2F (−∇F∗(s)) = ∇2F∗(s)

−1
. (2.47)

2.5.2 Conic optimization over symmetric cones

In Section 2.4 we have presented the basic path-following methods for convex
optimization problems, assuming that a ν-self-concordant barrier for the feasible
set C is available. We have seen that the iterates follow the central path defined
by the centering problem

min t·cTx+ F (x)

Ax = b.
(2.48)

In the conic setting C is replaced by a proper cone K and F is additionally assumed
to be logarithmically homogeneous. As in the non-conic case (Section 2.4) the
optimal solution for (2.48) is given by the optimality conditions (2.33). If we

define for t > 0 the new point y(t) = λ(t)
t , then the optimality conditions (2.33)

can be decomposed into: x(t) is optimal for (2.48) if and only if ∃ (y(t), s(t)) such
that s(t) ∈ intK∗ and

Ax(t) = b,

s(t) +AT y(t) = c,

∇F (x(t)) + ts(t) = 0.

(2.49)

Similarly, we can look at the dual centering problem

max t · bT y−F∗(s)

c−AT y = s,
(2.50)

where F∗ is the conjugate of F . As it turns out, (y(t), s(t)) with s(t) ∈ intK∗ is
optimal for (2.50) if and only if ∃ x(t) ∈ intK∗ such that

Ax(t) = b,

s(t) +AT y(t) = c,

∇F∗(s(t)) + tx(t) = 0.

(2.51)

In view of (2.46) the two systems (2.49) and (2.51) are equivalent.
Unfortunately, the situation changes when we want to trace the primal-dual

central path. Assume we have a primal-dual strictly feasible point that is close to
a point on the primal-dual central path, that is defined by (2.49) or (2.51). If we
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update the duality measure from t to some t+ > t, then we have two possibilities
of defining the Newton direction towards the new target point on the central path,
one using the primal barrier F , another one using F∗. It turns out that in general
the directions obtained by the two approaches are not the same (for a more detailed
discussion we refer to [42, Section 3.2]). If we want the primal-dual path-following
directions to be completely symmetric in terms of F and F∗, we need to introduce
the concept of symmetric cones.

Definition 2.5.10. A proper cone K is called symmetric if it is

1. self-dual4: K = K∗,

2. homogeneous (for any x1, x2 ∈ K there exists a linear operator A with AK =
K such that Ax1 = x2).

In [28] Güler summarizes the classification of symmetric cones. Every symmet-
ric cone can be uniquely decomposed into a direct product of irreducible symmetric
cones, of which only 5 exist. As it turns out, every symmetric cone admits a so-
called self-scaled barrier.5

Definition 2.5.11. A ν-self-concordant barrier F for K ⊆ E is called self-scaled
if for any x ∈ intK and y ∈ intK we have

∇2F (y)x ∈ intK∗

and

F∗(∇2F (y)x) = F (x) − 2F (y)− ν.

An important consequence of the above definition is the existence of a so-called
scaling point.

Theorem 2.5.12. Let F be a self-scaled barrier for K, x ∈ intK and s ∈ intK∗.
Then there exists a unique scaling point w ∈ intK such that

∇2F (w)x = s.

Proof. [53, Theorem 3.2].

Among the 5 classes of irreducible symmetric cones, the following three are
by far the most important ones, since highly efficient implementations of interior-
point methods over these cones exist.

1. K = Rn+, the nonnegative orthant with F (x) = −∑n
i=1 log(xi),

2. K = Ln ⊂ Rn+1
+ , the second-order cone with F (x) = − log(t2 − ||x||22),

4Some authors use the similar notion where self-duality is defined using a more general inner
product 〈·, ·〉S with respect to some positive definite matrix S. If nothing else is specified we
speak of self-duality using the Euclidean inner product.

5In fact the concept of symmetric cones was known since the 1960’s. In [53] Nesterov and
Todd developed primal-dual methods for conic problems that admit self-scaled barriers. Güler
later established the equivalence between the two concepts.
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3. K = Sn+ ⊂ Sn, the cone of positive semidefinite matrices with F (X) =
− log(det(X)).

Nesterov and Todd ([53, 54]) have developed a framework of symmetric primal-
dual interior-point methods for conic problems with symmetric cones (and thus
self-scaled barriers). These methods actively make use of the existence of scaling
points in order to define the symmetric primal-dual directions.

There are several advantages of symmetric primal-dual methods over primal-
only (or dual-only) methods. For one, they nicely generalize the practically very
efficient primal-dual methods for LP ([67, 41, 58]) to the convex conic case. Fur-
ther, the variation of the value and the Hessian of F can be bounded in a larger
neighborhood around a given point x ∈ intK (compare [53, Theorem 4.1 and 4.2]
to Theorem 2.2.10 and Theorem 2.2.16) which allows for potentially larger steps.
For example Theorem 2.2.10 bounds the Hessian around some x in the Dikin el-
lipsoid with radius r < 1, i.e. for points y such that ||y − x||x = r < 1. On the
other hand [53, Theorem 4.1] provides a similar bound around x, but for points in
a larger neighborhood which is in fact the cone itself (for any x ∈ intK). This can
be seen by the fact that the bound [53, Theorem 4.1] is given for points y = x−αp
where p ∈ E is any direction and σx(p) is a distance measure to the boundary of
the cone (see [53, Section 4]). Moreover, σx(p) is defined such that y from above
can be any point in the interior of K. In a similar fashion, primal-dual methods
allow for adaptive updates of the duality measure t (see [40] and [37]). Primal-dual
methods for conic problems over symmetric cones are successfully implemented in
SeDuMi ([61]) and SDPT3 ([62]), both covering linear programming, second-order
cone programming and semidefinite programming.

However, we also want to mention here that the algorithmic superiority of
primal-dual methods over primal-only (or dual-only) methods has not been proven
so far. Above we have mentioned some arguments that speak in favor of the conic
primal-dual setting, but we also have to admit that they are mainly of conceptual
or cosmetic nature. There is no proof that the worst-case complexity of a primal-
dual algorithm is better than the one for primal-only algorithms (the best-known
complexity so far is in both cases O(

√
ν log(1/ǫ))).

2.5.3 Conic optimization over nonsymmetric cones

In this section we consider general conic problems (P̄ ) and (D̄) over proper cones.
We do not assume the cones to be symmetric. Although, there are not too many
results on general conic problems, we can mention here some recent progression by
Nesterov ([49, 48, 51]). For general conic problems there are mainly two drawbacks
as compared to the symmetric case:

1. The conjugate barrier is typically not known. It is given by Definition 2.5.7,
which involves the solution of another optimization problems. In general it
is not possible to find analytically a solution to it. However, it might be
possible to evaluate the conjugate barrier at a given point approximately. In
the symmetric case, on the other hand, the conjugates are explicitly known
(in fact they are up to a constant equal to the primal barrier).
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2. We do not have access to a scaling point (Theorem 2.5.12). This point plays
a crucial role in defining primal-dual symmetric search directions. In the
nonsymmetric case we do not know how to compute such a scaling point for
a primal dual pair (x, s), in fact we do not even know if it exists.

A special conic format

We are coming back now to the primal-dual conic pair ((P̄ ), (D̄)) defined in the
previous subsection. It is characterized by a proper cone K and its dual cone K∗,
a matrix A with full row rank a primal objective vector c and a dual objective
vector b.

The important assumption here is that K should be proper, that means in
particular its interior should not be empty and it should be pointed. Otherwise it
is impossible to find a barrier for K.

However, in some situations we might arrive at a primal conic format where
some of the variables x are not restricted to a pointed cone, or some of the dual
variables s are fixed to 0 (which prevents s be an interior point of the dual cone).
Let us therefore adapt our definition of the conic pair, that allows linear equality
constraints on the dual side (or equivalently primal free variables). Of course,
in the algorithms we will have to treat these constraints differently because they
correspond to cones that are not proper. We denote by the primal and dual cone

K̄ = K × Rnf ,

K̄∗ = K∗ × {0}

where K denotes the ”proper” part of the cone K̄ and nf is the number of primal
free variables. Moreover, we denote by x those components of the primal variables
that lie in K and by xf those components that are free. On the dual side we denote
by s those components of the dual variables that lie in K∗ and by sf those that
are restricted to 0. Let the constraint matrix and the primal objective vector be
partitioned accordingly, i.e. Ā = [A,Af ] and c̄ = [c, cf ].

The primal-dual conic pair becomes then:

(P ) min
x,xf

cTx+ cTf xf

Ax+Afxf = b,

x ∈ K,
xf free

(D) max
y,s

bT y

s+AT y = c

ATf y = cf

s ∈ K∗

It is easy to see that weak duality is preserved. Indeed

cTx+ cTf xf = (s+AT y)Tx+ (ATf y)
Txf

= yT (Ax +ATf xf ) + sTx
︸︷︷︸

≥0

≥ bT y.
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The assumptions from the standard conic formulation have to be modified a
little bit. Let us summarize them here.

Assumption 3 [Conic optimization]

1. K and K∗ are proper cones and dual to each other.

2. [A,Af ] has full row rank.

3. Af has full column rank.

4. The dual feasible set {y : c−ATy ∈ K∗, ATf y = cf} does not contain
a straight line.

The first assumption is necessary to ensure weak and strong duality. The sec-
ond assumption is needed to ensure that the primal and/or dual Newton directions
are defined. The third does not restrict generality as we have argued in Section 2.3.
If the dual problem is feasible although Af has columns that are linearly depen-
dent, then some of the constraints on the dual side (or variables on the primal side)
are redundant and can be eliminated. The last assumption is needed to guarantee
that the dual barrier in terms of y is nondegenerate (and therefore that the dual
Newton directions are defined).

Nonsymmetric primal-dual predictor-corrector method

The method we are going to present now is essentially the dual variant of the one
proposed by Nesterov in [49]. Additionally, it is adapted to handle linear equality
constraints on the dual side, which correspond to free variables on the primal side.
Its main feature is that it only needs access to the dual barrier (and its derivatives
of course), but not its conjugate. However, it still is a primal-dual method in the
sense that we compute primal-dual strictly feasible points close to the primal-dual
central path defined by the barrier for the dual cone and its conjugate (that we do
not need to know). The results and proofs in this section are largely inspired by
[49]. However, for sake of transparency we have decided to include them explicitly.

Each iteration of the method consists of 4 steps:

1. dual centering,

2. primal-dual lifting,

3. primal-dual affine-scaling,

4. updating of duality measure t.

We only assume knowledge of the barrier F∗ for the dual cone K∗ ⊂ E∗. As F∗
will be our barrier of reference, we have to adapt the definition of the local norms
a bit. Let s ∈ intK∗. For h ∈ E we denote its local norm with respect to the dual
barrier F∗ at s by

||h||s := 〈∇2F∗(s)
−1h, h〉1/2.
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Note that the local norm of the point h in the primal space is defined using the
inverse of the Hessian of F∗, since F∗ is defined in the dual space E∗ (compare
Definition 2.2.7). Analogously, we define the local norm of g ∈ E∗ by

||g||∗s := 〈g,∇2F∗(s)g〉1/2.

Dual centering

Consider for t > 0 the dual centering problem

max t bT y − F∗(s) = ft(y, s)

s.t. s+AT y = c,

ATf y = cf ,

(Dt)

with the variables y ∈ Rm and s ∈ Rn. We denote the unique optimal solution
for (Dt) by (y(t), s(t)). Based on the results of Section 2.3 we want to solve (Dt)
using the damped Newton method (Algorithm 2).

The corresponding Newton system is

[
∇2ft(y, s) ÃT

Ã 0

]

·





∆y
∆s
λ



 =

[
−∇ft(y, s)

0

]

where

Ã =

[
AT I
ATf 0

]

λ =

[
λ1

λ2

]

,

∇ft(y, s) =

[
t b

−∇F∗(s)

]

∇2ft(y, s) =

[
0 0
0 −∇2F∗(s)

]

so that the Newton system becomes







0 0 A Af
0 −∇2F∗(s) I 0
AT I 0 0
ATf 0 0 0






·







∆y
∆s
λ1

λ2







=







−t · b
∇F∗(s)

0
0






. (2.52)

The dual Newton steps will be

ŷ = y +
1

1 + δs
∆y,

ŝ = s+
1

1 + δs
∆s,

where δs = ||∆s||∗s =
(
−∆sT∇F∗(s)

)1/2
denotes the Newton decrement. In view

of Theorem 2.2.24 we can solve (Dt) in no more thanO(ft(y(t), s(t))−ft(y(0), s(0)))
iterations, where (y(0), s(0)) is the starting point of the process. Let us show that
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we can bound this quantity for a particular choice of t. Let z = (x, xf , y, s) be any
primal-dual strictly feasible point. We introduce the so-called functional proximity
measure as a way to define proximity to the primal-dual central path:

Ω(z) = F (x) + F∗(s) + ν log

( 〈s, x〉
ν

)

+ ν,

where F is the conjugate to F∗. It is clear why Ω is a proximity measure: for a
primal-dual point (x(t), xf (t), y(t), s(t)) on the central path, we have the following
two relations (see [54, Theorem 4.1])

〈s(t), x(t)〉 =
ν

t
,

F (x(t)) + F∗(s(t)) = −ν + ν log(t).

Using that, it follows immediately that Ω(z) = 0 if z is on the primal-dual central
path. Conversely, if we define for z the duality measure

t = t(z) =
ν

〈s, x〉 ,

then we have
0 ≤ ft(y(t), s(t)) − ft(y, s) ≤ Ω(z). (2.53)

In ([49, Lemma 2]) Nesterov has shown the analogous inequality for the primal
centering problem. That means if Ω(z) = 0, then for the particular choice of t
shown above the optimality gap to the point on the dual central path is equal to
0, i.e. (y, s) is on the dual central path.

We conclude that, given a primal-dual strictly feasible point z(0), we can solve
(Dt) in no more than O(Ω(z(0))) iterations, provided that we take as duality
measure t0 = ν

〈s(0),x(0)〉 .

The output of Algorithm 2 is a point (y, s) close to the dual central path with
target value t, and it satisfies the centering condition

δs ≤ β < 1,

where β > 0 is the desired accuracy. Note that we can solve (Dt) by removing
the dependence on s. This elimination would result in a Newton system of smaller
size only in terms of ∆y and λ2. However, as we will see in the next step, we need
to compute at least once the full Newton direction (∆y,∆s) with both multipliers
(λ1, λ2) at the end of the centering process.

Primal-dual lifting

Given a point (y, s) close to the dual central path, the dual Newton step (∆y,∆s)
and primal multipliers (λ1, λ2), we construct the following primal-dual point

x+ = −1

t
λ1

x+
f = −1

t
λ2

y+ = y −∆y

s+ = s−∆s.

(2.54)



2.5. CONIC OPTIMIZATION 69

We want to emphasize here that the new dual points (y+, s+) are obtained by
going a step in the opposite Newton direction. This is certainly counter-intuitive.
However, as we will see in the next theorem, despite doing this negative Newton
step we remain feasible with respect to the dual variables.

Theorem 2.5.13. The point z+ = (x+, x+
f , y

+, s+) is strictly feasible and well-
centered, i.e. we can bound the functional proximity measure in the following way

Ω(z+) ≤ 2ω∗(β) + β2. (2.55)

Furthermore, w =
√
t s is a scaling point for the primal-dual pair (x+, s+), i.e.

x+ = ∇2F∗(w) s+. (2.56)

Finally, we have the following scaling relation

||∇F∗(s
+)− 1

t
∇2F∗(s)∇F (x+)||s ≤

2β2

1− β . (2.57)

The duality measure has the following bounds

t(z+) ≥ t0
(1 + β/

√
ν)2
≥ t0 · exp

(

− 2β√
ν

)

, (2.58)

t(z+) ≤ t0
(1− β/√ν)2 ≤ t0 · exp

(
2β√
ν − β

)

. (2.59)

Proof. We have

||s+ − s||∗s = || −∆s||∗s ≤ β < 1.

Since s ∈ intK∗ we have in accordance with Lemma 2.2.9 that s+ ∈ intK∗, i.e.
s+ is strictly feasible. Moreover, it is clear from (2.52) and (2.54) that the lifted
dual point (y+, s+) is feasible with respect to the linear equality constraints, i.e.
it holds s+ +AT y+ = c and ATf y

+ = cf .
From the second equation of (2.52) it follows

|| − λ1 +∇F∗(s)||s = || − ∇2F∗(s)∆s||s
= 〈∇2F∗(s)

−1∇2F∗(s)∆s,∇2F∗(s)∆s〉1/2

= 〈∆s,∇2F∗(s)∆s〉1/2
= ||∆s||∗s ≤ β < 1.

On the other hand, if we denote h = −∇F∗(s) we have h ∈ intK (see (2.44)) and
in view of 2.47) the identity (∇2F∗(s))−1 = ∇2F (h). That means we can write

|| − λ1 +∇F∗(s)||s = || − λ1 − h||s
= 〈(∇2F∗(s))

−1(−λ1 − h), (−λ1 − h)〉1/2

= 〈(∇2F (h)(−λ1 − h), (−λ1 − h)〉1/2
= || − λ1 − h||∇2F (h).
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Since F is self-concordant on intK, we conclude in combination with the previous
result and in view of Lemma 2.2.9 that −λ1 ∈ intK. Therefore, according to
the primal-dual lifting (2.54) we get x+ = − 1

tλ1 ∈ intK. Moreover, according to
(2.54) we have

Ax+ +Afx
+
f = −1

t
[Aλ1 +Afλ2
︸ ︷︷ ︸

(2.52)
= −t b

] = b,

which means that (x+, x+
f ) is also feasible with respect to the primal equality

constraints.
To prove (2.55) let us consider now the primal-dual proximity measure at

(x+, s+):

Ω(z+) = F (x+) + F∗(s
+) + ν + ν log

( 〈s+, x+〉
ν

)

. (2.60)

We have that

F (x+) = F

(

−1

t
λ1

)
(2.38),(2.52)

= F
(
−∇F∗(s)−∇2F∗(s)∆s

)
+ ν log(t). (2.61)

Let us try to bound the barrier term of the right-hand side in (2.61). Its argument
−∇F∗(s)−∇2F∗(s)∆s can be related to −∇F∗(s). We find

|| − ∇F∗(s)−∇2F∗(s)∆s− (−∇F∗(s))||s = || − ∇2F∗(s)∆s||s
= ||∆s||∗s ≤ β < 1,

so we can conclude (again in view of Lemma 2.2.9) that

(−∇F∗(s)−∇2F∗(s)∆s) ∈ D(−∇F∗(s), β), β < 1

where D(z, β) is the Dikin ellipsoid with radius β centered at z. That means, in
accordance with (2.14), we can bound the value of the primal barrier at the point
(−∇F∗(s)−∇2F∗(s)∆s):

F (−∇F∗(s)−∇2F∗(s)∆s) ≤F (−∇F∗(s))

+ 〈∇F (−∇F∗(s)),−∇2F∗(s)∆s〉+ ω∗(β)

(2.45)

≤ − ν − F∗(s) + 〈s,∇2F∗(s)∆s〉+ ω∗(β)

(2.41)
= − ν − F∗(s)− 〈∆s,∇F∗(s)〉+ ω∗(β). (2.62)

If we combine the bound (2.62) with (2.61) and replace it in (2.60), we get

Ω(z+) = F (x+) + F∗(s
+) + ν + ν · log

( 〈s+, x+〉
ν

)

(2.61)
= F (−∇F∗(s)−∇2F∗(s) ·∆s) + F∗(s

+) + ν + ν · log

(
t〈s+, x+〉

ν

)

(2.62)

≤ F∗(s
+)− F∗(s)− 〈∆s,∇F∗(s)〉+ ω∗(β) + ν log

(
t〈s+, x+〉

ν

)

.
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According to (2.14) we can bound the first three terms by

F∗(s
+)− F∗(s)− 〈∆s,∇F∗(s)〉 ≤ ω∗(||∆s||s)− 2〈∆s,∇F∗(s)〉

≤ ω∗(β)− 2〈∆s,∇F∗(s)〉,

which gives the following bound on Ω(z+):

Ω(z+) ≤ 2ω∗(β)− 2〈∆s,∇F∗(s)〉+ ν log

(
t〈s+, x+〉

ν

)

. (2.63)

On the other hand, in view of (2.41) and the primal-dual lifting (2.54) we have

−∇F∗(s)−∇2F∗(s)∆s = ∇2F∗(s) (s−∆s) = ∇2F∗(s) s
+. (2.64)

It follows that we can write, using (2.54), (2.52) and (2.42)

t 〈s+, x+〉 = −〈s+, λ1〉
(2.52)
= 〈s+,−∇F∗(s)−∇2F∗(s)∆s〉

= 〈s+,∇F 2
∗ (s)s+〉

= ||s+||∗s
2

= ||s||∗s2 − 2〈s,∇F 2
∗ (s)∆s〉+ ||∆s||∗s2

(2.42)

≤ ν + 2〈∆s,∇F∗(s)〉+ β2

= ν − 2δ2s + β2. (2.65)

The last equation follows directly from the definition of the Newton decrement
δs = −〈∆s,∇F∗(s)〉1/2. If we replace the bound (2.65) in (2.63), we get

Ω(z+) ≤ 2ω∗(β) + 2δ2s + ν log

(

1 +
−2δ2s + β2

ν

)

.

Looking at the argument of the log-term, we see that
−2δ2s+β2

ν > −1, since δs ≤ β
(by assumption) and δs ≤

√
ν (since F∗ is ν-self-concordant). Using the fact that

log(1 + τ) ≤ τ as long as τ > −1, we conclude

log

(

1 +
−2δ2s + β2

ν

)

≤ −2δ2s + β2

ν

and combining this with the last bound for Ω(z+) we obtain

Ω(z+) ≤ 2ω∗(β) + β2,

which is exactly the desired inequality (2.55).
Let us prove the scaling relation (2.56). For w =

√
t s we have the following

chain of identities

∇2F∗(w) s+
(2.40)
=

1

t
∇2F∗(s) s

+ (2.64)
=

1

t

(
−∇F∗(s)−∇2F∗(s)∆s

) (2.52)
= −1

t
λ1

(2.54)
= x+.
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To prove (2.57) let us denote rp := ∇F∗(s+)−∇F∗(s) +∇2F∗(s)∆s and rd :=
∇F (−λ1) + s+ ∆s. Using Lemma 2.2.11, we get

||rp||s = ||∇F∗(s
+)−∇F∗(s) +∇2F∗(s)∆s||s ≤

β2

1− β

because ||s+ − s||∗s = ||∆s||∗s = δs ≤ β by assumption. On the other hand

rd = ∇F (−λ1) + s+ ∆s

(2.46)
= ∇F (−λ1)−∇F (−∇F∗(s)) + ∆s

(2.47)
= ∇F (−λ1)−∇F (−∇F∗(s)) +∇2F (−∇F∗(s)) · ∇2F∗(s) ·∆s

(2.52)
= ∇F

(
−∇2F∗(s)∆s−∇F∗(s)

)
−∇F (−∇F∗(s))

−∇2F (−∇F∗(s)) ·
(
−∇2F∗(s)

)
·∆s.

But since ||−∇2F∗(s)∆s||s = ||∆s||∗s = δs ≤ β, we can apply again Lemma 2.2.11
and obtain

||rd||∗s ≤
β2

1− β .

Using the definition of rp and rd, we conclude

∇F∗(s
+)− 1

t0
∇2F∗(s)∇F (x+) =∇F∗(s

+)−∇2F∗(s)∇F (−λ1)

=[rp +∇F∗(s)−∇2F∗(s)∆s]−∇2F∗(s) [rd − s−∆s]

=[rp +∇F∗(s)]−∇2F∗(s) [rd − s]
=[rp +∇F∗(s)]−∇2F∗(s) rd + ∇2F∗(s) s

︸ ︷︷ ︸

(2.41)
= −∇F∗(s)

=rp −∇2F∗(s) rd.

It remains to note that

||rp −∇2F∗(s) rd||s ≤ ||rp||s + ||∇2F∗(s) rd||s = ||rp||s + ||rd||∗s ≤ 2
β2

1− β .

Let us prove now the two bounds on the duality measure t. We have

〈s+, x+〉 (2.56)
=

〈
1

t
∇2F∗(s)s

+, s+
〉

=
1

t

(
||s+||∗s

)2 ≤ 1

t




||s||∗s
︸︷︷︸

=
√
ν

+ ||∆s||∗s
︸ ︷︷ ︸

≤β






2

≤ 1

t

(√
ν + β

)2
, (2.66)
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which implies

t(z+) =
ν

〈s+, x+〉 ≥ t
ν

(
√
ν + β)

2 = t
1

(

1 + β√
ν

)2 ≥ t exp

(

− 2β√
ν

)

,

using the fact that exp(τ) ≥ τ + 1 for all τ . This proves (2.58). The analogous
reasoning gives

〈s+, x+〉 = 1

t

(
||s+||∗s

)2
=

1

t
(||s−∆s||∗s)2

=
1

t




(||s||∗s)2 − 2 sT∇2F (s)∆s

︸ ︷︷ ︸

≤||s||∗s ||∆s||∗s

+
(
||s+||∗s

)2






≥ 1

t

(

(||s||∗s)2 − 2||s||∗s · ||∆s||∗s + (||∆s||∗s)2
)

=
1

t




||s||∗s
︸︷︷︸

=
√
ν

− ||∆s||∗s
︸ ︷︷ ︸

≤β






2

≥ 1

t

(√
ν − β

)2
,

thus

t(z+) ≤ t · 1
(

1− β√
ν

)2 ≤ t · exp

(
2β√
ν − β

)

,

because
1

(

1− β√
ν

)2 =

( √
ν√

ν − β

)2

=

(

1 +
β√
ν − β

)2

.

This proves (2.59).

Primal-dual affine-scaling

Given a primal-dual well-centered point (x+, x+
f , y

+, s+) with the corresponding
scaling point w we can define the so-called affine-scaling direction. For points
exactly on the primal-dual central path, this direction is tangent to the central
path (for a discussion, see e.g. [54, Section 5.1]). The affine-scaling direction is
given by the solution of the following linear system.

∆x+∇2F∗(w)∆s = x+

A∆x+Af µ = 0

AT ∆y + ∆s = 0

ATf ∆y = 0.

(2.67)

Note that under Assumption 2.5.3 the affine-scaling direction (2.67) is unique.
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Theorem 2.5.14. The affine-scaling direction (2.67) has the following properties:

〈∆s,∆x〉 = 0, (2.68)

〈s+,∆x〉+ 〈∆s, x+〉 = 〈s+, x+〉, (2.69)

〈c, x+ −∆x〉+ 〈cf , xf − µ〉 − 〈b, y −∆y〉 = 0, (2.70)

||∆x||2w + (||∆s||∗w)
2

= 〈s+, x+〉, (2.71)

|ν + 〈∇F (x+),∆x〉+ 〈∆s,∇F∗(s
+)〉| ≤ 1

2
〈s+, x+〉1/2 ||∇F∗(s

+)−∇2F∗(w)∇F (x+)||w
(2.72)

≤ 〈t0s+, x+〉1/2 · β2

1− β (2.73)

≤ β2

1− β · (β +
√
ν). (2.74)

Proof. In view of the last three equations of (2.67) we get (2.68)

〈∆s,∆x〉 = −∆xTAT∆y = −(A∆x)T∆y = (Afµ)T∆y = µTATf ∆y = 0.

Further, we get from the first equation of (2.67)

〈s+,∆x〉+ 〈∆s, x+〉 = 〈s+, x+ −∇2F∗(w)∆s〉 + 〈∆s, x+〉
= 〈s+, x+〉 − 〈s+,∇2F∗(w)∆s〉 + 〈∆s, x+〉
= 〈s+, x+〉 − 〈∆s,∇2F∗(w)s+〉+ 〈∆s, x+〉.

According to the scaling relation (2.56) we have ∇2F∗(w)s+ = x+, which proves
(2.69).

In order to prove (2.70), we use the fact that view of Theorem 2.5.13 the
primal-dual point (x+, x+

f , y
+, s+) satisfied the primal and dual linear equality

constraints, i.e.

Ax+ +Afx
+
f = b,

s+ +AT y+ = c,

ATf y
+ = cf .
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Replacing these expressions for b, c and cf in the left-hand side of (2.70) yields

〈c, x+ −∆x〉+ 〈cf , xf − µ〉 − 〈b, y+ −∆y〉 =〈s+ +AT y+, x+ −∆x〉+ 〈ATf y+, xf − µ〉
− 〈Ax+ +Afx

+
f , y

+ −∆y〉
=〈s+, x+ −∆x〉 − 〈AT y+,∆x〉 − 〈ATf y+, µ〉

+ 〈Ax+ +Afx
+
f ,∆y〉

=〈s+, x+ −∆x〉 − 〈y+, A∆x+Afµ
︸ ︷︷ ︸

(2.67)
= 0

〉

+ 〈Ax+ +Afx
+
f ,∆y〉

=〈s+, x+ −∆x〉+ 〈Ax+ +Afx
+
f ,∆y〉

=〈s+, x+〉 − 〈s+,∆x〉 − 〈∆s, x+〉+ 〈∆s, x+〉
+ 〈Ax+,∆y〉+ 〈Afx+

f ,∆y〉
=〈s+, x+〉 − 〈s+,∆x〉 − 〈∆s, x+〉

+ 〈∆s+AT∆y
︸ ︷︷ ︸

(2.67)
= 0

, x+〉+ 〈ATf ∆y
︸ ︷︷ ︸

(2.67)
= 0

, x+
f 〉

=〈s+, x+〉 − 〈s+,∆x〉 − 〈∆s, x+〉.

The last term is equal to 0 in according to (2.69). This proves (2.70).

Moreover, when we multiply the first line of (2.67) from the left by ∆sT , we
get

〈∆s,∇2F∗(w)∆s〉 + 〈∆s,∆x〉
︸ ︷︷ ︸

(2.68)
= 0

= 〈∆s, x+〉,

which means (||∆s||∗w)2 = 〈∆s, x+〉. If we multiply the first line of (2.67) from the
left by (∇2F (w)−1∆x)T and use again the scaling relation ∇2F∗(w)s+ = x+, we
get

〈∆s,∆x〉
︸ ︷︷ ︸

=0

+〈∆xT∇2F∗(w)−1,∆x〉 = 〈s+,∆x〉,

which means ||∆x||2w = 〈s+,∆x〉. Combining these two reformulations, we obtain

||∆x||2w + (||∆s||∗w)
2

= 〈s+,∆x〉+ 〈∆s, x+〉 (2.69)
= 〈s+, x+〉,

which is exactly (2.71).

Finally, if we multiply the first line of (2.67) by ∇F (x+)T , we get

〈∇F (x+),∆x +∇2F∗(w)∆s〉 = 〈∇F (x+), x+〉 (2.43)
= −ν.

On the other hand, if we multiply the first line of (2.67) by
(
[∇2F∗(w)]−1∇F∗(s+)

)T
,
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we get

〈[∇2F∗(w)]−1∇F∗(s
+),∆x+∇2F∗(w)∆s〉 = 〈[∇2F∗(w)]−1∇F∗(s

+), x+〉
= 〈∇2F∗(w)]−1x+

︸ ︷︷ ︸

(2.56)
= s+

,∇F∗(s
+)〉

= 〈s+,∇F∗(s
+)〉

(2.43)
= −ν.

If we add these two equalities, we get

−2ν = 〈∇F (x+) + [∇2F∗(w)]−1∇F∗(s
+),∇2F∗(w)∆s + ∆x〉

= 〈∇F (x+)− [∇2F∗(w)]−1∇F∗(s
+),∇2F∗(w)∆s −∆x〉+ 2〈∇F (x+),∆x〉 + 2〈∆s,∇F∗(s

+)〉,

which is the same as

2〈∇F (x+),∆x〉+2〈∆s,∇F∗(s
+)〉+2ν = 〈∇F (x+)−[∇2F∗(w)]−1∇F∗(s

+),∇2F∗(w)∆s−∆x〉.

Using the Hölder inequality we have

|ν+〈∇F (x+),∆x〉+〈∆s,∇F∗(s
+)〉| ≤ 1

2
||∇F (x+)−[∇2F∗(w)]−1∇F∗(s

+)||∗w·||∇2F∗(w)∆s−∆x||w .

Because of orthogonality of ∆s and ∆x, we get

(
||∇2F∗(w)∆s −∆x||w

)2
= (||∆s||∗w)2 + ||∆x||2w .

The last term is equal to 〈s+, x+〉 in view of (2.71). It remains to note that

||∇F (x+)− [∇2F∗(w)]−1∇F∗(s
+)||∗w = ||∇F∗(s

+)−∇2F∗(w)∇F (x+)||w ,

which proves (2.72).
According to (2.57) we have

||∇F∗(s
+)−∇2F∗(w)∇F (x+)||s ≤

2β2

1− β .

Using the scaling relation w =
√
t s and the identity (2.40) we conclude (note that

the primal norm is defined using the inverse of ∇2F )

||∇F∗(s
+)−∇2F∗(w)∇F (x+)||w ≤

√
t

2β2

1− β .

In combination with (2.72) we get the desired inequality (2.73).
The last inequality (2.74) follows directly from (2.66).

The above theorem justifies why the primal-dual affine-scaling direction is po-
tentially a good direction. In fact, according to (2.70) a full affine-scaling step
reduces the duality gap to 0 (this is always the case for affine-scaling directions;
however, a full step is never feasible).
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Let us denote by z+ = (x+, y+, s+) the primal-dual strictly feasible point which
is the result of the primal-dual lifting (2.54), let ∆z(AS) = (∆x, µ,∆y,∆s) be the
primal-dual affine-scaling direction from (2.67). We define the new primal-dual
point z̃ as

z̃ = z+ − α∆z(AS). (2.75)

Note that we are taking a negative step since (2.67) defines in fact the direction
towards the analytic center. We are interested in the opposite direction towards
the optimal solution.

The step size α has to be chosen to ensure that the new iterate is strictly
feasible. The following theorem justifies a good choice for α which guarantees the
inclusions x̃ ∈ intK and s̃ ∈ intK∗. On the other hand, using the proposed step
size we can bound the proximity measure Ω at the new point z̃, i.e. we make sure
not to drift too far from the primal-dual central path.

Theorem 2.5.15. Denote γ = β+
√
ν

1−β > 1. For α ∈
[

0, 1
γ

)

we have

Ω(z̃) ≤ 2ω∗(β) + ω∗(αγ) + β2(1 + αγ).

Proof. Using the definition of the proximity measure Ω we get

Ω(z̃)− Ω(z+) =F (x̃) + F∗(s̃) + ν log

( 〈s̃, x̃〉
ν

)

+ ν

− F (x+)− F∗(s
+)− ν log

( 〈s+, x+〉
ν

)

− ν

=F (x̃) + F∗(s̃)− F (x+)− F∗(s
+) + ν log

( 〈s̃, x̃〉
〈s+, x+〉

)

.

According to the definition of s̃ and x̃ we have

〈s̃, x̃〉
〈s+, x+〉 =

〈s+ − α∆s, x+ − α∆x〉
〈s+, x+〉 = 1− α 〈s

+,∆x〉+ 〈∆s, x+〉
〈s+, x+〉

︸ ︷︷ ︸

(2.69)
= 1

+α2 〈∆s,∆x〉
〈s+, x+〉
︸ ︷︷ ︸

(2.68)
= 0

= 1− α.

That means we can write

Ω(z̃)− Ω(z+) = F (x̃) + F∗(s̃)− F (x+)− F∗(s
+) + ν log (1− α) .

In a neighborhood around x+ and around s+ we can bound the function value of
F and F∗ respectively (see (2.14)). We get

Ω(z̃)− Ω(z+) =F (x̃)− F (x+) + F∗(s̃)− F∗(s
+) + ν log (1− α)

≤− α〈∇F (x+),∆x〉+ ω∗(α||∆x||x+)

− α〈∇F∗(s
+),∆s〉+ ω∗(α||∆s||∗s+) + ν log (1− α)

=− α[〈∇F (x+),∆x〉+ 〈∇F∗(s
+),∆s〉] + ν log (1− α)

+ ω∗(α||∆x||x+) + ω∗(α||∆s||∗s+),
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provided that α||∆x||x+ < 1 and α||∆s||∗s+ < 1.
From (2.74) it follows (using the definition of γ)

〈∇F (x+),∆x〉 + 〈∇F∗(s
+),∆s〉 ≥ − β2

1− β (β +
√
ν)− ν = −β2γ − ν.

Replacing this inequality in the previous bound on Ω(z̃)− Ω(z+) yields

Ω(z̃)− Ω(z+) ≤αβ2γ + να+ ν log (1− α)

+ ω∗(α||∆x||x+) + ω∗(α||∆s||∗s+).

Using the fact that α + log(1 − α) ≤ 0, for all α < 1, we can remove the second
and third term on the right-hand side and get the following simplified bound

Ω(z̃)− Ω(z+) ≤αβ2γ + ω∗(α||∆x||x+) + ω∗(α||∆s||∗s+).

Let us look at the last two terms. We denote r = [||∆x||2x+ + (||∆s||∗s+)2]1/2.

We define the function ψ(t) := ω∗(
√
t), which is convex because we have that

ψ′(t) = ω′(
√
t)

2
√
t

and

ψ′′(t) = ω′′(
√
t)

(
1

2
√
t

)2

− ω′(
√
t)

1

4t3/2

=
1

4t3/2

[√
t ω′′(

√
t)− ω′(

√
t)
]

=
1

4t3/2

[ √
t

(1−
√
t)2
−
√
t

1−
√
t

]

=
1

4t3/2
t

(1−
√
t)2

> 0.

Moreover, we have for any 0 ≤ t1, t2 with t1 + t2 < 1 that

ψ(t1) + ψ(t2) ≤ ψ(t1 + t2).

Indeed, we can assume without loss of generality that 0 ≤ t1 ≤ t2 ≤ t1 + t2 < 1. If
t2 = 0, then this implies that t1 = t1 + t2 = 0 and the above inequality is trivially
satisfied. Let therefore t2 > 0. Then we can write t1 as a convex combination of
0 and t1 + t2 > 0, i.e. t1 = λ 0 + (1 − λ) (t1 + t2). Thus, λ = t2

t1+t2
. Because of

convexity we get then

ψ(t1) ≤
t2

t1 + t2
ψ(0)
︸︷︷︸

=0

+

(

1− t2
t1 + t2

)

ψ(t1 + t2)

=
t1

t1 + t2
ψ(t1 + t2),

or equivalently, after multiplying both sides of the inequality with t1+t2
t2

= t1
t2

+1 >
0, we have (

1 +
t1
t2

)

ψ(t1) ≤
t1
t2
ψ(t1 + t2). (2.76)
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On the other hand we can write t2 as a convex combination of t1 and t1 + t2, i.e.
t2 = t1

t2
t1 + (1 − t1

t2
) (t1 + t2), where t1

t2
∈ [0, 1]. Because of convexity of ψ we get

ψ(t2) ≤
t1
t2
ψ(t1) +

(

1− t1
t2

)

ψ(t1 + t2)

=
t1
t2

[ψ(t1)− ψ(t1 + t2)]

︸ ︷︷ ︸

(2.76)

≤ −ψ(t1)

+ψ(t1 + t2)

≤ −ψ(t1) + ψ(t1 + t2).

That means we have for any t1 ≥ 0 and any t2 ≥ 0 such that t1 + t2 < 1 that
ψ(t1) + ψ(t2) ≤ ψ(t1 + t2).

It follows

ω∗(α||∆x||x+) + ω∗(α||∆s||∗s+) = ψ(α2||∆x||2x+) + ψ(α2(||∆s||∗s+)2)

≤ ψ(α2[||∆x||2x+ + (||∆s||∗s+)2])

= ψ(α2r2)

= ω∗(αr).

On the other hand, because ||s+ − s||s ≤ β < 1, we have according to Theo-
rem 2.2.10

∇2F∗(s
+) � 1

(1− β)2
∇2F∗(s),

and using the scaling relation w =
√
t s in combination with (2.40) yields

∇2F∗(s
+) � t

(1− β)2
∇2F∗(w). (2.77)

On the other hand we have

1

t2
∇2F (x+)

(2.40)
= ∇2F (tx+)

(2.54)
= ∇2F (−λ1).

In the proof of Theorem 2.5.13 we have seen that || − λ1 − (−∇F∗(s))||s ≤ β < 1.
Using again Theorem 2.2.10 we get

1

t2
∇2F (x+) � 1

(1− β)2
∇2F (−∇F∗(s))

(2.47)
=

1

(1− β)2
∇2F∗(s)

−1

(2.40)
=

1

t(1− β)2
∇2F∗(w)−1.

In other words, we have

∇2F (x+) � t

(1− β)2
∇2F∗(w)−1. (2.78)
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Let us find a bound on the quantity r. Using inequalities (2.77) and (2.78), we
get

r2 = ||∆x||2x+ + (||∆s||∗s+)2

= 〈∇2F (x+)∆x,∆x〉 + 〈∆s,∇2F∗(s
+)∆s〉

≤ t

(1− β)2
[〈∇2F∗(w)−1∆x,∆x〉 + 〈∆s,∇2F∗(w)∆s〉]

=
t

(1− β)2
· (||∆x||2w + (||∆s||∗w)2)

Finally, the right-hand side term can be bounded in the following way.

(||∆x||2w + (||∆s||∗w)2)
(2.71)
= 〈s+, x+〉

(2.66)

≤ 1

t
(
√
ν + β)2

That means we get the following bound on r:

r2 ≤ t

(1− β)2
· (||∆x||2w + (||∆s||∗w)2) ≤ (

√
ν + β)2

(1− β)2
= γ2.

Since both r and γ are positive, we conclude r ≤ γ. Using monotonicity of ω∗ we
get then

ω∗(α r) ≤ ω∗(αγ).

Coming back to the original quantity that we wanted to estimate, we get

Ω(z̃)− Ω(z+) ≤ αβ2γ + ω∗(α||∆x||x+) + ω∗(α||∆s||∗s+)

≤ αβ2γ + ω∗(α r)

≤ αβ2γ + ω∗(α γ).

To finish the proof it remains to note that according to Theorem 2.5.13 we
have

Ω(z+) = 2ω∗(β) + β2.

Update of duality measure t

Given a primal-dual strictly feasible point z+ and the affine-scaling direction
∆z(AS) that is given by 2.67, we go a damped step along this direction (see (2.75)).
In Theorem 2.5.15 we have proposed a suitable choice of the step size parameter
α that ensures proximity to the primal-dual central path. We will show now that
this step also provides a sufficient increase of the duality measure. Let us define
the new duality measure as

t(z̃) =
ν

〈s̃, x̃〉 .

Theorem 2.5.16. We have

t(z̃) ≥ t(z+) · exp

(

α− 2β√
ν

)

.
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Proof. We see that

t(z̃) = t(z+ − α∆z) =
ν

〈s+ − α∆s, x+ − α∆x〉
=

ν

〈s+, x+〉−α(〈s+,∆x〉+ 〈∆s, x+〉)
︸ ︷︷ ︸

(2.69)
= −α〈s+,x+〉

+α2 〈∆s,∆x〉
︸ ︷︷ ︸

(2.68)
= 0

=
1

1− α ·
ν

〈s+, x+〉 .

According to (2.66) we have t 〈s+, x+〉 ≤ (
√
ν + β)2 = ν(1 + β√

ν
)2. Using this

inequality, we get

t(z̃) ≥ 1

1− α
t

(1 + β√
ν
)2

≥ 1

1− α
︸ ︷︷ ︸

≥exp(α)

t exp

(

− 2β√
ν

)

≥ t exp

(

α− 2β√
ν

)

.

It is clear that if we want to make sure that there is an actual increase in the
duality measure t we need to take a step size α such that

α >
2β√
ν

=: τ.

On the other hand, Theorem 2.5.15 is only valid for step sizes such that

α <
1− β
β +
√
ν

=
1

γ
.

Let us check for which choice of β the interval
[

τ, 1
γ

]

has interior points. Or,

equivalently, we want to verify that

τ <
1

γ
.

This is true if and only if
√
ν(1 − β) > 2β(β +

√
ν), which is equivalent to ⇔√

ν(1− 3β) > 2β2. Isolating ν, we get the condition

√
ν >

2β2

(1− 3β)
. (2.79)

The right-hand side term of (2.79) is less than 1 if 3β < 1 and 2β2 < 1 − 3β. If
we solve the latter inequality for β, we get

(

β +
3

4

)2

<
17

16
,
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which means that as soon as

0 ≤ β < −3 +
√

17

4
≈ 0.2808

it is possible to find an α that satisfies both above criteria. Then we can choose
α = λτ + (1 − λ) 1

γ , for any λ ∈ (0, 1). A choice of λ close to 1 stands for a
conservative prediction with slow progress in terms of the duality measure t, but
also smaller increase in the proximity measure.

Note that we have used the fact that ν ≥ 1, and we have bounded only the
right-hand side term of (2.79) away from 1. This was sufficient, yet not necessary,
to show validity of (2.79). Therefore it is possible to find slightly larger values of

β than −3+
√

17
4 (keep in mind that β < 1/3) that satisfy (2.79). However, they

do involve ν. For sake of simplicity, we continue with the safe choice of β shown
above.

Complexity analysis of the primal-dual predictor-corrector method

We are ready now to define the nonsymmetric primal-dual predictor-corrector
method with a bias on the dual space (Algorithm 5).

Algorithm 5 Nonsymmetric predictor-corrector method in dual space

Input: A with full row rank, b, c and F∗ ν-self-concordant barrier for K∗.

Parameter: Choose ǫ > 0, 0 < β < −3+
√

17
4 and λ ∈ (0, 1). Define γ = β+

√
ν

1−β ,

τ = 2β√
ν
, α = λτ + (1− λ) 1

γ .

Initialize: z0 primal-dual strictly feasible starting point, t0 = ν
〈s0,x0〉 , k =

0.

loop

1) correction phase, compute dual Newton steps from (2.52) until δtk(s) ≤ β
2) primal-dual lifting (2.54), output: z+

if 〈s+, x+〉 < ǫ then

RETURN
end if

3) primal-dual affine scaling step (2.67) zk+1 = z+ − α∆z(AS)

4) update of duality measure tk+1 = ν
sT

k+1xk+1

5) k = k + 1
end loop

Let the parameters β, λ, γ and τ be as described in Algorithm 5. We have

seen above that when choosing β < −3+
√

17
4 , then τ < 1

γ .

Theorem 2.5.17. The rate of convergence of Algorithm 5 is

〈sk, xk〉 ≤ 〈s0, x0〉 exp(−kρ1),

where ρ1 = (1− λ) ·
[

1
γ − τ

]

> 1.
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Proof. Indeed, using Theorem 2.5.16 we have

tk+1 ≥ tk · exp(α− τ) = tk exp

(

−(1− λ)τ + (1− λ) 1

γ

)

= tk exp

(

(1 − λ)
[

1

γ
− τ
])

= tk exp (ρ1) ,

and using the relation tk 〈sk, xk〉 = ν, we get

〈sk, xk〉 ≤ 〈sk−1, xk−1〉 exp(−ρ1) ≤ 〈s0, x0〉 exp(−ρ1)
k = 〈s0, x0〉 exp(−kρ1).

For the final complexity theorem, let us denote ρ2 = αγ. Since α = λτ + (1 −
λ) 1

γ , we see that

ρ2 = αγ =

(

λτ + (1 − λ) 1

γ

)

γ = λτγ + (1 − λ) = λ(γτ − 1) + 1 < 1.

The latter inequality follows from the fact that we have chosen β such that τ < 1
γ

(see discussion above).

Theorem 2.5.18. Let the parameters be chosen as in Algorithm 5, let z0 be
a primal-dual strictly feasible point. Then the number of affine-scaling steps in
Algorithm 5 to generate a primal-dual feasible point (x, s) such that the duality
gap is not more than ǫ, is bounded by

Nout = O
(√
ν · log (〈s0, x0〉/ǫ)

)
.

The complexity for solving the initial centering problem is N0 = O(z0) iterations.
After that, the number of iterations for each centering problem to generate the dual
central points is bounded by a constant, i.e.

Nin ≤
2ω∗(β) + ω∗(ρ2) + β2(1 + ρ2)

ω(β)
.

Proof. Using Theorem 2.5.17, we see that the duality gap sTk xk in iteration k is
bounded by ǫ if sT0 x0 · exp(−kρ1) ≤ ǫ. When isolating k, we get the condition

k ≥ − log(ǫ/sT0 x0)

ρ1
=

log(sT0 x0/ǫ)

ρ1
.
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Moreover, we see that

1

ρ1
=

1

1− λ ·
γ

1− τγ

=
1

1− λ ·
β+

√
ν

1−β

1− 2β√
ν
β+

√
ν

1−β

=
1

1− λ ·
(β +

√
ν)
√
ν

(1− β)
√
ν − 2β(β +

√
ν)

=
1

1− λ ·
ν +
√
νβ

(1− 3β)
√
ν − 2β2

= O(
√
ν).

The complexity bound for the correction phases follows immediately from
(2.53) in combination with Theorem 2.5.15 and the fact that we apply a damped
Newton method for minimizing a self-concordant function up to accuracy β.

Remark 2.5.19. Algorithm 5 requires as input a primal-dual strictly feasible point
z0. However, we can still use Algorithm 5 if only a dual strictly feasible point
(y0, s0) is available, while the complexity result (Theorem 2.5.18) remains essen-
tially the same.

The modifications for that situation are the following: we have to choose the
initial duality value t0 (instead of computing it as in Algorithm 5). The complexity
for solving the initial centering problem becomes then in view of Theorem 2.2.24

N0 = O(ft0(y(t0), s(t0))− ft0(y0, s0)),

as opposed to O(z0). If no primal strictly feasible point is at hand, then there is
no immediate way to bound the initial functional gap ft0(y(t0), s(t0))− ft0(y0, s0)
further. The rest of Theorem 2.5.18 is unchanged.



CHAPTER 3

New self-concordant barriers for nonsymmetric

cones

We demonstrated in the previous chapter that in order to design polynomial-time
algorithms for convex optimization problems it is crucial to have self-concordant
barriers for the feasible set available. Moreover, if the feasible set is defined using
a proper cone, then we can use primal-dual methods, such as the primal-dual
predictor-corrector method proposed in Section 2.5.

In this chapter we propose new self-concordant barriers for two important
nonsymmetric cones, the so-called power cone and the p-cone.

3.1 A new barrier for the power cone

Let us consider the following convex cone. For α ∈ [0, 1] we define the power cone
as

Kα :=
{
(x, z) ∈ R2

+ × R : xα1 x
1−α
2 ≥ |z|

}
.

This cone has been proposed already in the 50’s by Koecher [35].
We will see in Chapter 4 that Kα is very versatile in that it can be used to

model many convex constraints. We see that if α = 0 or α = 1, then Kα reduces
to a polyhedral cone, e.g. for α = 0, we get

K0 = {(x1, x2, z) : x1 ≥ 0, x2 ≥ |z|}.

On the other hand, for α = 1
2 the cone Kα is exactly the rotated second-order

cone in dimension 3:

Q3 = {(x, z) ∈ R2
+ × R : x1x2 ≥ z2}.

For these special values of α the power cone is in fact symmetric (see Defi-
nition 2.5.10). In all other cases Kα is nonsymmetric. Indeed, Truong and
Tunçel [63] have presented a proof that Kα is indeed not homogeneous (except
for α ∈ {0, 0.5, 1}).
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In [49] Nesterov has proposed the following 4-self-concordant barrier for Kα:

F (x, z) = − log(x2α
1 x2−2α

2 − z2)− log(x1)− log(x2).

Given the observation that for the particular values of α cited above there are self-
concordant barriers known with lower self-concordance parameter (for α ∈ {0, 1}
we have ν = 3 and for α = 1

2 we have ν = 2), it becomes clear that F is not optimal
with respect to its self-concordance parameter. In this chapter we propose a new
self-concordant barrier with better self-concordance parameter.

3.1.1 Proof of self-concordance

We will see now that when scaling the last two terms of the above 4-self-concordant
barrier for Kα, we preserve the self-concordance property while reducing the pa-
rameter value from 4 to 3.

Theorem 3.1.1. Let α ∈ [0, 1]. The function

Fα(x, z) = − log(x2α
1 x2−2α

2 − z2)− (1− α) log(x1)− α log(x2)

is a 3-self-concordant barrier for the power cone Kα.

Proof. First, let us note that Fα is logarithmically homogeneous of degree 3. In
view of Theorem 2.5.6 we need to show that Fα is on top of that a self-concordant
function, i.e. it is necessary to verify the characteristic inequality of self-concordant
functions (2.6): for any (x, z) ∈ intKα and any h = [∆x; ∆z] ∈ R3 we have to
show that

|D3 Fα(x, z)[h, h, h]| ≤ 2
(
D2 Fα(x, z)[h, h]

)3/2
.

It is easy to see that the absolute values on the left-hand side term can be dropped,
because if

D3 Fα(x, z)[h, h, h] ≤ 2
(
D2 Fα(x, z)[h, h]

)3/2
. (3.1)

holds for any direction h ∈ R3, then it must hold in particular also for −h. In
that case (3.1) becomes

D3 Fα(x, z)[−h,−h,−h] ≤ 2
(
D2 Fα(x, z)[−h,−h]

)3/2
.

In combination with (3.1) this is exactly the same as the original inequality in
Definition 2.2.3. Therefore, it suffices to show validity of (3.1) in order to prove
self-concordance of Fα.

Let us define for (x, z) ∈ intKα

ξ(x) := xα1 x
1−α
2 > 0

and

ω(ξ(x), z) = ξ(x) − z2

ξ(x)
> 0.
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Then the barrier function can be written as

Fα(x, z) = − log
(
ξ(x)2 − z2

)
− (1− α) log(x1)− α log(x2)

= − log
(
ξ(x)2 − z2

)
− log(x1)− log(x2) + log(ξ(x))

= − log

(
ξ(x)2 − z2

ξ(x)

)

− log(x1)− log(x2)

= − log (ω(ξ(x), z))
︸ ︷︷ ︸

=:Φ(ω(ξ(x),z))

− log(x1)− log(x2)
︸ ︷︷ ︸

=:F (x)

.

Denoting in the following ω = ω(ξ(x), z), the directional derivatives of Fα(x, z) in
direction h become

D2 := D2Fα(x, z)[h, h] =D2Φ(ω)[h, h] +D2F (x)[h, h],

D3 := D3Fα(x, z)[h, h, h] =D3Φ(ω)[h, h, h] +D3F (x)[h, h, h]

Introducing the notation δi = ∆xi

xi
for i = 1, 2, we get

D2F (x)[h, h] =

(
∆x1

x1

)2

+

(
∆x2

x2

)2

= δ21 + δ22 =: t2

and
D3F (x)[h, h, h] ≤ 2(D2F (x)[h, h])3/2 = 2t

3/2
2

because F is self-concordant.

Further, let us denote σ1 =
(
ω′

ω

)2

and σ2 = −ω′′

ω . Then we compute the

directional derivatives of Φ as

DΦ(ω)[h] =− ω′

ω

D2Φ(ω)[h, h] =

(
ω′

ω

)2

︸ ︷︷ ︸

=σ1

−ω
′′

ω
︸ ︷︷ ︸

=σ2

≥ 0

D3Φ(ω)[h, h, h] =−2

(
ω′

ω

)3

︸ ︷︷ ︸

≤2σ
3/2
1

+3
ω′ω′′

ω2
︸ ︷︷ ︸

≤σ1/2
1 σ2

−ω
′′′

ω
,

where ω′,ω′′,ω′′′ denote the directional derivatives of ω at (x, z) ∈ intK(n)
α in

direction h. That means we have the following bound on D3Φ:

D3Φ(ω)[h, h, h] ≤ 2σ
3/2
1 + 3σ

1/2
1 σ2 −

ω′′′

ω
.

In the following our aim is to bound the last term. If we manage to show

−ω
′′′

ω
≤ 3 σ2 t

1/2
2 ,
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or equivalently

ω′′′ − 3ω′′ t1/22 ≥ 0, (3.2)

(using the definition of σ2), then we get the following bound on D3Φ:

D3Φ(ω)[h, h, h] ≤ 2σ
3/2
1 + 3σ

1/2
1 σ2 + 3 σ2 t

1/2
2 .

This implies

D3 = D3Φ(ω(ξ(x), z))[h, h, h] +D3F (x)[h, h, h]

≤ 2σ
3/2
1 + 3σ

1/2
1 σ2 + 3σ2t

1/2
2 + 2t

3/2
2

= (σ
1/2
1 + t

1/2
2 )(2σ1 − 2σ

1/2
1 t

1/2
2 + 2t2 + 3σ2).

Note that it holds D2 = D2F +D2Φ = σ1 + σ2 + t2. Using this identity, the last
expression can be simplified and we get

D3 ≤ (σ
1/2
1 + t

1/2
2 )

(

3D2 − (σ
1/2
1 + t

1/2
2 )2

)

≤ 2D
3/2
2 .

The last inequality is true because the maximum of τ(3D2− τ2) over nonnegative

arguments is attained at τ =
√
D2 and equals 2D

3/2
2 .

That means validity of (3.2) for all (x, z) ∈ Kα and all directions h ∈ R3 implies
self-concordance of Fα. In order to show (3.2), we need to evaluate the derivatives
of ω, which in turn depend on the derivatives of ξ.

Computing the directional derivatives

For any direction h = [∆x; ∆z] ∈ R3 we denote by

ξk = Dkξ(x)[∆x, . . . ,∆x]

the k-th directional derivative of ξ in direction ∆x. We get the following recursion
for ξk:

ξ1 = ξ0 (αδ1 + (1− α)δ2)
︸ ︷︷ ︸

=:e1(α,δ)

= ξ0 e1(α, δ)

ξ2 = −ξ0 α(1 − α)(δ1 − δ2)2
︸ ︷︷ ︸

=:e2(α,δ)

= −ξ0 e2(α, δ) ≤ 0

ξ3 = −ξ2 [(2− α)δ1 + (1 + α)δ2]
︸ ︷︷ ︸

=−e1(α,δ)+2(δ1+δ2)

= ξ0 e2 (−e1(α, δ) + 2(δ1 + δ2))
︸ ︷︷ ︸

=:e3(α,δ)

.



3.1. A NEW BARRIER FOR THE POWER CONE 89

The partial derivatives of ω(ξ, z) = ξ − z2

ξ are

∇zω = −2z

ξ0
, ∇3

ξξξω =
6z2

ξ40
,

∇ξω = 1 +
z2

ξ20
, ∇3

ξξzω = −4z

ξ30
,

∇2
ξξω = −2z2

ξ30
, ∇3

ξzzω =
2

ξ20
,

∇2
ξzω =

2z

ξ20
, ∇3

zzzω = 0,

∇2
zzω = − 2

ξ0
.

Using the above results, we can compute now the derivatives of ω(ξ(x), z) =

ξ(x) − z2

ξ(x) in direction h. Denoting in the following ei = ei(α, δ) for i = 1, 2, 3,
we get

ω′ := Dω[h] =∇ξω · ξ1 +∇zω ·∆z

=

(

1 +
z2

ξ20

)

· ξ0 · e1 − 2
z

ξ0
∆z

=

(

ξ0 +
z2

ξ0

)

e1 − 2
z∆z

ξ0
= ωe1 + 2

z

ξ0
(ze1 −∆z),

ω′′ := D2ω[h, h] =∇2
ξξω · ξ21 +∇ξω · ξ2 + 2∇2

ξzω · ξ1 ·∆z +∇2
zzω ·∆z2

= − 2
z2

ξ30
· ξ21 + 4

z

ξ20
· ξ1 ·∆z − 2

1

ξ0
·∆z2 +

(

1 +
z2

ξ20

)

· ξ2

= − 2

ξ0
(ze1 −∆z)

2 −
(

ξ0 +
z2

ξ0

)

· e2 ≤ 0,

ω′′′ := D3ω[h, h, h] =∇3
ξξξω · ξ31 + 3∇3

ξξzω · ξ21 ·∆z + 3∇3
ξzzω · ξ1 ·∆z2 + 3∇3

zzzω ·∆z3

+ 3∇2
ξξω · ξ1 · ξ2 + 3∇2

ξzω · ξ2 ·∆z +∇ξω · ξ3

=6
z2

ξ40
· ξ31 − 12

z

ξ30
· ξ21 ·∆z + 6

1

ξ20
· ξ1 ·∆z2

− 6
z2

ξ30
· ξ1 · ξ2 + 6

z

ξ20
· ξ2 ·∆z +

(

1 +
z2

ξ20

)

· ξ3

=6
z2

ξ0
· e31 − 12

z

ξ0
· e21 ·∆z + 6

1

ξ0
· e1 ·∆z2

+ 6
z2

ξ0
· e1 · e2 − 6

z

ξ0
· e2 ·∆z +

(

1 +
z2

ξ20

)

· ξ3

=6
e1
ξ0

(ze1 −∆z)
2

+ 6
ze2
ξ0

(ze1 −∆z) +

(

1 +
z2

ξ20

)

· ξ3.
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Bounding the derivatives

Using the above expressions for ω′′ and ω′′′, the left-hand side term of (3.2) be-
comes

ω′′′ − 3ω′′ t1/22 =6
e1
ξ0

(ze1 −∆z)
2

+ 6
ze2
ξ0

(ze1 −∆z) +

(

1 +
z2

ξ20

)

ξ3
︸︷︷︸

=ξ0 e3

+
6

ξ0
(ze1 −∆z)2 t

1/2
2 − 3

(

1 +
z2

ξ20

)

ξ2
︸︷︷︸

=−ξ0 e2

t
1/2
2

=
1

ξ0

[

6 (e1 + t
1/2
2 ) (ze1 −∆z)

2
+ 6ze2 (ze1 −∆z)

+(ξ20 + z2) (e3 + 3e2t
1/2
2 )

]

.

Note that we have e3 + 3e2t
1/2
2 = e2 [−e1 + 2(δ1 + δ2) + 3t

1/2
2 ] ≥ 0, since

e1 − 2(δ1 + δ2) = −
〈(

2− α
1 + α

)

,

(
δ1
δ2

)〉

≤
∣
∣
∣
∣

∣
∣
∣
∣

2− α
1 + α

∣
∣
∣
∣

∣
∣
∣
∣

︸ ︷︷ ︸

≤
√

5

·
∣
∣
∣
∣

∣
∣
∣
∣

δ1
δ2

∣
∣
∣
∣

∣
∣
∣
∣
≤
√

5
√
t2 ≤ 3

√
t2.

That means we get the bound

ω′′′ − 3ω′′ t1/22 =
1

ξ0

[

6 (e1 + t
1/2
2 ) (ze1 −∆z)2 + 6ze2 (ze1 −∆z) + z2 (e3 + 3e2t

1/2
2 )

]

+ ξ0 (e3 + 3e2t
1/2
2 )

︸ ︷︷ ︸

≥0

≥ 1

ξ0

[

6 (e1 + t
1/2
2 ) (ze1 −∆z)

2
+ 6ze2 (ze1 −∆z) + z2 (e3 + 3e2t

1/2
2 )

]

︸ ︷︷ ︸

=:h(α,δ,z,∆z)

.

Our goal is to show that h is nonnegative for all feasible combinations of α, δ, z

and ∆z. With a similar argument as above we get e1 + t
1/2
2 ≥ 0, since

−e1 =

〈(
−α
−1 + α

)

,

(
δ1
δ2

)〉

≤
∣
∣
∣
∣

∣
∣
∣
∣

α
1− α

∣
∣
∣
∣

∣
∣
∣
∣

︸ ︷︷ ︸

≤1

·
∣
∣
∣
∣

∣
∣
∣
∣

δ1
δ2

∣
∣
∣
∣

∣
∣
∣
∣
≤ t1/22 .

One sees that h is a quadratic form in the variables (v1, v2) with v1 = ze1−∆z
and v2 = z and the symmetric matrix

M =

[

6 (e1 + t
1/2
2 ) 3e2

3e2 e3 + 3e2t
1/2
2

]

If we manage to show thatM is positive semidefinite, it follows that h(α, δ, z,∆z) ≥
0.

First, let us consider the situation where e1 + t
1/2
2 = 0. This is only possible

in three cases:
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1. δ = 0,

2. δ1 = 0, δ2 < 0 and α = 0,

3. δ2 = 0, δ1 < 0 and α = 1.

In all three cases we have trivially that h(α, δ, z,∆z) = 0 because then e2 = 0.
This implies that M = 0.

Let us consider now the situation where e1 + t
1/2
2 > 0. Then the Schur com-

plement of M with respect to the upper left component becomes

S = e3 + 3e2t
1/2
2 − 3e2[6 (e1 + t

1/2
2 )]−13e2

We have that S is positive semidefinite if and only if

(e3 + 3e2t
1/2
2 )6 (e1 + t

1/2
2 ) ≥ (3e2)

2. (3.3)

We have seen above that e3 can be factored using e2, therefore the left-hand side

expression of (3.3) can be written as
[

e2 (−e1 + 2(δ1 + δ2)) + 3e2t
1/2
2

]

6 (e1 + t
1/2
2 ).

Thus, (3.3) is true if and only if

2(−e1 + 2(δ1 + δ2) + 3t
1/2
2 ) (e1 + t

1/2
2 ) ≥ 3e2

Let us bring all terms in the above inequality on the left-hand side and denote

g(α, δ) = 2(e1 + t
1/2
2 )(−e1 + 2(δ1 + δ2) + 3t

1/2
2 )− 3e2.

In order to show that g is nonnegative, let us make the following change of vari-
ables:

δ1 = r cos(ϕ), δ2 = r sin(ϕ),

where r ≥ 0 and ϕ ∈ [0, 2π]. We get then

e1 = αδ1 + (1− α)δ2 = r [α cos(ϕ) + (1− α) sin(ϕ)] ,

e2 = α(1− α)(δ1 − δ2)2 = r2 α(1 − α) (cos(ϕ)− sin(ϕ))2 ,

t2 = r2 cos(ϕ)2 + r2 sin(ϕ)2 = r2.

Substituting the above expressions in g, we get the following function in terms of
α, r and ϕ:

g̃(α, r, ϕ) =2 [r (α cos(ϕ) + (1− α) sin(ϕ)) + r]

· r [−α cos(ϕ) − (1− α) sin(ϕ) + 2(cos(ϕ) + sin(ϕ)) + 3]

− 3r2α(1 − α)(cos(ϕ)− sin(ϕ))2

=2 r2 [(α cos(ϕ) + (1− α) sin(ϕ)) + 1]

· [(2− α) cos(ϕ) + (1 + α) sin(ϕ) + 3]

− 3 r2α(1− α)(cos(ϕ)− sin(ϕ))2.
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We can omit the nonnegative coefficient r2 and get a function only in terms of α
and ϕ. Moreover, let us denote u1 = cos(ϕ) + 1 and u2 = sin(ϕ) + 1. We get

g̃(α, r, ϕ)

r2
=2 [α cos(ϕ) + (1− α) sin(ϕ) + 1] · [(2 − α) cos(ϕ) + (1 + α) sin(ϕ) + 3]

− 3α(1− α)(cos(ϕ)− sin(ϕ))2

=2 [α(u1 − 1) + (1 − α)(u2 − 1) + 1] · [(2 − α)(u1 − 1) + (1 + α)(u2 − 1) + 3]

− 3α(1− α)(u1 − u2)
2

= [2αu1 + 2(1− α)u2] · [(2− α)u1 + (1 + α)u2]

− 3α(1− α)(u1 − u2)
2,

which is a quadratic polynomial in u1 and u2 for each α ∈ [0, 1]. By definition we
have ui ≥ 0 for i = 1, 2. Furthermore, the coefficients for each monomial term are
nonnegative too. Indeed, the latter polynomial can be written as

gα(u1, u2) = β1u
2
1 + β2u

2
2 + β3u1u2,

where

• β1 = 2α(2− α)− 3α(1 − α) = α(4 − 2α− 3 + 3α) = α(1 + α) ≥ 0,

• β2 = 2(1−α)(1+α)−3α(1−α) = (1−α)(2+2α−3α) = (1−α)(2−α) ≥ 0,

•

β3 = 2α(1 + α) + 2(1− α)(2 − α) + 6α(1 − α)

= 2α+ 2α2 + 4− 2α− 4α+ 2α2 + 6α− 6α2

= −2α2 + 2α+ 4 ≥ 0,

for all α ∈ [0, 1]. That means in fact that gα is a polynomial in nonnegative vari-
ables u1 and u2 with nonnegative coefficients. According to the above reasoning
we conclude that g(α, δ) ≥ 0 for all α ∈ [0, 1] and all δ ∈ R2, which implies that
(3.3) is valid. Thus, (3.2) is true and we have

−ω
′′′

ω
≤ 3 σ2 t

1/2
2 .

In view of the calculations above, we have that Fα is self-concordant. This finishes
the proof.

Remark 3.1.2. During the proof we saw that e3 ≥ −3e2t
1/2
2 is a valid inequality

for all feasible α and δ. When multiplying this inequality with ξ(x) = xα1 x
1−α
2 > 0,

we get directly that ξ3 ≥ 3ξ2t
1/2
2 . This implies that ξ(x) is 1-compatible with

F (x) = − log(x1)− log(x2)

with respect to the standard ordering relation induced by K = R+ (see Defini-
tion 2.4.9).
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In accordance with Theorem 2.4.11 we see that when taking C2 = {(y, z) : y ≥
|z|} with the 2-self-concordant barrier φ(y, z) = − log(y2 − z2), the function

F̄α(x, z) = − log
(
x2α

1 x2−2α
2 − z2

)
− log(x1)− log(x2)

is a 4-self-concordant barrier for Kα, which is weaker than the result of Theo-
rem 3.1.1. This barrier has been proposed e.g. by Nesterov in [47, Theorem 6].

On the other hand, using the same theorem and taking instead C2 = {(y, z) :
y ≥ z} with the 1-self-concordant barrier φ(y, z) = − log(y − z), we get that

F̂α(x, z) = − log
(
xα1 x

1−α
2 − z

)
− log(x1)− log(x2)

is a 3-self-concordant barrier for the hypograph of the geometric mean

C =
{
(x, z) ∈ Rn+ × R : xα1 x

1−α
2 ≥ z

}
.

Note that this barrier was established e.g. by Nesterov in [47, Section 4].

3.1.2 Three conjectures for self-concordant barriers

High-dimensional power cone

Numerical tests suggest that Theorem 3.1.1 can be generalized to any dimension.
For α ∈ Rn such that α ≥ 0 and

∑n
i=1 αi = 1 we define the (n + 1)-dimensional

power cone

K(n)
α :=

{

(x, z) ∈ Rn+ × R :

n∏

i=1

xαi

i ≥ |z|
}

.

Then we conjecture that the function

F (n)
α (x, z) = − log

(
n∏

i=1

x2αi

i − z2

)

−
n∑

i=1

(1− αi) log(xi)

is an (n+ 1)-self-concordant barrier for the high-dimensional power cone K(n)
α . It

is easy to see that F
(n)
α is (n+ 1)-logarithmically homogeneous.

A possible proof could be similar to the one of Theorem 3.1.1. Analogously we

denote for (x, z) ∈ intK(n)
α

ξ(x) :=

n∏

i=1

xαi

i > 0

and

ω(ξ(x), z) = ξ(x) − z2

ξ(x)
> 0.

and the main task is to show that (3.2) holds, where ω′′ and ω′′′ denote the second
and third directional derivative in some direction h = [∆x; ∆z] ∈ Rn+1 for the ω
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defined above, and t2 =
∑n
i=1 δ

2
i with δi = ∆xi

xi
, i = 1, . . . , n. It turns out that the

derivatives of ξ have a similar recursion as in the proof of Theorem 3.1.1, namely

ξ1 = ξ0 s1
︸︷︷︸

=:e1

= ξ0 e1

ξ2 = −ξ0 (s2 − s21)
︸ ︷︷ ︸

=:e2

= −ξ0 e2

ξ3 = ξ0 (s31 − 3s1s2 + 2s3)
︸ ︷︷ ︸

=:e3

= ξ0 e3,

where

s1 =
n∑

i=1

αiδi, s2 =
n∑

i=1

αiδ
2
i , s3 =

n∑

i=1

αiδ
3
i .

We have checked numerically the validity of (3.2) in this case which would imply

that indeed F
(n)
α is an (n+ 1)-self-concordant barrier for K(n)

α .

A generalization of K(n)
α

Numerical tests also suggest that Theorem 3.1.1 can be generalized to the case

where z is a vector instead of a scalar. The generalization of K(n)
α would then

become

K(n,m)
α =

{

(x, z) ∈ Rn+ × Rm :

n∏

i=1

xαi

i ≥ ||z||2
}

with the conjectured (n+ 1)-self-concordant barrier

F̃α(x, z) = − log

(
n∏

i=1

x2αi

i − zT z
)

−
n∑

i=1

(1− αi) log(xi).

Numerical tests of inequality (3.2) have been done with a random sampling of

10,000 points (x, z) ∈ intK(n,m)
α and directions (∆x,∆z) in dimension n = 10 and

m = 5. The rest of the proof directly generalizes (z2 has to be replaced by zT z and
∆z2 by ∆zT∆z). Note that the self-concordance parameter of F̃α is independent
from the value of m. However, we are not able to confirm that observation with
an analytic proof.

On the other hand, the cone K(n,m)
α can be modelled in the following way:

(x, z) ∈ K(n,m)
α if and only if

(x, z̃) ∈ K(n)
α

(z, z̃) ∈ Lm,
(3.4)

where z̃ is an artificial modelling variable and Lm denotes the (m+1)-dimensional

second order cone. Using the new self-concordant barrier for K(n)
α from Theo-

rem 3.1.1 and the 2-self-concordant barrier for Lm, we conclude that we can find
a self-concordant barrier for (3.4) with parameter ν = n+ 3. Note again that the
value of ν is independent from m.
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An even better barrier for Kα
We mentioned earlier that for n = 2 and α1 = α2 = 1

2 the power cone Kα is a
rotated second-order cone with the optimal barrier parameter of ν = 2.

Numerical tests suggest that

F̄α(x, z) =− log

(
2∏

i=1

x2αi

i − z2

)

−max{1− 2α1, 0} log(x1)−max{1− 2α2, 0} log(x2)

is a self-concordant barrier for Kα with parameter ν = 3− 2 min{α1, α2}.
Note that in the symmetric case α1 = α2 = 1

2 the last two terms vanish and
the barrier becomes exactly the (optimal) barrier for the rotated second-order cone
with parameter 2. For α1 = 1 (or α2 = 1) we get the barrier for the polyhedral
limit cone with optimal parameter 3. Both cases are coherent with the theory.
For α1 ∈ (0, 1

2 ) (or α2 ∈ (0, 1
2 )) we get a barrier whose parameter depends linearly

on α and is sandwiched between 2 and 3.

3.1.3 Optimality of the new barrier

In the Theorem 3.1.1 we presented a new 3-self-concordant barrier for the three-
dimensional power cone Kα. We have also conjectured that this result can be gen-

eralized to the (n+1)-dimensional power cone K(n)
α with an (n+1)-self-concordant

barrier. We will show now that this barrier value is in fact ”almost” optimal. First
we need the following technical results

Theorem 3.1.3. Let C ⊆ Rn be a convex set and y ∈ C. Let {h1, . . . , hk} be
recession directions for C with coefficients {λi}ki=1 such that

y − λihi /∈ int C.

If for some {δi}ki=1 it holds

y −
k∑

i=1

δihi ∈ C,

then

ν ≥
k∑

i=1

δi
λi
.

Proof. [46, Theorem 4.3.1].

Note that if C = K is a proper cone, then any h ∈ K is also a recession direction.

Lemma 3.1.4. Any self-concordant barrier for K(n)
α has a parameter ν such that

ν ≥ n.
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Proof. Let n = 1. Then

K(1)
α = {x ≥ |z|},

for which we know that the optimal barrier has a parameter of ν = 2 = n+1 ≥ n.

For n ≥ 2 we will use Theorem 3.1.3. Let us choose y = (x, z) = [1, . . . , 1, 0] ∈
Rn+1 and hi = [ei, 0] ∈ K(n)

α where ei = [0, . . . , 0, 1, 0, . . . , 0], i = 1, . . . , n is the
i-th unit vector, and δi = λi = 1, i = 1, . . . , n. We get

ν ≥
n∑

i=1

1

1
= n.

Note that the upper bound n + 1 for the self-concordance parameter can be
tight. Indeed, if α = ei for some i ∈ {1, . . . , n}, then the power cone becomes
polyhedral

K(n)
α = {xi ≥ |z|} × {xj ≥ 0}, j 6= i.

We know that in this extreme case the optimal barrier has a parameter of ν = n+1,
which coincides with the parameter value that we have obtained. On the other
hand, for n = 2 and α = [1/2, 1/2] we have the rotated second-order cone (with
optimal barrier with parameter ν = n = 2). In that case the lower bound is tight.

3.1.4 New barriers for certain convex sets

Epigraph of increasing power function

Note that by intersecting Kα with {(x, z) : x2 = 1} ⊂ R3 we get the epigraph of
the increasing power function

{xα1
1 ≥ |z|} ⇔ {x1 ≥ |z|p},

1

α1
= p ≥ 1

with the self-concordant barrier

Fp(x1, z) = − log(x2/p − z2)− (1− 1/p) log(x1)

with self-concordance parameter value of at most 3. This improves the previously
known barrier with parameter 4 (cf. [46, Section 4.3.5.4]). It remains an open
question whether Fp is already optimal or not.

Rotated positive power cone

Let ai ∈ Rm and αi ∈ Rm such that ai ≥ 0, αi ≥ 0,
∑n
i=1 αi = 1. In [64] Tunçel

and Nemirovski consider the rotated (positive) power cone

C =

{

(x, t) ∈ Rn+ × R+ :

m∏

i=1

〈ai, x〉αi ≥ t
}

.



3.1. A NEW BARRIER FOR THE POWER CONE 97

It is clear that C can be modelled using K(n)
α . Indeed, (x, t) ∈ C if and only if

m∏

i=1

yαi

i ≥ t

yi = aTi x

t ≥ 0

or equivalently, (Ax, t) ∈ K(m)
α , t ∈ R+. That means the self-concordance parame-

ter would become ν = m+2, and it would depend only on m. On the other hand,
Tunçel and Nemirovski propose a barrier for C that only depends on n and whose

self-concordance parameter is ν = 1 +
(

7
3

)2
n (see [64, Corollary 2.2]). One can

see that it is beneficial to use our new barrier for K(m)
α to model C whenever the

number of product terms m in C is not too large with respect to the size of x, i.e.

when m ≤
(

7
3

)2 · n− 1 ≈ 5n.

Moreover, when modelling C with the power cone K(n)
α the coefficients ai are

not restricted to nonnegative vectors as it

Conic hull of epigraph of exponential function

Let us consider the convex cone

Kexp = cl

({

z1 ∈ R, z2 ∈ R+, z3 ∈ R++ : exp

(
z1
z3

)

≤ z2
z3

})

.

We will see in Section 4.2 that Kexp can be viewed as a limit of a linear transfor-
mation of the 3D power cone Kα, namely

K̃α = {(z1, z2, z3) : zα2 z
1−α
3 ≥ |z3 + αz1|},

for α → 0. In view of Theorem 3.1.1 and the self-concordance-preserving opera-
tions in Section 2.4.3 we conclude that

F̃α(z1, z2, z3) = Fα(z2, z3, z3 + αz1)

= − log
(

z2α
2 z

2(1−α)
3 − (z3 + αz1)

2
)

− (1− α) log z2 − α log z3

is a 3-self-concordant barrier for K̃α. Letting α → 0, we see that the argument
of the first log-term tends to 0. However, if we add to F̃α the term log(2α), the
function is still 3-self-concordant for its domain int K̃α, since the derivatives of F̃α
are not affected by such a change. We get

F̃α(z1, z2, z3) + log(2α) = − log

(

z2α
2 z

2(1−α)
3 − (z3 + αz1)

2

2α

)

︸ ︷︷ ︸

=:h(α)=
h1(α)

h2(α)

−(1− α) log z2 − α log z3.

We see that h(α) tends to an expression of the form 0
0 , as α → 0. Using the

l’Hospital’s rule, we get

h′1(α)

h′2(α)
=
z2
3 2 ( z2z3 )2α log( z2z3 )− 2z3z1 − 2αz2

1

2
→ z2

3 log

(
z2
z3

)

− z3z1.
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Therefore, we conclude that

lim
α→0

{

F̃α(z) + log(2α)
}

= − log

(

z2
3 log

(
z2
z3

)

− z3z1
)

− log(z2)

= − log

(

z3 log

(
z2
z3

)

− z1
)

− log(z2)− log(z3)

= Fexp(z),

i.e. the function values of the 3-self-concordant barrier F̃α(z) + log(2α) for K̃α
converge to the function value of the known 3-self-concordant barrier Fexp for Kexp

(see e.g. [47, Section 4]). Note, however, that in general this observation alone
is not sufficient to conclude that the limit function of a family of self-concordant
barriers is also self-concordant. This is true if additionally the first three directional
derivatives converge to the derivatives of the limit function.

3.2 Universal barrier for p-cone

For p ≥ 1 and dimension n ≥ 1 let us consider the p-cone

P(n)
p := {(x, t) : t ≥ ||x||p} ⊂ Rn+1.

No simple barrier with low parameter is known for P(n)
p . For example Yue and

Ye [66] use a general result by Nesterov and Nemirovski ([52, Proposition 5.1.4])
according to which, given a ν-self-concordant barrier F for some closed convex
set C it is possible to compute a 2θ2ν-self-concordant barrier for the conic hull of
C (see Section 2.4), where θ is some well-chosen positive number. In the case of

Cp = {x : ||x||p ≤ 1} its conic hull is exactly the p-cone P(n)
p . In [66, Theorem 3.1]

the authors show that for Cp we can take θ = 5 and obtain a ν̃-self-concordant

barrier for P(n)
p with ν̃ = 50ν. In [20, Theorem 4] the authors improve the result

by [52] and show that, given a ν-self-concordant barrier for C it is possible to
compute a ν̄-self-concordant barrier for the conic hull of C with ν̄ < 25 ν.

Both approaches rely on the conic hull of the p-unit ball Cp. The p-unit ball, on
the other hand, can be modelled using n epigraphs of p-powers (see Section 4.1).
The epigraphs of p-powers admit a 3-self-concordant barrier, as described in Sec-
tion 3.1.41. Using the approach of Freund et al. [20] or Xue and Ye [66], we can

ultimately derive a ν-self-concordant barrier for P(n)
p with ν < 75n (respectively

ν = 150n).
Another way of modelling the p-cone has been proposed e.g. by Nesterov in

[49]. That modelling approach uses the power cone Kα, and it is described in detail
in Section 4.1. The proposed decomposition yields a ν-self-concordant barrier for

P(n)
p with ν = 3n. This significant reduction in terms of the barrier parameter is

due to the fact that the modelling of P(n)
p using Kα is not based on the modelling

of the (nonhomogeneous) set Cp. Therefore we do not need to apply the expensive
operation of taking the conic hull, that results in an increase of the parameter by
a factor of 25.

1At the time the best-known parameter for epi(|x|p) was ν = 4.
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3.2.1 Universal barrier and characteristic function

We recall that every convex set C ⊆ Rn admits a so-called universal barrier Φ
with self-concordance parameter of ν = O(n) (see Theorem 2.4.6). Unfortunately,
the definition of the universal barrier at a point x involves the computation of the
volume of the polar set at the point x. Therefore, it is in general not possible
to write down a closed form description of the universal barrier. For the conic
setting, Güler established a link between the universal barrier of a cone K and its
characteristic function.

Definition 3.2.1. The characteristic function ϕ : intK → R of a cone K ⊆ E is
defined as

ζ(x) =

∫

K∗
e−〈s,x〉 ds. (3.5)

Theorem 3.2.2. Let K ⊆ Rn be a proper cone and ζ its characteristic function.
Then the following equality holds:

log ζ(x) = log(voln(C0(x)))) + logn!,

where C0(x) denotes the polar set centered at x ∈ intK

Proof. [28, Theorem 4.1].

In view of Theorem 2.4.6 the term on the right-hand side is essentially the
universal barrier for K. Note, however, that the ”true” universal barrier is given
by

Φ(x) = O(1) log(voln(C0(x)))),

that is, we might have to find a constant κ = O(1) to scale the barrier in order to
make it self-concordant.

It follows that, if we omit the constant term logn!, we get according to Theo-
rem 3.2.2 that the universal barrier for K is given by

Φ(x) = κ log(ζ(x)),

for some constant κ. In other words, if we are able to evaluate the characteris-
tic function and its derivatives, we have a means to compute the universal bar-
rier. Moreover, if ζ is homogeneous of degree −θ, then we conclude in view of
Theorem 2.5.6 that the universal barrier Φ is a logarithmically homogeneous self-
concordant barrier for K with parameter ν = κ θ.

In some cases it is possible to compute the characteristic function analyti-
cally. Some examples are given in [28], including the characteristic function for

the second-order cone (which is in fact P(n)
2 ). In that case Güler showed that by

the construction above we obtain a scaled version of the optimal self-concordant
barrier for the second-order cone (see [28, Lemma 7.1]). This means in fact that
it might be possible that the constant κ is less than 1. Note that in view of the
self-concordance preserving operations in Section 2.4.3 scaling a ν-self-concordant
barrier F with a constant κ ≥ 1 yields a κν-self-concordant barrier. However,
for κ < 1 this is in general not true. In that case we have to check whether the
self-concordance property in Definition 2.2.3 is still true for κF . In the case of
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the second order cone scaling the universal barrier with κ < 1 was indeed possible
without violating Definition 2.2.3.

In the case of the p-cone P(n)
p this above result could be useful because it is

well-known2 that

(

P(n)
p

)∗
= P(n)

q = {s = (z, τ) : ||s||q ≤ τ},

where p and q are conjugate exponents, that is 1
p + 1

q = 1. That means we have an
explicit description of the dual cone and we might try to compute the characteristic
function ζ.

3.2.2 Computation of the characteristic function

For the rest of this section we consider the p-cone with n = 2. For sake of simpli-

fying notation we denote in the following K = P(2)
p . Then

(z, τ) ∈ (K)∗ ⇔ |z1|q + |z2|q ≤ τq , τ ≥ 0

⇔
∣
∣
∣
z1
τ

∣
∣
∣

q

+
∣
∣
∣
z2
τ

∣
∣
∣

q

≤ 1, τ > 0.

Let us consider therefore the change of variables

z1 = u τ

z2 = v τ.

The functional determinant is

D(z1, z2, τ)

D(u, v, τ)
= τ2,

and defining Bq = {(u, v) : |u|q + |v|q ≤ 1}, the integral (3.5) becomes

ζ(x) =

∫

(K)∗
e−〈s,x〉ds =

∫

(uτ,vτ,τ)∈(K)∗
e−x1uτ−x2vτ−x3τ τ2 dτ du dv

=

∫

(u,v)∈Bq

∫ ∞

τ=0

e−τ(x1u+x2v+x3) τ2 dτ du dv.

The inner integral can be computed as

∫ ∞

τ=0

e−τ(x1u+x2v+x3) τ2 dτ =
2

(ux1 + vx2 + x3)3
.

So it remains to compute

2

∫

(u,v)∈Bq

(ux1 + vx2 + x3)
−3 du dv.

2see e.g. [66, Section 2]



3.2. UNIVERSAL BARRIER FOR P -CONE 101

Let us apply the following change of variables:

u = rq(θ, r) cos θ

v = rq(θ, r) sin θ,

where

rq(θ, r) =
r

q
√

| cos θ|q + | sin θ|q
=

r

g(θ)
,

and g(θ) = || cos θ sin θ||q. The functional determinant becomes

D(u, v)

D(r, θ)
= r · (| cos θ|q + | sin θ|q)− 2

q = r · g(θ)−2.

That means (u, v) ∈ Bq if and only if θ ∈ [0, 2π] and r ∈ [0, 1]. So the characteristic
function becomes

ζ(x) = 2

∫

(u,v)∈Bq

(ux1 + vx2 + x3)
−3 du dv

= 2

∫ 2π

θ=0

∫ 1

r=0

r · g(θ)−2

(x1 · rq(θ, r) · cos θ + x2 · rq(θ, r) · sin θ + x3)3
dr dθ

= 2

∫ 2π

θ=0

g(θ)−2

∫ 1

r=0

r

[ r
g(θ) · (x1 · cos θ + x2 · sin θ) + x3]3

dr dθ

= 2

∫ 2π

θ=0

g(θ)

∫ 1

r=0

r

[r · (x1 · cos θ + x2 · sin θ) + g(θ) · x3]3
dr dθ

=
1

x3

∫ 2π

θ=0

1

(x1 · cos θ + x2 · sin θ + g(θ) · x3)2
dθ

=
1

x3
3

∫ 2π

θ=0

1

(f(θ, x) + g(θ))2
dθ,

where f(θ, x) = x1

x3
· cos θ + x2

x3
· sin θ.

Note that we have

ζ(λx) =
1

λ3x3
3

∫ 2π

0

dθ

(f(θ, x) + g(θ))2
=

1

λ3
ζ(x),

which means that ζ is homogeneous of degree −3. Accordingly, the unscaled
universal barrier

Φu(x) = log (ζ(x))

is a logarithmically homogeneous function of degree θ = 3.
Even though Φu is not in closed form at hand, we can compute its derivatives

with respect to x. We get the gradient and Hessian

∇Φu(x) =
1

ζ(x)
∇ζ(x)

∇2Φu(x) =
1

ζ(x)
· ∇2ζ(x) − ∇ζ(x) · ∇ζ(x)

T

ζ(x)2
,
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Let us denote I(θ, x) = 1
(f(θ,x)+g(θ))2 . Then

ζ(x) =
1

x3
3

∫ 2π

θ=0

I(θ, x) dθ

∇ζ(x) =






0
0

− 3
x4
3
·
∫ 2π

0
I(θ, x) dθ




+

1

x3
3

·
∫ 2π

0

∇I(θ, x) dθ

∇2ζ(x) =
12

x5
3





0 0 0
0 0 0

0 0
∫ 2π

0 I(θ, x) d θ



+
1

x3
3

·
∫ 2π

0

∇2I(θ, x) d θ

− 3

x4
3






0 0
∫ 2π

0
∂I
∂x1

d θ

0 0
∫ 2π

0
∂I
∂x2

d θ
∫ 2π

0
∂I
∂x1

d θ
∫ 2π

0
∂I
∂x2

d θ 2 ·
∫ 2π

0
∂I
∂x3

d θ




 . (3.6)

3.2.3 Finding the scale

We showed that the unscaled universal barrier Φu is a logarithmically homogeneous
function of degree θ = 3. In view of the observations above we have that the actual
universal barrier is given by

Φ(x) = κΦu(x),

with self-concordance parameter ν = 3κ, for all p ≥ 1.
As we have pointed out, we still have to find a constant κ, as small as possible,

so that Φ = κΦu is a self-concordant function. Then in view of Theorem 2.5.6 Φ
is a 3κ-self-concordant barrier for K.

According to Renegar (see [55, Section 2.2]) a function F : intK ⊂ Rn → R is
self-concordant if for all x ∈ intK, y ∈ D0(x, 1) = {y : ||y − x||x < 1} and for all
v 6= 0 the following two inequalities are satisfied

1− ||y − x||x ≤
||v||y
||v||x

≤ 1

1− ||y − x||x
. (3.7)

By scaling F with a parameter κ it follows directly that the Hessian of (κF ) at
any x ∈ intK becomes ∇2(κF )(x) = κ∇2F (x). This implies that the local norm
of any z ∈ Rn in terms of the scaled Hessian at x becomes

||z||∇2(κF )(x) = 〈∇2(κF )(x)z, z〉1/2 =
√
κ ||z||∇2F (x).

If we apply this observation to (3.7), we see that the term in the middle is unaf-
fected by a scaling of F , i.e.

||v||∇2(κF )(y)

||v||∇2(κF )(x)
=

√
κ||v||∇2F (y)√
κ||v||∇2F (x)

=
||v||y
||v||x

.

On the other hand, the norm terms ||y − x||x do depend on the scaling of F . We
have

||y − x||∇2(κF )(x) =
√
κ||y − x||∇2F (x) =

√
κ||y − x||x.
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That means by scaling F with a constant κ the inequalities (3.7) are equivalent to

1−√κ||y − x||x ≤
||v||y
||v||x

≤ 1

1−√κ||y − x||x
. (3.8)

We see that if κ ≥ 1, then (3.8) is less restrictive than (3.7), since 1−√κ||y−x||x ≤
1− ||y − x||x. That means, if (3.7) is satisfied for all x ∈ K, all y ∈ D0(x, 1) and
all v 6= 0, then automatically (3.8) is true too. Conversely, if κ < 1, then the two
inequalities in (3.8) become tighter than the inequalities in (3.7).

From the right-hand side inequality of (3.8), we can remove the dependence on

v by finding an upper bound on
||v||y
||v||x . To simplify notation let us denote for any

x ∈ intK the Hessian of F at x by H(x) = ∇2F (x). We get

(

max
v 6=0

||v||y
||v||x

)2

= max
v 6=0

||v||2y
||v||2x

= max
v 6=0

vTH(y)v

vTH(x)v
= max

v 6=0

vTH(y)v

vTH(x)
1
2

︸ ︷︷ ︸

wT

·H(x)
1
2 v

︸ ︷︷ ︸

w 6=0

= max
w 6=0

wTH(x)−
1
2H(y)H(x)−

1
2w

||w||2 = max
w 6=0

||H(y)
1
2H(x)−

1
2w||2

||w||2

=

(

max
w 6=0

||H(y)
1
2H(x)−

1
2w||

||w||

)2

= ||H(y)
1
2H(x)−

1
2 ||2,

where the matrix norm in the last expression is induced by the Euclidean norm
|| · ||2. Let us denote

σ1(x, y) := ||H(y)
1
2H(x)−

1
2 ||.

Similarly we consider the lower bound on
||v||y
||v||x , or alternatively an upper bound

on ||v||x
||v||y . We get

σ2(x, y) := max
v 6=0

||v||x
||v||y

= ||H(x)
1
2H(y)−

1
2 ||.

Note that σ1(x, y) is the largest singular value of the matrix H(y)
1
2H(x)−

1
2 .

On the other hand σ2(x, y) is the largest singular value of H(x)
1
2H(y)−

1
2 =

[

H(y)
1
2H(x)−

1
2

]−1

, or equivalently, the inverse of the smallest singular value of

H(y)
1
2H(x)−

1
2 .

Our aim is to find the smallest κ such that the inequalities (3.8) are valid. Using
the above reformulations, we see that this is equivalent to finding the smallest κ
such that

max{σ1(x, y), σ2(x, y)} ≤
1

1−√κ ||y − x||x
for x ∈ intK, y ∈ D0 (x, 1/

√
κ), which is the same as

κ ≥
(

1− 1
max(σ1,σ2)

||y − x||x

)2

︸ ︷︷ ︸

=:ψ(x,y)

.
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Let us denote
ϕ(κ) := sup

x∈intK
y∈D0

“

x, 1√
κ

”

ψ(x, y). (3.9)

We see that ϕ is non-increasing in κ, because the radii r = 1√
κ

decrease as κ

increases, and as a consequence we are taking suprema over smaller and smaller
sets. Our goal is to find the smallest κ such that

κ ≥ ϕ(κ). (3.10)

This situation is illustrated in Figure 3.1.
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Figure 3.1: solid: κ, dashed: ϕ(κ).

We denote by κ∗ the smallest value of κ that satisfies (3.10). Note that in
order to evaluate ϕ we need to solve the subproblem (3.9). Therefore we cannot
compute explicitly κ∗ but we can find it numerically by applying the following
simple bisection-like algorithm

For any κ > 0 we define r(κ) = 1√
κ
, and for an initial κ0 (say κ0 = 1) we

denote r0 = r(κ0) we consider the problem

κ̄ := sup
x∈intK

y∈D0(x,r0)

ψ(x, y). (3.11)

If κ̄ < κ0, then κ0 is an upper bound on κ∗ (because κ0 satisfies (3.10)). On the
other hand κ̄ is a lower bound on κ∗, because κ̄ < κ0 implies r̄ = r(κ̄) > r(κ0) = r0,
which means

κ̄ = sup
x∈intK

y∈D0(x,r0)

ψ(x, y) ≤ sup
x∈intK
y∈D0(x,r̄)

ψ(x, y).

In other words κ̄ is a lower bound on κ∗. In fact, κ̄ might be equal to κ∗ if the
inequality above is tight.
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The goal is to find a κ+ that is smaller than κ0 but still greater than κ̄ and
that satisfies (3.10). We define κ+ simply as a convex combination between κ0 and
κ̄ and check if (3.10) is satisfied. This procedure is summarized in Algorithm 6.

Algorithm 6 Bisection method to find optimal scaling parameter κ

Initialize: κ0 = 1, κ̄0 = 1, r0 = 1√
κ0

, k = 0, γ ∈ (0, 1).

while κk − κ̄k ≥ 0 do

κ̄k := sup x∈K
y∈D(x,rk)

ψ(x, y)

if κ̄k < κk then

κk+1 := γκ̄k + (1− γ)κk
rk+1 = 1√

κk
(≥ 1)

k = k + 1
else

return κk−1

end if

end while

Note that Algorithm 6 generates a decreasing sequence of upper bounds κk
(because as long as the algorithm runs it takes as new value for κk+1 the convex
combination of κ̄k and the previous κk). As a result the sequence of radii rk as well
as the sequence of κ̄k will be increasing (the latter because we take the supremum
over larger and larger sets of the same function). The return value will be the last
computed valid upper bound for the scaling coefficient.

So far we have assumed that the subproblem (3.11) can be solved exactly. As
we mentioned before, (3.11) involves implicitly the value of κ that we are looking
for. Therefore we propose the following way of approximating the solution of
(3.11). For the current κ we generate a random sample of points x ∈ intK and
y ∈ D0(x, r) and compute the supremum of ψ over that sampling set Dr ⊆ {(x, y) :
x ∈ intK, y ∈ D0(x, r)}. Thus, we obtain only a lower bound κ̂ on the actual κ̄
because

κ̂ = sup
(x,y)∈Dr

ψ(x, y) ≤ sup
x∈intK
y∈D0(x,r)

ψ(x, y) = κ̄.

If now κ̂ < κ, we conclude that also κ̄ < κ (which is not necessarily true), and we
accept κ as a valid upper bound. Therefore, the sequence of upper bounds κ that
we compute is uncertain, i.e. we might think that κ is a valid scaling coefficient
that satisfies (3.10) because we observe that κ̂ < κ. Moreover, the value of ψ
can only be evaluated approximately, because it involves the computation of the
Hessian of the universal barrier, which is defined in (3.6) using some integrals that
are computed numerically.

We have implemented the above scheme that computes in each iteration an
approximation κ̂ for the subproblem (3.11) for different values of p. We have sam-
pled 10 random points x in the cone K and for each x 100 random points y in the
corresponding scaled Dikin ellipsoid around x. In Tables 3.1 we see the approxi-
mate values of the optimal κ.
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p κ p
p+1

2 0.666666 0.667
3 0.752176 0.750
4 0.801353 0.800
5 0.834602 0.833
6 0.859251 0.857
7 0.876871 0.875
8 0.893245 0.889
9 0.904193 0.900
10 0.910155 0.909

p κ p
2p−1

2 0.666666 0.667
3/2 0.746877 0.750
4/3 0.794590 0.800
5/4 0.823972 0.833
6/5 0.859855 0.857
7/6 0.871697 0.875
8/7 0.874634 0.889
9/8 0.897667 0.900
10/9 0.909984 0.909

Table 3.1: Scaling coefficients for the universal barrier for the 3D p-cone.

We see that for p = 2 we obtain a scaling factor of κ = 2
3 , which is in fact the

optimal scaling factor for the universal barrier for the second order cone (see [28,
Lemma 7.1]). That means in that case we obtain a self-concordance parameter of
ν = 2. On the other hand for large values of p and for p→ 1 the value of κ tends
to 1. This effect agree with the theory, since for p = 1 and p = ∞ the p-cone
is a polyhedral cone with optimal self-concordance parameter or ν = 3. In these
two extreme cases it cannot be possible to reduce the self-concordance parameter
by scaling the universal barrier with a κ < 1. Furthermore, we observe a strong
resemblance of the obtained values for κ with the function ϕ1(p) = p

p+1 for p ≥ 2

and ϕ2(p) = p
2p−1 for p ∈ [1, 2] (see Figure 3.2).

1 2 3 4 5 6 7 8 9 10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

p

κ

Figure 3.2: Scaling parameter κ for universal barrier for P(2)
p vs. p. The numer-

ically obtained values are indicated using the stars (*), the plotted functions are
ϕ1(p) = p

p+1 for p ≥ 2 and ϕ1(p) = p
2p−1 for p ∈ [0, 1].
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Based on our numerical experiments we conjecture that the universal barrier

for the three-dimensional p-cone P(2)
p is given by

Φ(x, t) = ϕ(p)Φu(x, t),

where Φu(x, t) = log(ζ(x, t)) and ζ(x, t) is the characteristic function of P(2)
p . The

scaling coefficient is given by

ϕ(p) =

{
p
p+1 , p ≥ 2
p

2p−1 , p ∈ [1, 2].

Moreover, the optimal self-concordance parameter of Φ(x, t) is ν = 3ϕ(p) ∈ [2, 3].
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CHAPTER 4

Modelling with the power cone

In this chapter we consider the so-called power cone Kα in dimension 3 and we
discuss its scope, i.e. we examine which constraints can be expressed using Kα.
For α ∈ [0, 1] the power cone is defined as

Kα :=
{
(x, z) ∈ R2

+ × R : xα1 x
1−α
2 ≥ |z|

}
⊂ R3.

We start with the observation from the previous chapter that for α = 1
2 the cone

Kα is exactly the rotated second order cone in dimension 3. For the other two
extreme cases (α ∈ {0, 1}) we obtain a polyhedral cone, e.g. for α = 0, we get

K0 = {(x1, x2, z) : x1 ≥ 0, x2 ≥ |z|} = {(x1, x2, z) : x1 ≥ 0, x2 ≥ z, x2 ≥ −z}.

In Section 2.5.2 we saw that these three cones are in fact symmetric cones (see
Definition 2.5.10).

For all other values of α ∈ (0, 1) the coneKα is nonsymmetric, and therefore not
applicable to practically efficient symmetric primal-dual interior-point methods.
However, we showed in Section 2.5.3 that nonsymmetric conic problems can be
solved using a primal-dual predictor-corrector method (Algorithm 5), provided
that a self-concordant barrier for the dual cone is available. Moreover, we showed
in Theorem 3.1.1 that

Fα(x, z) = − log(x2α
1 x2−2α

2 − z2)− (1− α) log(x1)− α log(x2)

is a 3-self-concordant barrier for Kα. If we have a dual formulation (D) with
a cone K∗ that is a direct product of power cones, then we can derive in view
of Section 2.4.3 a ν-self-concordant barrier for K∗, where ν = 3N and N is the
number of power cones in the (D). The complexity of solving the dual problem will
then be proportional to

√
3N log(1/ǫ) (see Theorem 2.4.14 and Theorem 2.5.18).

That means all convex optimization problems that can be reformulated in dual
conic form, where the dual cone is a direct product of power cones Kα, can be
efficiently solved using dual or primal-dual interior-point methods.

109
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The main objective of this chapter is therefore the description of the scope
of the power cone, i.e. given a convex set C, we are looking for representations
of C in terms of Kα in the following sense. We call C power cone representable
(α-representable) if there exist a finite integer M , scalars αi ∈ [0, 1], i = 1, . . . ,M ,
vectors c1, . . . , cM ∈ R3, matrices A1, . . . , AM with 3 columns and appropriate
number of rows, a matrix Af and a vector cf such that

u ∈ C ⇔ ci −ATi
[
u
v

]

∈ Kαi , i = 1, . . . ,M, ATf

[
u
v

]

= cf

for some vector v. The variables v are denoted artificial variables or modelling
variables. We denote the above finite system of conic inequalities by S and call it
the α-representation of C. More compactly, we can write

u ∈ C ⇔ c−AT
[
u
v

]

∈ Kα1 × · · · × KαM , A
T
f

[
u
v

]

= cf

where c is the vector containing the ci’s and A = [A1, . . . , AM ].

Similarly we define α-representability of a convex function f via α-representability
of its epigraph, i.e.

f is α-representable ⇔ epi(f) is α-representable.

The representability of a given set C in terms of Kα can be considered as a
lifting into a higher-dimensional space while confining the nonlinearities in C into
smaller building blocks, the power cones Kαi . Since we know a self-concordant
barrier for Kα, we can then construct a self-concordant barrier of the lifted power
cone reformulation of an α-representable set C. As a consequence we can optimize
linear functions over such sets C.

In the following two sections we explore sets that are α-representable, first
for the power cone itself, then for a limit of the power cone. In Section 4.3 we
compute the duals of these cones, while Section 4.4 is devoted to two concrete
problem classes making use of earlier reformulations. Finally, we present numerical
results of a dual and a primal-dual path-following method for solving three different
problem classes and compare these methods with several commercial nonlinear
programming solvers in Section 4.5.

4.1 Power cone representability

We build up the class of α-representable functions in a similar fashion as proposed
by Ben-Tal and Nemirovski in [3] for sets and functions that are representable in
terms of second-order cones and semidefinite cones, namely we present

1. elementary α-representable functions and sets,

2. operations that preserve α-representability.
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4.1.1 Elementary α-representable functions

1. affine function: f(x) = aTx+ b is α-representable since aTx+ b ≤ t if and
only if −aTx+ t− b ≥ 0 = |0|, which is equivalent to (−aTx+ t− b)1 10 ≥ |0|
or

(−aTx+ t− b, 1, 0) ∈ K1.

2. convex p-power: f(x) = |x|p, 1 ≤ p ≤ ∞. Its epigraph is given by |x|p ≤ t
which is the same as (t, 1, x) ∈ Kα with α = 1/p.

3. concave power: the set {(x, t) : xα ≥ |t|}, with α ∈ (0, 1], x ≥ 0 can be
described by the inequality xα11−α ≥ |t|, or equivalently (x, 1, t) ∈ Kα.

4. inverse of p-power: f(x) = xp, p < 0, x > 0. Indeed, we see that the
epigraph of f is given by xp ≤ t, which is clearly the same as to 1 ≤ tx−p.
If we define α = 1/(1 − p) ∈ (0, 1) and take both sides of the inequality
to the power of α, then the inequality sign remains the same (since τα is
monotonically increasing in τ for α ∈ (0, 1)). We get

1 = 1α ≤ tα · x−p·α.

It remains to note that −pα = −(α − 1)/α · α = 1 − α. That means the
epigraph of f can be described by (t, x, 1) ∈ Kα, where α = 1/(1− p).

We also have the following observation. If f is α-representable then any sublevel
set

Lc(f) = {x : f(x) ≤ c}
is α-representable too.

4.1.2 Important examples of α-representable sets

High-dimensional power cone K(n)
α

We recall here the definition of the higher-dimensional power cone. For α such
that αi ≥ 0 and

∑n
i=1 αi = 1 we define

K(n)
α =

{
(x, z) ∈ Rn+ × R : xα1

1 · · ·xαn
n ≥ |z|

}

We decompose K(n)
α into several smaller power cones of dimension 3 each.

Indeed, it holds that (x, z) ∈ K(n)
α if and only if ∃v1 ≥ 0 such that xα1

1 v1−α1
1 ≥ |z|

and
xα2

2 · · ·xαn
n ≥ v1−α1

1 , (4.1)

because then we have

xα1
1 xα2

2 · · ·xαn
n

︸ ︷︷ ︸

≥v1−α1
1

≥ xα1
1 v1−α1

1 ≥ |z|.

Note that the inequality (4.1) can be alternatively written as

x
α2

1−α1
2 · · ·x

αn
1−α1
n ≥ |v1| = v1, (4.2)
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where the exponents satisfy

n∑

i=2

αi
1− α1

=

∑n
i=2 α2

1− α1
=

1− α1

1− α1
= 1.

For i = 2, . . . , n−1 let us denote α̃i = αi

αi+···+αn
. For i = 2 we have then α̃2 = α1

1−α1
.

Then (4.2) is true if and only if ∃ v2 ≥ 0 such that xα̃2
2 v1−α̃2

2 ≥ |v1| = v1 and

x
α3

1−α1
3 · · ·x

αn
1−α1
n ≥ v1−α̃2

2 = v
α3+···+αn

1−α1
2 ,

or in other words
xα3

3 · · ·xαn
n ≥ vα3+···+αn

2 .

We can proceed now in the same manner as above until we get in the last step

x
α̃n−1

n−1 x
1−α̃n−1
n ≥ |vn−2| = vn−2.

That means we can decompose K(n)
α in the following way: (x, z) ∈ K(n)

α if and only
if ∃ v1 ≥ 0, . . . , vn−2 ≥ 0 such that

(x1, v1, z) ∈ Kα1

(xi, vi, vi−1) ∈ Kα̃i , i = 2, . . . , n− 2,

(xn−1, xn, vn−2) ∈ Kα̃n−1 ,

(4.3)

where α̃i = αi

αi+···+αn
for i = 2, . . . , n− 1.

In other words, K(n)
α can be decomposed into n−1 low-dimensional power cones

Kα by introducing n − 2 additional variables v1, . . . , vn−2. The self-concordance
parameter of the α-representation (4.3) is ν = 3(n− 1).

p-cone

We recall the definition of the p-cone in dimension n+ 1. For p ≥ 1 we define

P(n)
p = {(x, t) : ||x||p ≤ t} ⊂ Rn+1,

where ||x||p = (
∑n

i=1 |xi|p)
1/p

denotes the p-norm of a point x ∈ Rn. Note that p
may assume its limit value ∞, in which case

P(n)
∞ =

{

(x, t) : max
i=1,...,n

|xi| ≤ t
}

.

We now prove that P(n)
p is α-representable, i.e. (x, t) ∈ P(n)

p if and only if
∃ yi ≥ 0 such that

(yi, t, xi) ∈ Kα, i = 1, . . . , n (4.4)
n∑

i=1

yi = t, (4.5)
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where α = 1
p for 1 ≤ p < ∞. For p → ∞ we get asymptotically the infinity

norm ||x||∞ = maxi=1,...,n |xi|. By convention we define α = 0 for p = ∞. The
parameter of the α-representation above is ν = 3n.

Let us first consider the case α = 0. Then (4.4) means y0
i t

1 = t ≥ |xi| for
all i = 1, . . . , n. This is equivalent to t ≥ maxi=1,...,n |xi| = ||x||∞. Reversely, if
||x||∞ ≤ t, we define yi = t

n , i = 1, . . . , n and we get directly (4.4) and (4.5).
Let α > 0, assume that (4.4) and (4.5) hold. Then

(yi, t, xi) ∈ Kα, ∀i
⇔ yαi · t1−α ≥ |xi|, ∀i

⇔ yi · t(1−α)/α ≥ |xi|1/α, ∀i

⇒
n∑

i=1

yi

︸ ︷︷ ︸

=t

·t(1−α)/α ≥
n∑

i=1

|xi|1/α,

⇔ tp ≥
n∑

i=1

|xi|p,

since 1−α
α = p− 1. The last inequality means in fact ||x||p ≤ t, or (x, t) ∈ P(n)

p .

On the other hand, let (x, t) ∈ P(n)
p . We define

ǫ := tp −
n∑

i=1

|xi|p ≥ 0

yi :=
1

tp−1
·
( ǫ

n
+ |xi|p

)

.

Then

n∑

i=1

yi =

n∑

i=1

1

tp−1
·
( ǫ

n
+ |xi|p

)

=
ǫ

tp−1
+

n∑

i=1

|xi|p
tp−1

= t−
n∑

i=1

|xi|p
tp−1

+
n∑

i=1

|xi|p
tp−1

= t.

Additionally, we have

(yi, t, xi) ∈ Kα
⇔ yαi · t1−α ≥ |xi|, ∀i

⇔ yi · t(1−α)/α ≥ |xi|1/α, ∀i.

Using the above definition of yi, we get

yi t
(1−α)/α
︸ ︷︷ ︸

=tp−1

=
1

tp−1

( ǫ

n
+ |xi|p

)

tp−1 =
ǫ

n
︸︷︷︸

≥0

+|xi|p ≥ |xi|1/α,

which guarantees that (yi, t, xi) ∈ Kα. We conclude that P(n)
p is α-representable.
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The α-representability of P(n)
p has the following implication: for p = 2 we

obtain the second-order cone Ln = {(x, t) : ||x||2 ≤ t} ⊂ Rn+1 which becomes
also α-representable. That means all sets (and applications derived from them)
that are representable in terms of the second-order cone fall into the scope of Kα.
Such sets are listed in [3, Chapter 3]. Note, however, that modelling the second
order cone Ln with Kα is not efficient because its parameter (ν = 3n) is far higher
than the optimal parameter for the second order cone (ν = 2, independent of the
dimension n).

It follows directly that p-norms are α-representable too, since the epigraph of

f(x) = ||x||p is exactly the p-cone P(n)
p . Moreover, p-unit balls are α-representable

since they are sublevel sets of f(x) = ||x||p.

lp-cone

Given p ∈ Rn++, the lp-cone is defined as

Lp :=

{

(x, t, s) :

n∑

i=1

1

pi

( |xi|
t

)pi

≤ s

t

}

.

This cone has applications in particular in lp-norm optimization. Glineur (see [23,
Section 4.2]) has shown that Lp is a proper cone .

We claim that (x, t, s) ∈ Lp if and only if ∃ v ∈ Rn+ such that

(vi, t, xi) ∈ Kαi ,
n∑

i=1

pivi = s,

where αi = 1/pi, i = 1, . . . , n. The parameter of the above α-representation of the
lp-cone is ν = 3n.

Indeed, let (vi, t, xi) ∈ K1/pi
. This is equivalent to

v
1

pi

i t
pi−1

pi ≥ |xi|,
⇔ vit

pi−1 ≥ |xi|pi ,

⇔ vi
t
≥
( |xi|

t

)pi

.

By multiplying the above inequalities with pi and take the sum over all i, we get

n∑

i=1

pi
|xi|pi

t
≤

n∑

i=1

pi
vi
t

=
s

t
.

Conversely, let (x, t, s) ∈ Lp, define

εi =
s−∑n

j=1 pj
|xj |pj

tpj−1

pi
≥ 0
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and set

vi :=
|xi|pi

tpi−1
+
εi
n
.

Then vi ≥ |xi|pi

tpi−1 , or equivalently (vi, t, xi) ∈ K1/pi
. On the other hand, when

multiplying each term by pi and taking the sum, we get

n∑

i=1

pivi =

n∑

i=1

[

pi
|xi|pi

tpi−1
+
piεi
n

]

=

n∑

i=1

[

pi
|xi|pi

tpi−1

]

+

n∑

i=1

1

n

[

s−
n∑

i=1

pi
|xi|pi

tpi−1

]

= s.

We conclude that Lp is α-representable.

Hypograph of geometric mean

The geometric mean of two nonnegative variables x and y is given by

f(x, y) =
√
xy

which is a concave function. Its hypograph is given by

CGM = {(x, y, t) : x ≥ 0, y ≥ 0, t ≤ √xy}.

We claim that CGM is α-representable. Indeed, we have that (x, y, t) ∈ CGM if and
only if ∃ v such that

(x, y, v) ∈ K1/2,

t ≤ v.

This is true because

x
1
2 y

1
2 ≥ |v| ≥ v ≥ t.

The parameter of the α-representation of the geometric mean is ν = 4.

4.1.3 Operations that preserve α-representability

The convex sets given by the epigraph and the sublevel sets of the α-representable
functions listed above can be transformed into other sets that are α-representable
too. The list below of operations that preserve α-representability is included in
the one presented by Ben-Tal and Nemirovski in [3, Section 3.3]. The difference is
that the authors of [3] consider as basic elements functions and sets that are repre-
sentable in terms of the second-order cone. The authors establish representability
of many kinds of sets and functions that are quadratic in their nature.

Here the basic atoms are elements that are not restricted to degree two. In
fact, any kind of convex constraint with real powers (not necessarily rational) is
expressible. Therefore, the scope of α-representable functions and sets is a little
wider, as we will see now.
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Intersection of α-representable sets

Let Ci ⊂ E , i = 1, . . . , N be α-representable. Then so is their intersection C :=
⋂N
i=1 Ci. Indeed, let Si, i = 1, . . . , N be the α-representation of Ci with artificial

variables vi. Then we obtain the α-representation of C as

{(u, vi) that satisfy Si}, i = 1, . . . , N.

Example:

Let f1(x) = |x|p1 , p1 ≥ 1 and f2(x) = xp2 , where x > 0 and p2 < 0. Then the
intersection of the epigraphs

epi(f1)
⋂

epi(f2)

is α-representable because f1 and f2 are in the list of elementary α-representable
functions.

Direct product of α-representable sets

Let Ci ⊂ Ei, i = 1, . . . , N be α-representable. Then so is their direct product
C := C1×· · ·×CN . It is clear that if Si is an α-representation of Ci in the variables
ui ∈ Ci and vi, then the union of Si is an α-representation of C.
Example: mix of K(n)

α and P(n)
p .

We consider a generalization ofK(n)
α , where the right-hand side term |z| is replaced

by any p-norm of a vector ||z||p, i.e. for αi ≥ 0,
∑n1

i=1 αi = 1 and p ≥ 1 we define

K(n1,n2)
α,p =

{

(x, z) ∈ Rn1
+ × Rn2 :

n1∏

i=1

xαi

i ≥ ||z||p
}

.

We see that (x, z) ∈ K(n1,n2)
α,p if and only if ∃ t ≥ 0 such that

(x, t) ∈ K(n1)
α ,

(z, t) ∈ P(n2)
p .

As we have seen before, the first expression can be modelled as in (4.3) and the
second as in (4.4) and (4.5). The artificial variable t that is shared between both
cones can be replaced by using the identity (4.5). We obtain then the following

α-representation of K(n1,n2)
α,p : a point (x, z) ∈ K(n1,n2)

α,p if and only if ∃ vi ≥ 0, i =
1, . . . , n1 − 2 and wi ≥ 0, i = 1, . . . , n2 such that

(x1, v1,

n2∑

i=1

wi) ∈ Kα1

(xi, vi, vi−1) ∈ Kα̃i , i = 2, . . . , n1 − 2,

(xn1−1, xn1 , vn1−2) ∈ Kα̃n1−1 ,
(

wi,

n2∑

i=1

wi, zi

)

∈ K1/p, i = 1, . . . , n2,
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where α̃i = αi

αi+···+αn
for i = 1, . . . , n1 − 1. We have introduced n1 + n2 − 2 new

variables v1, . . . , vn1−2, and w1, . . . , wn2 , as well as the n1 + n2 − 1 power cone
constraints.

Affine image of α-representable sets

Let C ⊆ Rn be α-representable and f : Rn → Rm such that f(x) = Ax+ b, where
A ∈ Rm,n and b ∈ Rm. Then

f(C) := {f(x), x ∈ C} ⊆ Rm

is α-representable. The proof can be found in [3, p. 89], where the authors consider
the representability in terms of second-order cones. the arguments for our setting
are exactly the same.

Inverse affine image of α-representable sets

Let C ⊆ Rn be α-representable and f : Rk → Rn such that f(z) = Bz + b, where
B ∈ Rn,k and b ∈ Rn, then

f−1(C) := {z : f(z) ∈ C} ⊆ Rk

is α-representable. Indeed, let u = Bz + b and S the α-representation of C with
the vector c and matrix A. Then

c−AT
[
u
v

]

= c−AT
[
Bz + b
v

]

∈ Kα1 × · · · × KαM

is clearly an α-representation of f−1(C) (because the term in the middle is an
affine expression in the variables z and v).

Maximum of α-representable functions

Let Fi : E → R, i = 1, . . . , N be α-representable functions. Then

F (x) = max
i=1,...,N

Fi(x)

is α-representable.
Indeed, we have epi(F ) =

⋂N
i=1 epi(Fi), where epi(Fi) are α-representable sets.

We saw above that the intersection of finitely many α-representable sets is again
α-representable.

Nonnegative weighted sum of α-representable functions

Let Fi : Ci ⊆ E → R, i = 1, . . . ,m be α-representable functions and λi ≥ 0, i =
1, . . . ,m. Then

F (x) =

m∑

i=1

λiFi(x)

is α-representable on
⋂n
i=1 Ci.
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Indeed, the epigraph of F which is given by F (x) =
∑m

i=1 λiFi(x) ≤ t, can be
equivalently written as

Fi(x) ≤ vi, i = 1, . . . ,m,
m∑

i=1

λivi ≤ t.

This is a direct product of m α-representable sets and the epigraph of a linear
function in v, which is α-representable too. The last inequality can in fact be
replaced by the linear equation

∑m
i=1 λivi = t.

Nonnegative weighted sum of separable α-representable functions

Let Fi : Ci ⊆ Ei → R, i = 1, . . . ,m be α-representable functions and λi ≥ 0, i =
1, . . . ,m. Then

F (x) =

m∑

i=1

λiFi(xi)

is α-representable on C1 × . . .× Cm.

We see that the epigraphs of F̃i(x) = Fi(xi) are α-representable (because their
epigraphs are inverse images of α-representable sets under affine transformations).
Moreover, F (x) =

∑m
i=1 Fi(xi) =

∑m
i=1 F̃i(x) which is α-representable because of

the previous point.

Affine transformation in the arguments

Let F : C ⊆ Rn → R be α-representable, B ∈ Rn,p and c ∈ Rn. Then

F̃ (y) = F (By + c)

is α-representable on dom F̃ = {y ∈ Rp : By + c ∈ C} ⊆ Rp.
Indeed, the epigraph of F̃ is the inverse image of the epigraph of F under an

affine transformation.

Partial minimization

Let F : C ⊆ Rn → R, such that (x, y) 7→ F (x, y), be α-representable and bounded
from below. Then the partial minimization of F with respect to y

G(x) = inf
y∈Q(x)

F (x, y),

where Q(x) = {y : (x, y) ∈ C}, is α-representable on domG = {x : Q(x) 6= ∅}.
Indeed, the epigraph of G, i.e. the set {(x, t) : G(x) ≤ t}, is simply the

projection of the epigraph of F ({(x, y, t) : F (x, y) ≤ t}) onto the (x, t)-plane. It
remains to note that this projection is a linear transformation.
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4.1.4 Some more α-representable sets

Unhomogenizing the power cone

For αi ≥ 0, i = 1, 2 with α1 + α2 ≤ 1 we consider the convex set

Cα = {(x1, x2, z) : xα1

1 xα2

2 ≥ |z|}.

We see that the definition of Cα strongly resembles the one of the power cone Kα.
The difference is that it is not required that the exponents sum to 1. It is clear that

Cα is α-representable because (x, y, z) ∈ Cα if and only if (x, y, 1, z) ∈ K(3)
α with

α = (α1, α2, 1−α1−α2). We saw that K(3)
α is α-representable and the argument is

an affine transformation of the variables (x, y, z). Concretely, the α-representation
becomes: (x1x2, z) ∈ Cα if and only if ∃ v ≥ 0 such that

(x1, v, z) ∈ Kα1 ,

(x2, 1, v) ∈ K α2
1−α1

.

Indeed,

xα1 yα2

︸︷︷︸

≥v1−α1

≥ xα1 v1−α1 ≥ |z|.

Unhomogenizing the p-cone

Let us consider the convex set

Cp =

{

(x, t) :
n∑

i=1

|xi|pi ≤ tp, t ≥ 0

}

where 1 ≤ p ≤ mini=1,...,n pi. It can be easily seen that (x, t) ∈ Cp if and only if
there exists v ≥ 0 such that

|xi|pi ≤ vpi , i = 1, . . . , n (4.6)
n∑

i=1

vpi ≤ tp, (4.7)

because, for (x, t) ∈ Cp choose vi = |xi|pi/p, then

|xi|pi = (|xi|
pi
p )p = vpi (≤ vpi )

n∑

i=1

vpi =
n∑

i=1

|xi|pi ≤ tp.

The reverse implication is immediate.
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Homogenizing the inequalities in (4.6) with θi = 1, we get

∣
∣
∣
∣

xi
θi

∣
∣
∣
∣

pi

≤
(
vi
θi

)p

⇔ |xi|pi ≤ vpi · θpi−p
i

⇔ |xi| ≤ vp/pi

i · θ(pi−p)/pi

i

⇔ (vi, 1, xi) ∈ Kαi , αi =
p

pi
, i = 1, . . . , n.

The p-cone constraint (4.7) is modelled again by introducing additional variables
wi, with

∑n
i=1 wi = t. As above, t is replaced in the formulation. Finally, we get

(x, t) ∈ Cp if and only if there are v ≥ 0 and w ≥ 0 such that

(vi, 1, xi) ∈ Kαi , αi =
p

pi
, i = 1, . . . , n,

(

wi,
n∑

i=1

wi, vi

)

∈ Kαn+1 , αn+1 =
1

p
, i = 1, . . . , n.

4.2 The exponential cone

In this section we consider the cone that is obtained by taking the conic hull of
the epigraph of the exponential function.

Kexp = cl

({

z1 ∈ R, z2 ∈ R+, z3 ∈ R++ : exp

(
z1
z3

)

≤ z2
z3

})

.

Since we work with closed convex cones, we have to take the closure in the above
definition. Let us denote

K0
exp =

{

z1 ∈ R, z2 ∈ R+, z3 ∈ R++ : exp

(
z1
z3

)

≤ z2
z3

}

.

We have then the following description of Kexp.

Lemma 4.2.1. It holds

Kexp = K0
exp

⋃

(−R+)× R+ × {0}.

Proof. Let us denote

K̄exp = K0
exp

⋃

(−R+)× R+ × {0}.

As a first step we show that K̄exp ⊆ Kexp. Let z ∈ K̄exp. That means either
z ∈ K0

exp or z ∈ (−R+)×R+×{0}. If z ∈ K0
exp then it automatically holds that z ∈

Kexp since K0
exp ⊆ cl(K0

exp) = Kexp. Let now z = (z1, z2, z3) ∈ (−R+)×R+ × {0}.
In order to prove that z ∈ Kexp we need to show that z is an accumulation point
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of a sequence {z(k)} ⊂ K0
exp.

For k = 1, 2, . . . we define the sequence z(k) = (z
(k)
1 , z

(k)
2 , z

(k)
3 ) with

z
(k)
1 = −1

k
+ z1,

z
(k)
2 =

1

k
+ z2 ≥ 0, ∀ integer k ≥ 1,

z
(k)
3 =

1

k2
> 0, ∀ integer k ≥ 1.

We obtain the following chain of inequalities:

exp

(

z
(k)
1

z
(k)
3

)

= exp

(− 1
k + z1

1
k2

)

= exp



−k+k2z1
︸ ︷︷ ︸

≤0





≤ exp (−k) ≤ exp(−1) < 1

≤ k ≤ k + k2z2 =
z
(k)
2

z
(k)
3

.

That means the sequence {z(k)} ⊂ K0
exp for all k = 1, 2, . . . and we have z(k) →

(z1, z2, 0) as k →∞.
Conversely, let us show that Kexp ⊆ K̄exp. Let z ∈ Kexp and assume z /∈

K̄exp, i.e. z /∈ K0
exp and z /∈ (−R+) × R+ × {0}. One can verify that the only

possible situation where this can happen is z1 > 0, z2 ≥ 0 and z3 = 0. The other

possibilities like z2 < 0 or z3 < 0 or exp
(
z1
z3

)

> z2
z3

are excluded immediately by

looking at K0
exp. Let z = (z1, z2, z3) be such a potential accumulation point such

that z1 > 0, z2 ≥ 0 and z3 = 0. We see that any sequence {z(k)} ⊂ K0
exp must

satisfy

exp

(

z
(k)
1

z
(k)
3

)

≤ z
(k)
2

z
(k)
3

, z
(k)
2 ≥ 0, z

(k)
3 > 0,

or equivalently

exp

(

− z
(k)
1

z
(k)
3

)

z
(k)
3

≥ 1

z
(k)
2

, z
(k)
2 ≥ 0, z

(k)
3 > 0. (4.8)

Since z
(k)
1 → z1 > 0 we can conclude that z

(k)
1 must be strictly positive for all

k ≥ k̄, for some k̄. On the other hand, for any positive z
(k)
1 the term on the

left-hand side of (4.8) tends to 0 for k →∞, while the term on the right-hand side
of (4.8) tends to a positive constant (if z2 > 0) or to ∞ (if z2 = 0). In both cases
it holds

1

z
(k)
2

≥ c > 0

for some k. This contradicts (4.8) and we conclude that z = (z1, z2, z3) with
z1 > 0, z2 ≥ 0 and z3 = 0 cannot be an accumulation point of K0

exp. It follows

that Kexp ⊆ K̄exp, which finishes the proof.
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It is interesting to see that Kexp can be considered as a limit of a linear trans-
formation of the power cone Kα for α→ 0. Consider

K̃α = {(z1, z2, z3) : zα2 z
1−α
3 ≥ |z3 + αz1|}.

Then z ∈ K̃α if and only if

z2
z3
≥
∣
∣
∣
∣

z3 + αz1
z3

∣
∣
∣
∣

1/α

=

∣
∣
∣
∣
1 + α

z1
z3

∣
∣
∣
∣

1/α

.

The term on the right-hand side converges to exp(z1/z3) as α→ 0. That means

lim
α→0
K̃α = Kexp

in the sense that the indicator functions Iα(z) for K̃α converge pointwise to the
indicator function Iexp(z) of Kexp.

In that sense we may extend the definition of α-representable sets C in the
following way: There should exist finite integers M1 and M2, matrices Aα, Aexp,
Af and vectors cα, cexp and cf in appropriate sizes such that

u ∈ C ⇔







cα −ATα

[

u

v

]

∈ Kα1 × · · · × KαM1

cexp −ATexp

[

u

v

]

∈ Kexp × · · · × Kexp (M2 times),

ATf

[

u

v

]

= cf .

(α-REP)

for some artificial modelling variables v. This representation is essentially the same
as the one discussed in Appendix A, where we present our Matlab implementation
of a dual path-following interior-point solver for α-representable problems. The
only difference in the input format of the solver is the additional distinction of lin-
ear constraints. We mentioned before that linear inequalities are α-representable.
However, it is more efficient to solve them directly using the log-barrier for the
nonnegative orthant.

The operations that preserve α-representability are the same as in Section 4.1.3.
However, we can add now some more elementary sets and functions to our list α-
representable objects.

4.2.1 Additional elementary α-representable functions

1. exponential function: f : R → R, f(x) = exp(x) is α-representable.
Indeed, (x, t) ∈ epi(f) if and only if (x, t, 1) ∈ Kexp.

2. logarithm: f : R++ → R, f(x) = − log(x) is α-representable. Indeed,
(x, t) ∈ epi(f) if and only if − log(x) ≤ t, which is equivalent to

log(x) ≥ −t,
⇔ x ≥ exp(−t),

which we model as (−t, x, 1) ∈ Kexp.



4.2. THE EXPONENTIAL CONE 123

3. entropy: f : R++ → R, f(x) = x log(x) is α-representable. Indeed, (x, t) ∈
epi(f) if and only if x log(x) ≤ t. But this is equivalent to

−x log(1/x) ≤ t,

⇔ log(1/x) ≥ −t
x

⇔ 1

x
≥ exp

(−t
x

)

,

or in other words (−t, 1, x) ∈ Kexp.

4. The function f : R++ → R, f(x) = x exp(1/x) is α-representable. Indeed,
(x, t) ∈ epi(f) if and only if x exp(1/x) ≤ t, which means exp(1/x) ≤ t

x , or
in other words (1, t, x) ∈ Kexp.

4.2.2 Some more examples of α-representable sets using Kexp

Kexp with concave monomial term

Let us consider the generalization of Kexp. For αi ≥ 0,
∑n
i=1 αi = 1 we define the

cone

Kexp,α =

{

(x, y, z) ∈ R× Rn++ × R++ : exp
(x

z

)

≤
∏n
i=1 y

αi

i

z

}

.

We see that Kexp,α is α-representable. Indeed, (x, y, z) ∈ Kexp,α if and only if

(x, v, z) ∈ Kexp,

(y, v) ∈ K(n)
α ,

with parameter ν = 3n (if the high-dimensional power cone K(n)
α is modelled using

n− 1 low-dimensional power cones Kα) or ν = n+ 4 (if one uses the conjectured

(n+ 1)-self-concordant barrier for K(n)
α ).

The geometric cone

In [23], Glineur presented a cone for geometric programming problems, namely

Gn :=

{

(x, t) ∈ Rn+ × R+ :
n∑

i=1

exp
(

−xi
t

)

≤ 1

}

,

where for t = 0 we define exp
(
−xi

t

)
= 0. It turns out that Gn is a proper (i.e.

convex, closed, solid, pointed) cone. For a detailed discussion, see [23, Section 5.2].
We see that Gn is α-representable. Indeed, (x, t) ∈ Gn if and only if ∃ v such

that

(−xi, vi, t) ∈ Kexp

n∑

i=1

vi = t,
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with ν = 3n.

Indeed, (−xi, vi, t) ∈ Kexp means

exp
(

−xi
t

)

≤ vi
t
,

and when taking the sum over all i = 1, . . . , n we get exactly Gn.
Reversely, let (x, t) ∈ Gn, which means

∑n
i=1 exp

(
−xi

t

)
≤ 1, or equivalently

∑n
i=1 t exp

(
−xi

t

)
≤ t. Let us define ε := t−∑n

i=1 t exp
(
−xi

t

)
≥ 0 and

vi = t exp
(

−xi
t

)

+
ε

n
︸︷︷︸

≥0

, i = 1, . . . , n.

Consequently we have

n∑

i=1

vi =
n∑

i=1

t exp
(

−xi
t

)

+ ε = t,

and

vi = t exp
(

−xi
t

)

+
ε

n
≥ t exp

(

−xi
t

)

,

which means exp
(
−xi

t

)
≤ vi

t , or equivalently (−xi, vi, t) ∈ Kexp.

That means Gn is α-representable.

Posynomial and generalized posynomial constraints

A monomial mi is a function in N strictly positive variables xk such that

mi(x) = di

N∏

k=1

x
ai,k

k ,

where di > 0 and ai,k ∈ R for all k and i. A posynomial function f is a sum of
monomials mi,

f(x) =

n∑

i=1

mi(x).

In general a posynomial is not convex (if it happens to be convex, then it can be
modelled using Kα, see Section 4.1). However, under the above assumption that
x > 0 and di > 0, we can apply the following change of variables

xk = exp(uk) di = exp(ci).



4.2. THE EXPONENTIAL CONE 125

for uk ∈ R and ci ∈ R. That allows us to write

f(x) =

n∑

i=1

mi(x) =

n∑

i=1

di

N∏

k=1

x
ai,k

k

=

n∑

i=1

exp(ci)

N∏

k=1

exp(uk)
ai,k

=
n∑

i=1

exp(ci) · exp

(
N∑

k=1

ai,kuk

)

=

n∑

i=1

exp
(
aTi u+ ci

)
,

where we denote aTi u =
∑N

k=1 ai,kuk for i = 1, . . . , n. Note that even though f
might not be convex in x, the last expression is indeed convex in the new variables u
(as it is a sum of convex functions of affine functions in u). Posynomial constraints
are typically of the form

f(x) ≤ 1, (4.9)

where f is a posynomial. Using the convex reformulation above, it is clear that
constraints of the form

f(x) =

n∑

i=1

exp
(
aTi u+ ci

)
≤ 1

can be expressed in terms of Kexp. Indeed, the above inequality is valid if and
only if

(aTi u+ ci, vi, 1) ∈ Kexp

n∑

i=1

vi = 1,

where vi > 0 are additional modelling variables. We conclude that posynomials of
the form

∑n
i=1 di

∏N
k=1 x

ai,k

k are α-representable with parameter ν = 3n.

Boyd et al. [5] have shown that generalizations of standard posynomial con-
straints (like fractional powers and maxima of posynomials) are expressible us-
ing entirely standard posynomial constraints. In order to do that, however, it
is necessary to introduce some additional modelling variables. These generalized
posynomial constraints lead to so-called generalized geometric programming.

On the other hand the conic setting allows another generalization of posynomial
constraints of the form (4.9) which is different from the one proposed by Boyd et
al., namely

f(x) ≤ log(m(x)), (4.10)

where m(x) = d̃
∏N
k=1 x

ãk

k is any monomial. We see that (4.10) is indeed more
general than (4.9); by taking the constant monomial m ≡ e, we get exactly (4.9).
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But using the same change of variables as above and d̃ = exp(c̃), we get

n∑

i=1

exp
(
aTi u+ ci

)
≤ log

(

exp

(
N∑

k=1

(ãkuk + c̃)

))

= ãTu+ c̃,

which can be expressed using Kexp in the following manner

(aTi u+ ci, vi, 1) ∈ Kexp

n∑

i=1

vi = ãTu+ c̃.

That means generalized posynomial constraints of the form (4.10) are α-representable.

The Lambert W function

The Lambert W function has various applications in different domains (see [12] for
a discussion). It is introduced as the function that satisfies the defining equality

W (x) · exp (W (x)) = x.

For real arguments x ≥ 0 the function W is injective and concave with W (0) = 0.
W (x) as a function of x is shown in Figure 4.1.
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W
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Figure 4.1: Lambert W function.

Note that it is not possible to write down the closed form analytic formula of
W . However, we still can consider the convex set

WL = {(x, y) : x ≥ 0, 0 ≤ y ≤W (x)}. (4.11)
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By applying the monotonic transformation τ exp(τ) to all three terms of 0 ≤ y ≤
W (x), we get

0 ≤ y · exp(y) ≤W (x) · exp (W (x)) = x.

However, the term in the middle can be written as

y · exp(y) = y · exp

(
y2

y

)

≤ y · exp

(
z

y

)

,

which is true whenever z ≥ y2. That means (x, y) ∈WL if and only if y exp
(
z
y

)

≤
x and y2 ≤ z, or in other words

(z, x, y) ∈ Kexp

(z, 1, y) ∈ K 1
2
.

It follows, WL is α-representable with parameter ν = 6.

Another mixed set

We see that the cone

C =

{

(x, y, z) : exp

(
x2

2y2

)

≤ z

y

}

can be decomposed into

x2

2y2
≤ v

y
, (⇔ x2 ≤ 2vy)

exp

(
v

y

)

≤ z

y
,

using monotonicity of exp(·). That means (x, y, z) ∈ C if and only if ∃ v such that

(2v, y, x) ∈ K 1
2
,

(v, z, y) ∈ Kexp,

i.e. C is α-representable with parameter ν = 6.

4.3 The dual cones

As we showed in Section 2.5, the dual cone K∗ is an important object for the
design of primal-dual interior-point methods for convex problems in conic form.
It is essential that we are able to describe K∗ explicitly, for example to check
feasibility of dual points in practical implementations. But it might also be useful
or even necessary to derive a self-concordant barrier K∗. Therefore it is important
to have a closed form description of the dual cone.

We recall the definition of the dual cone,

K∗ = {s ∈ E∗ : sTx ≥ 0, ∀x ∈ K}.

In this section we are going to compute the dual cones of K(n)
α and Kexp.
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4.3.1 The dual of the power cone

Let us recall the definition of the high dimensional power cone. Let αi ≥ 0, i =
1, . . . , n

∑n
i=1 αi = 1. Then the (n+ 1)-dimensional power cone is given by

K(n)
α =

{
(x, z) ∈ Rn+ × R : xα1

1 · · ·xαn
n ≥ |z|

}
.

We assume without loss of generality that 0 < αi < 1, i = 1, . . . , n. In fact, if
αi = 1 for some i, then αj = 0 for all other j. On the other hand, if αi = 0 for some

i, then K(n)
α decomposes into the nonnegative orthant and a lower-dimensional

power cone.

Theorem 4.3.1. Let α ∈ Rn with 0 < αi < 1, i = 1, . . . , n. Then it holds

(

K(n)
α

)∗
= Bα · K(n)

α , (4.12)

with

Bα =

[
diag(α) 0

0 1

]

≻ 0.

Proof. Note that (4.12) is equivalent to

(

K(n)
α

)∗
= Pα :=

{

(s, w) : s ≥ 0,
n∏

i=1

(
si
αi

)αi

≥ |w|
}

.

First we will show the inclusion Pα ⊆
(

K(n)
α

)∗
. Let (s, w) ∈ Pα and (x, z) ∈ K(n)

α ,

i.e. x ≥ 0 and
∏n
i=1 x

αi

i ≥ |z|. Then

sTx+ wz ≥ sTx− |w|
n∏

i=1

xαi

i ≥ sTx−
n∏

i=1

(
sixi
αi

)αi

≥ 0.

The last inequality follows from the weighted arithmetic-geometric mean inequal-
ity. Indeed for any y ∈ Rn+ and α ∈ Rn+ with

∑n
i=1 αi = 1 it holds

n∑

i=1

αiyi ≥
n∏

i=1

yαi

i .

If we take yi = sixi

αi
(which is nonnegative), we get directly that

n∑

i=1

αi
sixi
αi

=

n∑

i=1

sixi ≥
n∏

i=1

(
sixi
αi

)αi

.

This means (s, w) ∈
(

K(n)
α

)∗
.

Conversely, let (s, w) ∈
(

K(n)
α

)∗
and assume (s, w) /∈ Pα, i.e. s � 0 or |w| >

∏n
i=1

(
si

αi

)αi

. Let us first assume ∃ si < 0. By assumption sTx + wz ≥ 0 for all
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(x, z) ∈ K(n)
α . In particular we can choose (x̄, z̄) with x̄i = 1, x̄j = 0, j 6= i and

z̄ = 0 and we have (x̄, z̄) ∈ K(n)
α , but also

sT x̄
︸︷︷︸

=si

+ wz̄
︸︷︷︸

=0

= si < 0,

which is a contradiction to the assumption (s, w) ∈
(

K(n)
α

)∗
.

Let us then look at the situation where |w| >∏n
i=1

(
si

αi

)αi

, which means

w >

n∏

i=1

(
si
αi

)αi

≥ 0 (4.13)

or

w < −
n∏

i=1

(
si
αi

)αi

≤ 0. (4.14)

The first case (4.13) is equivalent to w · ∏n
i=1

(
αi

si

)αi

> 1. If we take x̄ =
α
s ≥ 0 (which is to be understood componentwise) and z̄ = −∏n

i=1 (x̄i)
αi =

−∏n
i=1

(
αi

si

)αi

, we get

sT x̄+ wz̄ =

n∑

i=1

si
αi
si

︸ ︷︷ ︸

=1

−w ·
n∏

i=1

(
αi
si

)αi

︸ ︷︷ ︸

(4.13)
> 1

< 1− 1 = 0.

In the latter case (4.14) we can take the same x̄ as before and define z̄ =
∏n
i=1 (x̄i)

αi =
∏n
i=1

(
αi

si

)αi

and we get

sT x̄+ wz̄ =

n∑

i=1

αi

︸ ︷︷ ︸

=1

+w ·
n∏

i=1

(
αi
si

)αi

︸ ︷︷ ︸

(4.14)
< −1

< 1− 1 = 0.

That means in all cases we can define (x̄, z̄) ∈ K(n)
α such that

sT x̄+ wz̄ < 0,

which contradicts the original assumption (s, w) ∈
(

K(n)
α

)∗
. This implies

(

K(n)
α

)∗
⊆

Pα.

That means we have the following implication for the self-concordant barrier

for
(

K(n)
α

)∗
: The dual cone

(

K(n)
α

)∗
is linked to the primal cone K(n)

α by the linear

relation (4.12), i.e.
(

K(n)
α

)∗
= BαK(n)

α ,
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where Bα is the positive definite matrix defined in Theorem 4.3.1. Since Bα is

positive definite, it means that K(n)
α is self-dual in the broader sense, i.e. it is

self-dual with respect to the inner product induced by the positive definite matrix
Bα. However, as we have mentioned at the beginning of Section 3.1, Kα is not
homogeneous (unless α ∈ {0, 1

2 , 1}).
In view of Section 2.4.3 a we can use the (n + 1)-self-concordant barrier for

K(n)
α (see Theorem 3.1.1) to construct an (n+ 1)-self-concordant barrier for K(n)

α

in the following way:

F̄α(s, w) = Fα

(

B−1
α

[
s
w

])

.

Unfortunately F̄α and Fα are not conjugate to each other. This can be checked
for example by (2.46), which is violated for example for the particular point x =
(1, 1, 0) ∈ intKα.

4.3.2 The dual of the exponential cone

Let us introduce the following cone

P 0
exp =

{

s : s1 < 0, s2 ≥ 0, exp

(
s3
s1

)

≤ e · s2
−s1

}

and its closure

Pexp = cl
(
P 0

exp

)
.

Lemma 4.3.2. It holds

Pexp = P 0
exp

⋃

{0} × R+ × R+.

Proof. This proof is very similar to the one of Lemma 4.2.1.
We denote P̄exp = P 0

exp

⋃{0}×R2
+ and show first that P̄exp ⊆ Pexp. Let s ∈ P̄exp.

If s ∈ P 0
exp then we automatically have also that s ∈ Pexp since P 0

exp ⊆ cl(P 0
exp) =

Pexp. Let s = (s1, s2, s3) ∈ {0} × R2
+. In order to prove that s ∈ Pexp we need to

show that s is an accumulation point of a sequence {s(k)} ⊂ P 0
exp.

For k = 1, 2, . . . we define the sequence s(k) = (s
(k)
1 , s

(k)
2 , s

(k)
3 ) with

s
(k)
1 = − 1

k2
< 0, ∀ integer k ≥ 1,

s
(k)
2 = s2 +

1

k
> 0, ∀ integer k ≥ 1,

s
(k)
3 = s3 +

1

k
.
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We obtain the following chain of inequalities.

exp

(

s
(k)
3

s
(k)
1

)

= exp

(− 1
k + s3

− 1
k2

)

= exp



−k−k2s3
︸ ︷︷ ︸

≤0





≤ exp (−k) ≤ exp(−1) < 1

≤ k ≤ e(k + k2s2)

=
e(s2 + 1

k )
1
k2

=
es

(k)
2

−s(k)1

.

That means the sequence {s(k)} ⊂ P 0
exp for all k = 1, 2, . . . and we have s(k) →

(0, s2, s3) as k →∞.
Conversely, let s ∈ Pexp and assume s /∈ P̄exp. It is easy to see that the only

possibility for this to happen is when s1 = 0, s2 ≥ 0 and s3 < 0. However, for any

sequence {s(k)} ⊂ P 0
exp with s

(k)
1 → s1 = 0 and s

(k)
3 → s3 < 0, we must have that

s
(k)
3 < 0 for some k and also s

(k)
1 < 0 for all k. It follows that the fraction

s
(k)
3

s
(k)
1

will be positive and converging to +∞ for k large enough. But this contradicts
the assumption {s(k)} ⊂ P 0

exp because the inequality

exp

(

s
(k)
3

s
(k)
1

)

≤ e · s(k)2

−s(k)1

must be violated for some k sufficiently large, because the left term tends much
faster to +∞ as compared to the right term. That means Pexp ⊆ P̄exp and finishes
the proof.

In the following theorem we are going to give an explicit description of the dual
cone of Kexp. We have shown in Section 4.2 that Kexp can in fact be seen as a
limit of a linear transformation of the power cone Kα, namely

K̃α = {(z1, z2, z3) : zα2 z
1−α
3 ≥ |z3 + αz1|} = A−1

α Kα,
where

Aα =





0 1 0
0 0 1
α 0 1



 ,

because z ∈ K̃α if and only if Aα z = (z2, z3, αz1 + z3) ∈ Kα, or equivalently
z ∈ A−1

α Kα. In Theorem 4.3.1 we have shown that also between Kα and its dual
cone a linear relation exists, namely K∗

α = BαKα where

Bα =





α 0 0
0 1− α 0
0 0 1





It would be natural to use these two results with the aim to give a compact
description of the dual cone of Kexp. Unfortunately, we see that both Aα and Bα
converge to nonsingular matrices as α→ 0. Therefore we have to compute directly
the dual cone of Kexp.
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Theorem 4.3.3. We have
(Kexp)

∗
= Pexp. (4.15)

Proof. Let us first show the inclusion Pexp ⊆ K∗
exp. Let s ∈ Pexp. According to

Lemma 4.3.2 it holds either s ∈ P 0
exp or s ∈ {0} × R2

+. In the latter case we have
in view of Lemma 4.2.1 for any x ∈ Kexp

sTx = s1
︸︷︷︸

=0

x1 + s2
︸︷︷︸

≥0

x2
︸︷︷︸

≥0

+ s3
︸︷︷︸

≥0

x3
︸︷︷︸

≥0

≥ 0.

Let s ∈ P 0
exp and x ∈ Kexp. According to Lemma 4.2.1 we have that x ∈ K0

exp or
x ∈ (−R+)× R+ × {0}. In the latter case we get

sTx = s1
︸︷︷︸

<0

x1
︸︷︷︸

≤0

+ s2
︸︷︷︸

≥0

x2
︸︷︷︸

≥0

+s3 x3
︸︷︷︸

=0

≥ 0.

Let s ∈ P 0
exp and x ∈ K0

exp. In particular we have then s2 ≥ (−s1) exp
(
s1−s3
−s1

)

and also x2 ≥ x3 exp
(
x1

x3

)

. By using these lower bounds on s2 and x2, we get

sTx = s1x1 + s2
︸︷︷︸

≥0

x2 + s3x3

≥ s1x1 + s2 x3 exp

(
x1

x3

)

︸ ︷︷ ︸

>0

+s3x3

≥ s1x1 + (−s1) exp

(
s1 − s3
−s1

)

x3 exp

(
x1

x3

)

+ s3x3.

After merging the two exponential expressions, the middle term can be simplified
and we obtain

sTx ≥ s1x1 + (−s1)x3 exp

(
s1 − s3
−s1

+
x1

x3

)

+ s3x3

= s1x1 + (−s1)x3
︸ ︷︷ ︸

>0

exp

(
s1x3 − s3x3 − s1x1

−s1x3

)

+ s3x3.

Using the fact that exp(τ) ≥ τ + 1 for all τ , we can bound the exponential term
and get

sTx ≥ s1x1 + (−s1)x3 ·
(
s1x3 − s3x3 − s1x1

−s1x3
+ 1

)

+ s3x3

= s1x1 + s1x3 − s3x3 − s1x1 + (−s1)x3 + s3x3

= 0.

This means s ∈ K∗
exp. Thus, Pexp ⊆ K∗

exp.
Now, let us show the inverse inclusion K∗

exp ⊆ Pexp. Let s ∈ K∗
exp and let us

assume s /∈ Pexp. In view of Lemma 4.3.2 we have that Pexp is the union of two
convex cones. That means s /∈ Pexp means s /∈ P 0

exp (i.e. s1 ≥ 0 or s2 < 0 or
exp( s3s1 ) > es2

−s1 ) and s /∈ {0} × R2
+ (i.e. s1 6= 0 or s2 < 0 or s3 < 0). In total we

have nine cases to distinguish.



4.3. THE DUAL CONES 133

• Among these nine cases there are five cases that include the inequality s2 < 0.
In that case we can take x = (0, 1, 0) ∈ Kexp and get sTx = s2 < 0, which
means that s cannot be in the dual cone K∗

exp.

• A sixth case is the situation where s1 ≥ 0 and s1 6= 0, i.e. s1 > 0. Then we
can take x = (−1, 0, 0) ∈ Kexp and get sTx = −s1 < 0, which means that s
cannot be in K∗

exp.

• Another case is the situation where s1 ≥ 0 and s3 < 0. If now s2 < 0, we
can take again x = (0, 1, 0) ∈ Kexp which contradicts again the assumption
that s ∈ K∗

exp.

If s2 = 0, we can take x = (0, 1, 1) ∈ Kexp and get sTx = s2 + s3 = s3 < 0.
Also this case is a contradiction to our assumption that s ∈ K∗

exp.

If s2 > 0 and s1 > 0 we can take x = (−1, 0, 0) ∈ Kexp and get sTx = −s1 <
0.
Finally, if s2 > 0 and s1 = 0 we can take x =

(

log(−s32s2
), −s32s2

, 1
)

which is in

Kexp because x2 = −s3
2s2
≥ 0 and x3 = 1 > 0 and

exp

(
x1

x3

)

= exp

(

log

(−s3
2s2

))

=
−s3
2s2

= x2 =
x2

x3
.

Moreover,

sTx = s2
−s3
2s2

+ s3 = −1

2
s3 + s3 =

1

2
s3 < 0.

This contradicts the assumption that s ∈ K∗
exp.

• The last two cases are the situations where exp( s3s1 ) > es2
−s1 and s1 6= 0.

If s1 > 0 we can take x = (−1, 0, 0) ∈ Kexp and get sTx = −s1 < 0.
If s1 < 0 and s2 < 0, we can take x = (0, 1, 0) ∈ Kexp and get as before
sTx < 0.
If s1 < 0 and s2 = 0 we can take x = (1, exp(t)

t , 1
t ) for t > 0. We see that

x ∈ Kexp since x2 > 0 and x3 > 0 for all t > 0 and

exp

(
x1

x3

)

= exp(t) =
exp(t)
t
1
t

=
x2

x3
.

Moreover,

sTx = s1
︸︷︷︸

< 0 + s3
1

t
< 0

for t sufficiently large.
If s1 < 0 and s2 > 0, then we can divide

exp

(
s3
s1

)

>
e · s2
−s1

by e and get the equivalent inequality

exp

(
s1 − s3
−s1

)

>
s2
−s1

. (4.16)
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In that case we define x1 = s1−s3
s1s2

· exp
(
s1−s3
−s1

)

, x2 = 1
s2

> 0 and x3 =

1
s2
· exp

(
s1−s3
−s1

)

> 0 and we see that

exp

(
x1

x3

)

= exp

(
s1 − s3
s1

)

=
x2

x3
,

which means x ∈ Kexp. On the other hand it holds

sTx = s1x1 + s2x2 + s3x3

=
s1 − s3
s2

· exp

(
s1 − s3
−s1

)

+ 1 +
s3
s2
· exp

(
s1 − s3
−s1

)

=
1

s2
· exp

(
s1 − s3
−s1

)

· (s1 − s3 + s3) + 1

=
s1
s2
· exp

(
s1 − s3
−s1

)

+ 1.

The last term is negative if and only if

exp

(
s1 − s3
−s1

)

>
s2
−s1

.

But this is exactly (4.16), which means we have found a point x ∈ Kexp such
that sTx < 0. This contradicts the assumption that s ∈ K∗

exp.

That means in all cases where s /∈ Pexp we were able to find an appropriate point
x ∈ Kexp such that sTx < 0, which means that s /∈ K∗

exp. Thus, K∗
exp ⊆ Pexp.

In view of the definition of P 0
exp and K0

exp we see that there is the following
scaling relation between both cones. Let us define the scaling matrix Bexp and its
inverse

Bexp =





0 0 −1
0 1

e 0
−1 0 0



 (Bexp)
−1 =





0 0 −1
0 e 0
−1 0 0





Then we have
P 0

exp = BexpK0
exp.

Indeed, let s ∈ P 0
exp. Then the above identity is true if and only if

(Bexp)−1 s ∈ K0
exp.

We have that B−1
exp s = (−s3, es2,−s1) and the above inclusion means that it

should hold es2 ≥ 0, −s1 > 0 and

exp

(−s3
−s1

)

≤ es2
−s1

.

We see that all three inequalities are true since s ∈ P 0
exp.
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This observation implies that for points in the interior of K∗
exp we have the

following representation:

s ∈ intK∗
exp ⇔ (Bexp)−1 s ∈ intKexp. (4.17)

Note that nevertheless Kexp is not self-dual, even not in its broader sense (see e.g.
[28]). Self-duality in the less restrictive version means that there should exist an
inner product induced by a positive definite matrix M such that

K∗ = {s : 〈s, x〉M ≥ 0, ∀x ∈ K}

is equal1 to K. In other words for any x1 ∈ intKexp and any x2 ∈ intKexp we
should find a matrix M ≻ 0 such that xT1 Mx2 ≥ 0. However, this means that
s := Mx1 ∈ K∗

exp with respect to the Euclidean inner product. But as we have
seen, we have then

Mx1 ∈ K∗
exp = BexpKexp

which implies that M = Bexp, because x1 can be any point in intKexp. However,
we see that Bexp is not positive definite and therefore Kexp cannot be self-dual.

On the other hand, we can use the scaling relation (4.17) to derive a 3-self-
concordant barrier for K∗

exp, namely

F̃exp(s) := Fexp

(
B−1

exps
)
.

where Fexp is the 3-self-concordant barrier for Kexp. Unfortunately F̃exp and Fexp

are not conjugate to each other. This can be checked for example by (2.46), which
is violated for example for the particular point x = (0, e, 1) ∈ intKexp.

4.4 Examples of α-representable problem classes

In the previous sections we showed that many sets and functions are representable
in terms of the power cone Kα (and its limit Kexp). Moreover, for both cones
and their duals self-concordant barriers are available. We will see now how these
results can be used to find the α-representation of two concrete classes of convex
optimization problems.

We recall here the definition of the α-representation of a set C ⊂ Rn (α-REP):
There should exist finite integers M1 and M2, matrices Aα, Aexp, Af and vectors
cα, cexp and cf in appropriate sizes such that

u ∈ C ⇔







cα −ATα

[

u

v

]

∈ Kα1 × · · · × KαM1

cexp −ATexp

[

u

v

]

∈ Kexp × · · · × Kexp (M2 times),

ATf

[

u

v

]

= cf .

(α-REP)

1Note that in Definition 2.5.1 we have chosen the particular Euclidean inner product
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for some artificial modelling variables v.
In this section we are seeking a dual conic α-representation of convex optimiza-

tion problems, i.e. problems of the form

(P ) min
u

f(u)

u ∈ C,

where f is a convex function and C is a convex set. The α-representation of (P )
should satisfy the following three criteria: the conic reformulation of (P ) should

1. be equivalent to (P ), in the sense that an optimal solution of the reformula-
tion can be used to derive an optimal solution of (P ),

2. be in dual conic form,

3. only involve power cones Kα, exponential cones Kexp or linear equality con-
straints.

The reformulations are done in two steps. First, we ensure that the objective
function becomes linear, because we wish to have a problem in conic form. This
can always be done, for example by going to the epigraph form of (P ). We obtain
then a problem of the form

(P̃ ) min
u,w

bT
[
u
w

]

(u,w) ∈ C̃,

where w is one (or more) epigraph variable(s), C̃ is the extended feasible set (that
is obtained when adding to C the epigraph constraint(s) of the form f(u) ≤ w)
and b is the new objective vector.
The second step is the process of finding an α-representation of C̃ as described
above in (α-REP).

4.4.1 Location problem

We consider a constrained generalized location problem, where the sum of the
distances of a point u ∈ RN to given locations Cj ∈ RN , j = 1, . . . ,M , shall be
minimized, subject to the constraint that u should not be too far from other given
locations Dj ∈ RN , j = 1, . . . , R. Let aj > 0, j = 1, . . . ,M , be some positive
weights, pj ≥ 1, j = 1, . . . ,M , parameters that determine the norms that define
the distance to the locations Cj , qj ≥ 1, j = 1, . . . , R, parameters that determine
the norms that define the distance to the locations Dj and rj > 0, j = 1, . . . , R,
given distance values.

min
u∈RN

M∑

j=1

aj ||u− Cj ||pj

s.t. ||u−Dj||qj ≤ rj , j = 1, . . . , R.

(LOC0)
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Note that the distances are defined using p-norms, as opposed to standard Eu-
clidean norms.

Introducing epigraph variables wj for each norm term in the objective, the
formulation (LOC0) can be written as

min
u∈R

N ,w∈R
M

M∑

j=1

ajwj

s.t. ||u− Cj ||pj ≤ wj , j = 1, . . . ,M

||u−Dj ||qj ≤ rj , j = 1, . . . , R.

(LOC1)

Using the α-representability of P(N)
p (i.e (x, τ) ∈ P(N)

p if and only if ∃ v ≥ 0 :

(vi, τ, xi) ∈ Kα and
∑N
i=1 vi = τ , where α = 1

p ), we define αj = 1
pj

for j = 1, . . . ,M

and αM+j = 1
qj

for j = 1, . . . , R. We arrive at the following α-representation of

(LOC0):

min
u,w,ṽ,v̄

M∑

j=1

ajwj

s.t. (ṽi,j , wj , ui − Ci,j) ∈ Kαj , i = 1, . . . , N, j = 1, . . . ,M

(v̄i,j , rj , ui −Di,j) ∈ KαM+j , i = 1, . . . , N, j = 1, . . . , R

N∑

i=1

ṽi,j = wj , j = 1, . . . ,M

N∑

i=1

v̄i,j = rj , j = 1, . . . , R.

(LOC2)

We see that (LOC2) is a dual conic formulation using entirely power cones Kα and
linear equality constraints. Moreover, since the epigraph formulation (LOC1) is

equivalent to (LOC0) and because p-cones P(N)
p are α-representable, it holds that

(LOC2) is equivalent to the original formulation (LOC0).

4.4.2 Geometric programming

An important class of optimization problems are so-called geometric programs
(see e.g. [16], [5]). A geometric program is a minimization problem involving a
posynomial objective, posynomial inequality constraints and monomial equality
constraints. We saw these kind of expressions already in Section 4.2.2. Let us
introduce the following piece of notation: for vectors x ∈ RN++ and a ∈ RN we

denote xa =
∏N
i=1 x

ai

i .

Let x ∈ RN be positive variables, D
(pos)
i,j and e

(mon)
j positive coefficients and

K
(pos)
i,j ∈ RN , i = 1, . . . , nj, j = 0, . . . ,M and K

(mon)
j ∈ RN , j = 1, . . . ,Mmon real



138 CHAPTER 4. MODELLING WITH THE POWER CONE

exponents. We assume that the matrix

K(pos) :=
[

K
(pos)
1,0 , · · · ,K(pos)

n0,0
, · · · ,K(pos)

1,M , · · · ,K(pos)
nM ,M

]

∈ RN×
PM

j=0 nj

has full row rank and the matrix

K(mon) := [K
(mon)
1 , · · · ,K(mon)

Mmon
]

has full column rank (that is, the vectors K
(mon)
j are linearly independent).

A geometric program in posynomial form is given by

min
x>0

n0∑

i=1

D
(pos)
i,0 · xK

(pos)
i,0

s.t.

nj∑

i=1

D
(pos)
i,j · xK

(pos)
i,j ≤ 1, j = 1, . . . ,M,

e
(mon)
j · xK

(mon)
j = 1, j = 1, . . . ,Mmon.

(GP )

Under the above assumptions we apply a change of variables xk = exp(uk) and

D
(pos)
i,j = exp

(

C
(pos)
i,j

)

, and we get a geometric program in convex form, i.e.

min
u

n0∑

i=1

exp
(

uTK
(pos)
i,0 + C

(pos)
i,0

)

s.t.

nj∑

i=1

exp
(

uTK
(pos)
i,j + C

(pos)
i,j

)

≤ 1, j = 1, . . . ,M,

uTK
(mon)
j + log

(

e
(mon)
j

)

= 0, j = 1, . . . ,Mmon.

(GP0)

We introduce one epigraph variable w and rewrite (GP0) in its equivalent epigraph
form

min
u,w

w

s.t.

n0∑

i=1

exp
(

uTK
(pos)
i,0 + C

(pos)
i,0

)

≤ w

nj∑

i=1

exp
(

uTK
(pos)
i,j + C

(pos)
i,j

)

≤ 1, j = 1, . . . ,M,

uTK
(mon)
j + log

(

e
(mon)
j

)

= 0, j = 1, . . . ,Mmon.

(GP1)

We showed in Section 4.2.2 that constraints of the form
∑n

i=1 exp(aTi u + ci) ≤
w are α-representable using the exponential cone Kexp. It follows that the α-
representation of (GP1) is
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min
u,w,v

w

s.t.
(

uTK
(pos)
i,j + C

(pos)
i,j , vi,j , 1

)

∈ Kexp, j = 0, . . . ,M, i = 1, . . . , nj

n0∑

i=1

vi,0 = w,

nj∑

i=1

vi,j = 1, j = 1, . . . ,M,

uTK
(mon)
j + log

(

e
(mon)
j

)

= 0, j = 1, . . . ,Mmon.

(GP2)

We see that (GP2) is a dual conic formulation using entirely exponential cones
Kexp and linear equality constraints. Moreover, since the epigraph formulation
(GP1) is equivalent to (GP0) we have that (GP2) is equivalent to the original
formulation (GP0).

4.5 Numerical results

We have shown in Section 4.4 that two important classes of convex optimization
problems (geometric programs and generalized location problems) can be cast in
dual conic form using entirely the power cone Kα and the exponential cone Kexp.
For the feasible set of both conic reformulations we have explicit self-concordant
barriers available, which means in view of Section 2.4 that these problems can
be solved in polynomial time (compare Theorem 2.4.15 and Theorem 2.5.18). In
this section we are going to verify this theoretical result with a practical Mat-
lab implementation of Algorithm 4 and 5. Both algorithms are included in the
nonsymmetric conic solver that is presented in more detail in Appendix A.

To improve the practical performance we implemented for both algorithms a
linesearch along the Newton directions. For Algorithm 4 we know that α0 = 1

1+δ ,
where δ denotes the Newton decrement at the current iterate for a step towards the
current target point on the central path, is a step size that guarantees feasibility of
the step and a decrease of the objective value of the centering problem (compare
Theorem 2.3.6). Starting at α0 we gradually increase this step size (by multiplying
the current feasible step size with 2) until we arrive at an infeasible point or until
the objective value increases again.

For the centering steps in Algorithm 5 we use the same strategy for the choice
of the step size as presented above. In addition, we proposed a safe step size pa-
rameter α0 for the primal-dual affine-scaling direction, that guarantees a sufficient
increase in the duality measure t (see Theorem 2.5.16). On the other hand we
make sure not to drift too far away from the primal-dual central path (see Theo-
rem 2.5.15). Starting at α0 we gradually increase this step size (again by multiply-
ing with 2) until we reach a given proximity to the boundary of the primal-dual
cone K×K∗. In the implementation we have chosen this proximity value to be 90%,
that is, if αmax is the largest value so that (x + αmax∆x, s + αmax∆s) ∈ K × K∗,
then we take as step size α = 0.9 · αmax. Note that this strategy is not covered
anymore by the complexity result because we cannot bound the proximity to the
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primal-dual central path. However, since we have observed that this strategy is
superior to the conservative step size proposed in Algorithm 5, we have decided
to use it in the numerical tests.

For all methods tested we have chosen as absolute accuracy in terms of the
objective value ǫ = 10−6. In the implementation of Algorithm 4 we have set
as centering accuracy β = 0.25 and as update coefficient of the duality measure

θ = 10. In Algorithm 5 we have chosen as centering accuracy β = −3+
√

17
8 .

4.5.1 Location problems

Let us recall the definition of the generalized location problem (LOC0), i.e.

min
u∈RN

M∑

j=1

aj ||u− Cj ||pj

s.t. ||u−Dj||qj ≤ rj , j = 1, . . . , R.

(LOC0)

In Section 4.4.1 we saw that (LOC0) can be cast in dual conic form

max bT y

s.t. c−AT y ∈ K∗,

ATf y = cf ,

(D − LOC)

with y = (u,w, v) ∈ RN+M+NM , where w ∈ RM and v ∈ RN M are artificial
variables, the data A,Af , c, cf and b are suitably chosen and K∗ is a direct product
of N(M + R) power cones Kα. Using the 3-self-concordant barrier for the power
cone Kα, we obtain a ν-self-concordant barrier for the feasible set of (D − LOC),
where ν = 3N(M +R).

Let us verify that assumptions (2)-(4) on page 66 are satisfied.
One can verify that A is given by

A =





A1

A2

A3



 ∈ RN+M+N(M+R),3N(M+R),

where

A1 = repMR(blkdiagN ([0, 0,−1])) ∈ RN×3·N(M+R),

A2 = [blkdiagM (repN ([0,−1, 0])), 0] ∈ RM×3·N(M+R),

A3 = blkdiagN(M+R)([−1, 0, 0]) ∈ RN(M+R)×3·N(M+R).

Here repN(X) denotes the N times repetition of a matrix X , i.e.

repN (X) = [X, · · · , X
︸ ︷︷ ︸

N times

],

and blkdiagN (X) denotes the block diagonal matrix containing N copies of X .
By permutation of the columns we see immediately that A has full row rank.
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Further, Af has full column rank since the linear equality constraints in (LOC2)
are given by

B

[
ṽ
v̄

]

+ E

[
u
w

]

= d

for some matrix E and some vector d and a matrix B that has the following
structure

B = blkdiag(1N ) ∈ R(M+R)×N(M+R),

where 1N is a row vector of ones of size N . It is clear that B has full row rank.
Therefore the matrix Af in the conic formulation (D−LOC) must have full column
rank.

To show the last condition, let y = (u,w, v) such that c − AT y ∈ intK∗ and
ATf y = cf , and let (∆u,∆w,∆v) 6= 0 be any direction.

If ∆v 6= 0 or ∆w 6= 0, then it is possible to find a step size γ such that
w + γ∆w ≯ 0 or v + γ∆v ≯ 0. Let ∆v = 0 and ∆w = 0. Then there exists an
index i such that ∆ui 6= 0 (otherwise (∆u,∆w,∆v) = 0) and it is possible to find

a step size γ such that |ui+γ∆ui−Ci,j | > ˜vi,j
αjw

1−αj

j for some (i, j). That means
for any feasible point y and any direction ∆y 6= 0 we cannot extend this direction
to ±∞ without leaving the feasible region. In other words, the feasible region of
(D − LOC) does not contain straight lines and therefore the Newton directions
are defined everywhere (see Theorem 2.2.4).

Comparison with nonlinear solvers with an AMPL interface

For the numerical tests we consider the unconstrained version of (LOC0), i.e. for
R = 0 we have

min
u∈RN

M∑

j=1

aj ||u− Cj ||pj , (4.18)

where for j = 1, . . . ,M the parameters pj are uniformly distributed on the [1 3]
interval, the facilities Cj are uniformly distributed in the [0 1]N box and the
weights aj on the objective terms are set to be all equal to 1. Including additional p-
norm constraints (as in the general formulation (LOC0)) would be straightforward.
However, we have chosen to omit these constraints since the unconstrained problem
(4.18) is easy to initialize. Indeed, as (4.18) is unconstrained we can choose for

example u(0) = 0 ∈ RN , initialize w(0) ∈ RM such that ||Cj ||pj < w
(0)
j , j =

1, . . . ,M (e.g. wj = ||Cj ||pj + 1) and initialize v(0) as shown in Section 4.1.3
(compare with the α-representability of the p-cone).

We are going to solve random instances of (4.18) for different values of N and
M by first reformulating them in conic form (D−LOC), then solving them using
the dual long-step path-following method (Algorithm 4) and the nonsymmetric
primal-dual predictor-corrector method (Algorithm 5). We compare their practical
performance with those of the nonlinear solvers MINOS 5.5 2, SNOPT 6.1-13 and
KNITRO 6.0.04. All three solvers directly solve the original problem (4.18).

2http://www.sbsi-sol-optimize.com/asp/sol product minos.htm
3http://www.sbsi-sol-optimize.com/asp/sol product snopt.htm
4http://www.ziena.com/knitro.htm
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MINOS is using a quasi-Newton method to solve nonlinear problems. SNOPT
employs a sparse SQP algorithm with limited-memory quasi-Newton approxima-
tions to the Hessian of Lagrangian. An augmented Lagrangian merit function
promotes convergence from an arbitrary point. KNITRO is based on a direct bar-
rier method to solve a primal-dual KKT system using trust regions and a merit
function to promote convergence.

For each choice of problem parameters (N,M) presented here, 10 different
instances are solved and the average is reported. Table 4.1 reports the number
of iterations (major iterations for KNITRO) carried out by each method. Let us

dimension D-IPM PD-IPM MINOS SNOPT KNITRO

N = 2,M = 10 26.8 21.1 8.1 11.1 8.6
N = 2,M = 100 37.0 27.9 7.2 10.1 6.1
N = 2,M = 1000 48.6 46.3 7.4 11.3 6.5
N = 10,M = 10 39.9 31.7 30.0 31.9 20.9
N = 10,M = 50 45.6 43.8 38.3 42.1 2034.2
N = 10,M = 100 55.0 49.8 25.4 28.8 13.3
N = 10,M = 500 68.3 64.5 31.9 41.8 35.6
N = 50,M = 10 51.2 56.8 251.4 131.2 1045.4
N = 50,M = 50 67.5 74.9 248.6 170.5 284.2
N = 50,M = 100 81.0 80.4 162.7 154.1 211.8
N = 50,M = 200 98.4 100.7 208.9 147 128.7

Table 4.1: Number of iterations for each solver (averaged on 10 instances).

recall here the complexity results for the dual and primal-dual algorithm. In [9] we
have analyzed (4.18) and presented a complete complexity analysis for solving it
(see [9, Theorem 4.1]), including the initial centering (as proposed in Section 2.4)
to generate a point close to the central path. For sake of transparency we recall
the result here.

Theorem 4.5.1. Let aj ∈ [amin, 1], ∀j = 1, . . . ,M , where amin > 0 and Ci,j ∈
[0, 1], for j = 1, . . . ,M, i = 1, . . . , N . Then Algorithm 4 initialized as described
above solves the unconstrained location problem (4.18) in

O(N M) · O
(

log

(
N M

ǫamin

))

iterations.

Note that the above theorem is in line with Theorem 2.4.15. The only difference
is that Theorem 2.4.15 assumes that the initial point is already close to the central
path, while Theorem 4.5.1 does not need such an assumption. The complexity for
the inital centering phase is guaranteed by the additional assumptions on the data
(i.e. a and C). In accordance with Theorem 2.5.18, the complexity of the primal-
dual predictor-corrector method proposed in Algorithm 5 is O(

√
ν · log(sT0 x0/ǫ)).

However, since we embed a linesearch along the primal-dual affine-scaling direction
as described above, the complexity result is no longer valid. On the other hand



4.5. NUMERICAL RESULTS 143

we see that the number of iterations is comparable to the dual long-step method,
and both are clearly better than the pessimistic bound of O(NM). Indeed, the
number of iterations increases only by a factor of less than 5 when going from
NM = 20 to NM = 10000.

When comparing the number of iterations for the dual and primal-dual method
to those of the three nonlinear solvers, we see that for the larger values of N the
iteration count becomes comparable to - if not better than - those of the three
nonlinear solvers MINOS, SNOPT and KNITRO. The guidance of the central
path is thus clearly beneficial here.

It is interesting to see that when fixing N and increasing the value of M , the
number of iterations for all the AMPL nonlinear solvers remains constant or even
decreases (apart from some instances that were difficult for KNITRO). This effect
could be explained by a ”smoothing-out” of the objective function. For a large
M , non-differentiable terms in the objective become ”small” with respect to the
complete sum of the norms, and the objective is almost smooth. This potentially
explains why the nonlinear solvers find an optimal solution faster for large values
of M , even though the problems seem to be more difficult.

Table 4.2 shows the computation times in seconds. Note that this comparison

dimension D-IPM PD-IPM MINOS SNOPT KNITRO

N = 2,M = 10 0.14 0.21 0.02 0.02 0.02
N = 2,M = 100 0.37 0.51 0.03 0.02 0.02
N = 2,M = 1000 2.98 6.21 0.07 0.06 0.06
N = 10,M = 10 0.26 0.37 0.03 0.02 0.02
N = 10,M = 50 0.74 1.06 0.09 0.05 3.29
N = 10,M = 100 1.67 2.01 0.07 0.04 0.05
N = 10,M = 500 9.02 12.18 0.49 0.33 0.70
N = 50,M = 10 0.81 1.33 0.46 0.10 1.97
N = 50,M = 50 4.24 5.98 2.22 0.55 2.42
N = 50,M = 100 10.03 12.53 2.47 0.84 3.62
N = 50,M = 200 25.57 48.76 7.51 1.94 4.85

Table 4.2: CPU time in seconds used by each solver (averaged on 10 instances).

across solvers is not completely fair since we cannot expect MATLAB, an inter-
preted language, to be as fast as those natively compiled solvers. To somehow
support this claim, we report that for a typical (N,M) = (50, 100) run, 50% of the
CPU time is spent on building the Hessian (involving a lot of data manipulation
within MATLAB) and only 30% on actually computing the Newton step (solving a
linear system with a single MATLAB command), while the latter operation should
in principle be dominating the CPU cost.

Looking at the computation times of both interior-point methods, we observe
that the total computation time is higher for the primal-dual method by a factor
of up to 2. This can be explained by the fact that for each update of the duality
measure t we need to compute the primal-dual affine scaling direction (2.67), whose
complexity is the same as the computation of a Newton direction for the centering
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problems (2.52).
When comparing to the computation times of the AMPL nonlinear solvers we

see that the interior-point methods are not competitive. The main explanation for
the poor performance of the interior-point scheme seems to be the large number of
variables needed for the conic formulation: indeed, instead of working with a vector
of N unknowns (and, accordingly, computing a N × N Hessian), our algorithm
requires M additional epigraph variables τj and one additional vj,i variable for
each of the M ·N cones involved, for a total of N +M +NM variables and the
corresponding much enlarged Hessian. One could write (LOC2) in a more compact
way and remove the epigraph variables τ by replacing them directly in the conic
constraints. But this modification would not have a huge impact because the total
number of variables would still be O(NM) due to the presence of the v’s.

Table 4.3 displays the percentage of problems for which the AMPL nonlinear
solvers claimed to have found an optimal solution. The need for this table

dimension D-IPM PD-IPM MINOS SNOPT KNITRO

N = 2,M = 10 100% 100% 100% 100% 100%
N = 2,M = 100 100% 100% 100% 100% 100%
N = 2,M = 1000 100% 100% 100% 100% 100%
N = 10,M = 10 100% 100% 90% 90% 90%
N = 10,M = 50 100% 100% 80% 60% 60%
N = 10,M = 100 100% 100% 100% 100% 100%
N = 10,M = 500 100% 100% 70% 40% 30%
N = 50,M = 10 100% 100% 0% 80% 60%
N = 50,M = 50 100% 100% 0% 10% 10%
N = 50,M = 100 100% 100% 0% 10% 10%

Table 4.3: Percentage of solutions for which optimality is guaranteed.

was prompted by the fact that, for a significant number of instances, the AMPL
nonlinear solvers could not satisfy their stopping criterion (based on the norm of
the gradient) and stopped either because a built-in iteration limit had been reached
or insufficient progress after a certain number of iterations had been observed,
reporting that the final iterate might not be optimal. For large M and N , this
problematic behavior even seems to become the norm. However, in nearly all the
cases, the solution provided was indeed optimal, meaning that all six requested
digits of accuracy matched between the interior-point solution and its nonlinear
counterpart. Nonetheless, we still classify these situations as unsuccessful because
in general we do not know how close to the optimal solution we are and would like
to have a guarantee to be within an ǫ distance of the optimal solution. Note that we
have to be careful when comparing the solvers with respect to their reliability since
different stopping criteria are used for the different solvers. Out path-following
methods D-IPM and PD-IPM use as stopping criterion the error in terms of the
objective value. This optimality error can be bounded in view of Theorem 2.4.15
and Theorem 2.5.18. The stopping criterion for MINOS is the size of the dual

1Intel Pentium IV 3.00 GHz; MATLAB version 7.2 (R14)
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solution; for SNOPT it is the relative error in the slackness conditions; and for
KNITRO is the maximal violation of the KKT conditions. Thus, for all three
AMPL solvers a solution is considered to be optimal if the optimality conditions are
approximately satisfied. Unfortunately, this condition is not directly comparable
to the stopping criterion we have used.

These failures to detect optimality are most probably due to the proxim-
ity/equality of the optimal solution to one of the fixed facilities and the (near)
non-differentiability of the objective function that it causes. It is remarkable to
observe that this non-differentiability has a significant impact on the practical
behavior of the AMPL nonlinear solvers tested, even on relatively simple uncon-
strained problems with a finite number of problematic points. One can therefore
conclude here that one of the main advantages of the interior-point solver lies in
its insensitivity to these issues.

Comparison with Xue and Ye’s algorithm

Xue and Ye [66] present an algorithm to solve the similar - but not identical -
problem of minimizing a sum of p-norms, where all norms in the objective are
defined by one single value of p and the decision variable x is scaled by a matrix
ATj in each norm term,

min
u∈RN

M∑

j=1

||Bj −ATj u||p, (4.19)

with Bj ∈ Rd and ATj ∈ Rd×N , j = 1, . . . ,M . They propose a nonsymmetric
primal-dual potential-reduction method that relies on the self-concordant barrier
for the conic hull of the p-unit ball. Due to this construction the self-concordance
parameter becomes relatively large, i.e. 200M(2d + 1) for the description they
chose in the computational examples.

We considered the problem (4.18)

min
u∈RN

M∑

j=1

aj ||u− Cj ||pj

which is slightly more general in the sense that it does not require the norm terms
to have identical parameters p, but on the other hand does not make use of scaling
matrices ATj (however, incorporation of these matrices in our model would be
trivial).

Although a direct comparison is not possible, problem (4.19) can be rewritten
as

min
u∈Rn

M∑

j=1

||Bj || ·
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Bj
||Bj ||

−
ATj
||Bj ||

u

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
p

,

with the constants in each norm term having components in the interval [0, 1].
Assuming that d = N and pj = p, ∀j = 1, . . . ,M , we can compare the complexity
of both methods in that case. The self-concordance parameter of the barrier used
by Xue and Ye in [66] is 200M(2N+1), while for our barrier it is only 3NM , show-
ing a clear advantage for our approach. The iteration complexity of the method
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used by Xue and Ye in their computational results is O(2M
√

200M(2N + 1) ·
log(

max ||Bj||
ǫ ·MN)), and for our method is O(N M) · O

(
log
(
N M
ǫ

))
. The com-

plexities are equivalent except for M ≫ N , in which case our method has a better
bound. Finally, the cost per iteration for Xue and Ye in [66] is O(MN3), which
is also the case for our method. Summarizing, both methods have comparable
overall algorithmic complexity, although our method has a slight advantage when
M ≫ N .

We now look at the test case considered by Xue and Ye in [66] of finding the
shortest network under a given N -Steiner topology, with L = 10. Reformulating
this problem as a sum of p-norms problem yields the parameters M = 2L− 3, d =
2, N = 2L−4. Xue and Ye consider several values of p, among which p = 3. With
the algorithms proposed in their work they get a solution with an accuracy of
1.0e− 5 in 33 iterations, whereas choosing for our formulation some random data
in the same dimensions (omitting d), we get a solution with the same accuracy
requirement in 31 iterations. This slight improvement is not too surprising because
of the smaller self-concordance parameter of our barrier, although both iteration
counts are much better than their corresponding pessimistic worst-case bounds.

Comparing CPU times is not possible since no computation times are reported
by Xue and Ye [66]. Although the size of the linear systems to be solved at
each iteration is smaller (2M(d + 1) + 2M + N = 152) when compared to ours
(N(M + 1) = 288), the special block-structure and sparsity of our system have
to be taken into account, which make it difficult to predict which method will be
more efficient in practice.

To conclude this section, we observe that the main advantage of our approach
seems to be its simplicity and versatility: a single barrier for the 3-dimensional
power cone is all that is needed to derive a polynomial-time algorithm, while Xue
and Ye [66] propose in their approach three different barriers for p-cones, to be
chosen according to the value of the norm parameter p. Moreover, while the
approach of Xue and Ye can in principle be applied to any problem involving p-
cones such as (LOC1), ours can be applied to any problem based on power cones,
which encompass all problems with p-cones and many others, such as problems
involving sums of p powers.

4.5.2 Geometric programming

We recall the definition of a geometric program in posynomial form (GP ). Let

x ∈ RN be positive variables, D
(pos)
i,j and e

(mon)
j positive coefficients and K

(pos)
i,j ∈

RN , i = 1, . . . , nj , j = 0, . . . ,M and K
(mon)
j ∈ RN , j = 1, . . . ,Mmon real expo-

nents. Then (GP ) is given by

min
x

n0∑

i=1

D
(pos)
i,0 xK

(pos)
i,0

s.t.

nj∑

i=1

D
(pos)
i,j xK

(pos)
i,j ≤ 1, j = 1, . . . ,M,

e
(mon)
j xK

(mon)
j = 1, j = 1, . . . ,Mmon.

(GP )
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We have shown in Section 4.4.2 that (GP ) can be cast in dual conic form

max bTy

s.t. c−AT y ∈ K∗ = Kexp × · · · × Kexp,

ATf y = cf .

(D −GP )

The variables are y = (u,w, v) ∈ RN+1+
PM

j=0 nj , where w ∈ R and v ∈ R
PM

j=0 nj

are artificial variables. The data A,Af , c, cf and b are suitably chosen and K∗ is

a direct product of
∑M

j=0 nj exponential cones Kexp. Using the 3-self-concordant
barrier for Kexp, we obtain a ν-self-concordant barrier for the feasible set of (D −
GP ), where ν = 3

∑M
j=0 nj.

Let us show again that the assumptions on page 66 are satisfied. One can
verify that the matrix A in the conic formulation (D −GP ) is given by

A =





Kpos ·B1

0 · · · 0
B2



 ∈ R(N+1+
PM

j=0 nj)×(3·PM
j=0 nj),

where

Kpos =
[

K
(pos)
1,0 · · ·K(pos)

nM ,M

]

∈ RN×PM
j=0 nj

B1 = blkdiagPM
j=0 nj

([−1, 0, 0]) ∈ R(
PM

j=0 nj)×(3·
PM

j=0 nj)

B2 = blkdiagPM
j=0 nj

([0,−1, 0]) ∈ R(
PM

j=0 nj)×(3·
PM

j=0 nj).

Since Kpos has full row rank we conclude that A is in fact rank deficient, its rank

is equal to N +
∑M
j=0 nj . However, the linear equalities are given by AT y = cf ,

with

ATf =

[
E B
G 0

]

,

where

• E =








0 · · · 0 −1
0

...
...

0 · · · 0 0







∈ R(M+1)×(N+1)

• B = blkdiag(1nj ) ∈ R(M+1)×(
PM

j=0 nj), where 1nj is a row vector of ones of
size nj , j = 0, . . . ,M

• G =

[
K(mon)

0 · · · 0

]T

∈ RMmon×(N+1).

We see that the row N + 1 in [A,Af ] consists of zeros except for the first column
of Af where the component is −1. That means this row is linearly independent
from all the other rows and we conclude [A,Af ] has full row rank. Further, we see
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immediately that Af has full column rank because both BT and K(mon) have full
column rank.

To see the last assumption, let y = (u,w, v) such that c − AT y ∈ intK∗ and
ATf y = cf . Let (∆u,∆w,∆v) 6= 0 be any direction.

If ∆w 6= 0 or ∆v 6= 0 then it is always possible to find a step size γ such that
w + γ∆w < 0 or v + γ∆v ≯ 0, which is not possible. Let therefore ∆w = 0 and
∆v = 0, and assume ∆u 6= 0 (otherwise (∆u,∆w,∆v) = 0). Since Kpos has full

row rank, it cannot contain any 0-rows, which means there exists a column K
(pos)
i,j

such that ∆uTK
(pos)
i,j 6= 0. It is clear that we can find a step size γ such that

(u + γ∆u)TK
(pos)
i,j + Ci,j > max{log(w), 0},

which violates one of the inequality constraints.
This means for any strictly feasible point y and any direction ∆y 6= 0 we

cannot extend along this direction towards +∞ and −∞, so the feasible region of
(D − GP ) does not contain straight lines and the Newton directions are defined
at any feasible point y.

In order to test our algorithm we consider a family of random GPs generated
by the script mkgp, a Matlab function included in gpcvx5 that has originally been
written by Lieven Vandenberghe and later modified by Kwangmoo Koh. The
parameters areN (the number of original variables), M (the number of posynomial
constraints), Mmon (the number of monomial constraints), nj, j = 0, . . . ,M (the
number of monomial terms in each posynomial).

We test on random instances with nj = 5, j = 0, . . . ,M , Mmon = 5 for different
values of N and M . We are comparing the dual path-following method (D-IPM),
the nonsymmetric predictor-corrector method (PD-IPM) and gpcvx, a dedicated
GP solver by Koh et al ([36]). The first two methods solve the conic reformulation
(D − GP ), while gpcvx works directly on the convex reformulation (GP ); to be
precise, it uses the logarithmic transformation of the objective and the constraints.
The constraints of the form

nj∑

i=1

exp
(
uTKi,j + Ci,j

)
≤ 1,

are reformulated as

log

( nj∑

i=1

exp
(
uTKi,j + Ci,j

)

)

≤ log(1) = 0, (4.20)

for j = 1, . . . ,M . This convex reformulation of (GP0) admits a dual problem
involving entropy functions (for details, see [36]). The authors of GPCVX propose
a primal-dual interior-point method which uses barriers of the following form

Fj(u) = − log

(

− log

( nj∑

i=1

exp
(
uTKi,j + Ci,j

)

))

.

5See http://www.stanford.edu/~boyd/ggplab/gpcvx.pdf
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These barriers are not known to be self-concordant for its domain (unless nj =
1). Therefore, the proposed interior-point method does not exhibit a guaranteed
polynomial complexity.

Table 4.4 illustrates the number of iterations for solving (GP ) up to accuracy
ǫ = 10−6 when using the three above-mentioned methods. The number of iter-

dimension D-IPM PD-IPM GPCVX

N = 50,M = 50 92 66 35
N = 50,M = 100 237 82 36
N = 50,M = 150 158 72 36
N = 100,M = 100 133 74 36
N = 100,M = 200 172 79 38
N = 100,M = 300 127 68 38
N = 100,M = 400 98 67 37
N = 100,M = 500 246 86 40
N = 200,M = 200 348 132 38
N = 200,M = 400 292 98 39
N = 200,M = 600 105 92 43
N = 200,M = 800 211 105 43

Table 4.4: Number of iterations used by each solver.

ations of the primal-dual method is lower than for the dual method. However,
we also note that the iteration count is much higher as compared to gpcvx. This
could be explained by the lifting to the higher-dimensional problem, where for
each monomial in each posynomial one cone Kexp is introduced. gpcvx on the
other hand, does not use a self-concordant barrier, but instead it works directly
on the logarithmic transformation of the convex reformulation (GP0).

This effect is even more striking when looking at Table 4.5 which displays the
computation time. The computation time of our dual and primal-dual method is
significantly higher as compared to gpcvx. This observation can be explained by
investigating the numerical cost per iteration. Indeed, gpcvx computes Newton
directions in terms of the original variables u which means linear systems of size
N have to be solved in each iteration. In the decomposed problem (GP2) the

number of variables in N + 1 +
∑M

j=0 nj = N + 1 + 5(M + 1), which is essentially
the size of the linear systems to be solved in each iteration. We see in Table 4.5
that when using the decomposing technique the cost of each iteration does depend
on the number of posynomial terms M , while the computation time of gpcvx is
independent of the M . This effect can be observed .

We also observe that the computation time of the primal-dual method is higher
as compared to the dual method, even though the number of iterations is lower.
This can be explained by the fact that after each dual centering we compute the
primal-dual affine-scaling direction (2.67) whose cost is comparable to computing
one Newton direction for the centering phase.
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dimension D-IPM PD-IPM GPCVX

N = 50,M = 50 1.19 2.33 0.27
N = 50,M = 100 3.79 3.89 0.20
N = 50,M = 150 3.18 4.14 0.23

N = 100,M = 100 3.17 4.32 0.36
N = 100,M = 200 4.97 5.46 0.41
N = 100,M = 300 4.46 6.01 0.45
N = 100,M = 400 4.03 7.25 0.48
N = 100,M = 500 13.15 10.10 0.57

N = 200,M = 200 13.61 11.81 0.88
N = 200,M = 400 15.01 10.74 0.89
N = 200,M = 600 6.49 14.22 0.99
N = 200,M = 800 14.37 19.75 1.03

Table 4.5: CPU time (in seconds) used by each solver.

4.5.3 A problem involving mixed powers

In Section 4.5.1 we analyzed the problem class of generalized location problems
and compared the performance of our dual path-following method and primal-
dual predictor-corrector method to three nonlinear solvers (MINOS, SNOPT and
KNITRO). It turned out that for small instances all solvers are more or less com-
parable, while for larger problems the three nonlinear solvers are getting more
and more unreliable in terms of the number of problems that are solved up to
optimality with optimality certificate.

In this section we consider a problem class where even for tiny instances the
nonlinear solvers have difficulties with solving the problems. Let us recall the
convex set Cp from Section 4.1.4, which is defined over mixed p-powers, i.e.

Cp =

{

(x, t) :

N∑

i=1

|xi|pi ≤ tp0 , t ≥ 0

}

where 1 ≤ p0 ≤ mini=1,...,N pi. We have seen in Section 4.1.4 that Cp is α-
representable and therefore we can optimize over that set.

For an arbitrary vector d ∈ RN let us define the convex problem

min
x,t

dTx+ t

s.t. (x, t) ∈ Cp
t ≤ 1.

(4.21)

We see that the feasible set of (4.21) is defined over one single nonlinear constraint
in dimension N + 1. Additionally, we introduced one linear inequality constraint
to bound the feasible set and to make sure that the problem is solvable. Using
the conic decomposition of Cp from Section 4.1.4, we arrive at the following conic
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reformulation of (4.21)

min dTx+

N∑

i=1

wi

s.t. (vi, 1, xi) ∈ Kαi , αi =
p0

pi
, i = 1, . . . , N,

(

wi,

N∑

i=1

wi, vi

)

∈ Kα0 , α0 =
1

p0
, i = 1, . . . , N,

1−
N∑

i=1

wi ∈ R+.

(4.22)

We see that we have reformulated (4.21) by using 2N power cone constraints
and by introducing 2N artificial variables v and w. On the other hand, we have
replaced t by

∑N
i=1 wi.

In the numerical tests we generated instances of (4.21) for different values of
N , and random data d and p such that 1 ≤ p0 ≤ mini=1,...,N pi. Our goal is not to
reach the computational limit in terms of the problem size. We aim to illustrate
that even for small and rather well-behaved problems the nonlinear solvers might
fail. This is why we are comparing the number of iterations and the reliability of
the dual path-following method to the nonlinear solvers MINOS 5.5 6, SNOPT 6.1-
17 and KNITRO 6.0.08. All three solvers are given the original problem (4.21) to
solve. Our interior-point solver is solving the dual conic reformulation of (4.22).

In Table 4.6 we list the average number of iterations to solve the random
instances of (4.21). The number of iterations of the dual interior-point method

dimension D-IPM MINOS SNOPT KNITRO

N = 2 27.2 33.4 39.5 336.6
N = 5 23.3 56.9 46.3 1493.4
N = 10 25.3 61.2 84.3 3200.3
N = 20 36.2 95.8 94.7 2137
N = 50 36.0 174.4 358.8 1021.2
N = 100 37.1 247.3 399 25

Table 4.6: Number of iterations for each solver (averaged on 10 instances).

is increasing only mildly with the problem size. On the other hand, MINOS and
SNOPT display a significant increase in the number of iterations. For N = 100
it is roughly 10 times the number of iterations needed by the dual interior-point
method. KNITRO shows an inexplicable behavior. For N = 2 it needs a rather
large number of iterations, which gets even worse for increasing problem size.
However, for N = 100 the number of iterations is becoming rather low, even
though the problem seems to be more difficult.

6http://www.sbsi-sol-optimize.com/asp/sol product minos.htm
7http://www.sbsi-sol-optimize.com/asp/sol product snopt.htm
8http://www.ziena.com/knitro.htm
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Table 4.7 shows the reliability (in terms of the average number of problems
that could be solved) of the four solvers tested. We remark here that the dual

dimension D-IPM MINOS SNOPT KNITRO

N = 2 100% 80% 20% 70%
N = 5 100% 90% 50% 80%
N = 10 100% 100% 30% 70%
N = 20 100% 100% 60% 90%
N = 50 100% 100% 0% 90%
N = 100 100% 100% 0% 100%

Table 4.7: Percentage of solutions for which optimality is guaranteed

interior-point method could solve all the problems up to optimality, while the
three nonlinear solvers have difficulties with solving the problems. MINOS was
solving the problems rather robustly, even though the number of iterations were
increasing significantly with the problem size. SNOPT was completely failing on
the larger instances (even though it claimed to have found an optimal solution,
which was clearly worse than the true optimal solution). KNITRO, on the other
hand was surprisingly failing on the smaller instances, it stopped after a large
number of iterations at solutions that were far from optimal.



CHAPTER 5

Partial minimization

We have shown in earlier chapters that interior-point methods are extremely pow-
erful and reliable for solving convex optimization problems. We have recalled for
example that a polynomial complexity can be established in terms of the number
of iterations for finding a point in close proximity to an exact optimal solution.
Moreover, the theoretical complexity bound is often pessimistic in that the num-
ber of iterations to solve the problem increases only mildly when the problem size
increases (for details see Section 4.5).

On the other hand interior-point methods have at least three major drawbacks.
First, in order to profit from the polynomial complexity safeguard, one needs
an explicit self-concordant barrier for the feasible set (and possibly also for the
epigraph of the convex objective). To find such a barrier is in general a difficult
task because it involves a uniform bounding of the third directional derivative of
the barrier by an appropriate power of the second directional derivative. Second,
due to their nature as second-order methods, interior-point methods have the
practical disadvantages of relatively high memory usage. In each iteration one
needs to compute and store the gradient and Hessian of some convex function.
Finally, each iteration requires a high computational effort. In order to compute
the search directions, one has to solve a linear system of equations, whose size is
essentially the number of variables. For dense problems with many variables these
tasks are intractable. We have observed those phenomena in Section 4.5, where,
although the number of iterations of our interior-point code was competitive with
or even better than most of the tested solvers for nonlinear problems, the cost of
one single iteration was increasing dramatically when the problem size increased.

However, there is hope for improvement, because often it is necessary to lift
the feasible set of an optimization problem to a higher-dimensional space in order
to have a self-concordant barrier available. That means the problem we actually
want to solve might not be large per se, but has to be embedded into a higher-
dimensional formulation in order to use the interior-point machinery.

153



154 CHAPTER 5. PARTIAL MINIMIZATION

Consider for example the convex constraint

n∑

i=1

exp(ui) ≤ 1, (5.1)

for which no explicit self-concordant barrier, expressed only in terms of u, is known.
However, it is clear that (5.1) can be reformulated into

exp(ui) ≤ vi, i = 1, . . . , n
n∑

i=1

vi = 1
(5.2)

by introducing n additional variables v. Note that (5.2) can be handled in an
interior-point framework since a self-concordant barrier for the epigraph of the
exponential function is known. On the other hand we see that we have doubled
the number of variables from n to 2n. This means the more compact but less
handy constraint (5.1) is replaced by the augmented (2n instead of n variables)
but simpler constraint (5.2) with the benefit of having a self-concordant barrier
at hand. In general, a doubling of the number of variables means that the mem-
ory storage increases roughly by a factor of 4 and the computational cost of one
iteration roughly by a factor of 8 (using e.g. a Cholesky factorization to solve
the linear system). Even if - in the particular example shown above - the storage
and computational cost will certainly be more favorable than in the general case,
there will still be some non-negligible increase of the storage and numerical cost
observable.

In this chapter we address the issue of variable reduction. We consider convex
problems that can be reformulated into partially sparse problems with explicit
self-concordant barrier for the feasible set. Based on results by Nesterov ([50])
we use this partial sparsity to derive an implicit barrier for the feasible set of the
original convex problem. We will show how this technique can be embedded into a
path-following interior-point method, even if the partial minimization subproblem
cannot be solved analytically but only approximately via an iterative scheme. We
show that polynomial complexity can be maintained and that in some cases a
substantial improvement in the computational effort can be achieved. Moreover,
the proposed concept gives rise to parallelization in practical implementations.
Indeed, we see that the decomposed formulation (5.2) is partially separable, in
that the variables vi only appear in one inquality constraint at a time. In the
context of interior-point methods this means that the minimization of a barrier
function F with respect to the artificial variables v can be done in parallel, which
will result in faster computations.

In Section 5.1 we derive an extended formulation that naturally arises when-
ever we deal with convex problems for whose feasible set we do not know a self-
concordant barrier. The concept of partial minimization is presented in Section 5.2.
We show how it can be embedded into an interior-point method and present its
complexity result. In Section 5.3 we consider the case where the partial mini-
mization subproblem cannot be solved analytically. We show how to obtain an
approximate partial minimizer and how the outer algorithm can be adapted so



5.1. LIFTING 155

that the global complexity bound from the previous section is essentially main-
tained. Finally, in Section 5.4 we consider two classes of optimization problems
(discussed earlier in Section 4.4) which are well-suited for the application of the
partial minimization technique. We present numerical results for interior-point
methods with and without approximate partial minimization.

5.1 Lifting

In this section we are going to formalize the situation that we have encountered in
the example above, where the sum-of-exponential expression has been decomposed
into several simple expressions which are linked by one linear equality.

We consider a general convex optimization problem of the following form

min
z

aT z

z ∈ C̃ ⊂ Rn1 ,
(5.3)

where C̃ is a closed convex set which is not necessarily full-dimensional. We have
shown in Chapter 2 that in order to use interior-point methods to solve (5.3), we
need to have available a self-concordant barrier for the feasible set, which implicitly
assumes that C̃ has interior-points (i.e. it has to be full-dimensional). If C̃ is not
full-dimensional, then it can be written as

C̃ = C
⋂

L̄,

where C ⊂ Rn1 is full-dimensional and L̄ = {z : Gz = g} ⊂ Rn1 for some matrix
G with full row rank. In that notation (5.3) becomes

min
z

aT z

z ∈ C,
Gz = g.

(5.4)

In Chapter 2 we have shown that if we have access to the value, the gradient
and the Hessian of a self-concordant barrier for C, then (5.4) can be solved in
polynomial time. If we cannot access this information of a self-concordant barrier
for C, then it still might be possible to solve (5.4), provided that C can be expressed
as a projection of some higher-dimensional closed convex set Q̃ ⊂ Rn1+n2 onto the
z-variables. Thus, we need that z ∈ C if and only if ∃ v ∈ Rn2 such that

(z, v) ∈ Q̃,

where Q̃ is not necessarily full-dimensional. If indeed Q̃ does not contain interior
points, then we can write it as

Q̃ = Q
⋂

L

with some full-dimensional set Q ⊂ Rn1+n2 and L = {(z, v) : Ez+Bv = d}, where
B ∈ Rm1,n2 , E ∈ Rm1,n1 and d ∈ Rm1 . We can assume without loss of generality
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that B has full row rank because C is full-dimensional. Indeed, if B does contain
linearly dependent rows, then we can reformulate the system

Ez +Bv = d

so that it contains a linear constraint only involving z (and not v), which means
that C cannot have full dimension. Summarizing, if C admits a lifting as described
above, then (5.3) can be solved by the extended formulation

min
z,v

aT z

(z, v) ∈ Q,
Ez +Bv = d,

Gz = g.

(5.5)

where B and G have full row rank and Q is full-dimensional.
If we have a self-concordant barrier available for Q, then (5.5) can be solved in

polynomial time and the z-component of the optimal solution is an optimal solution
for (5.4). The drawback of this lifting procedure is the introduction of artificial
variables v for the sake of having a formulation whose feasible set admits a self-
concordant barrier. The technique of partial minimization targets at overcoming
the above-mentioned disadvantage. Based on the extended formulation (5.5) with
the self-concordant barrier F for Q we want to derive a self-concordant barrier for
the lower-dimensional set C, or at least to approximate such a barrier.

Let us summarize the basic assumptions that we make for the partial mini-
mization framework:

Assumption 4 [Partial Minimization]

1. C ⊂ Rn1 and Q ⊂ Rn1+n2 are full-dimensional closed convex sets,

2. B ∈ Rm1,n2 and G ∈ Rm2,n1 have full row rank, E ∈ Rm1,n1 ,
g ∈ Rm2 , d ∈ Rm1 ,

3. let z ∈ C ⊂ Rn1 if and only if ∃ v such that (z, v) ∈ Q⋂L,

4. C does not contain straight lines,

5. for any z̄ ∈ int C⋂ L̄ we have Q⋂L⋂{(z, v) : z = z̄} is bounded,

6. F is a ν-self-concordant barrier for Q.

The above assumptions might seem somewhat restrictive. However, we argue
(and we will demonstrate later on concrete examples) that these assumptions arise
naturally. The full-dimensionality of C and Q is necessary for the interior-point
framework. If they are not full-dimensional, then it is possible to write them as the
intersection of a full-dimensional set with an affine subspace, defined by a matrix
with full row rank.

The projection property naturally arises whenever C is given by convex con-
straints that are given by combinations (e.g. sums) of elementary convex func-
tions. We will show later examples of such projections. The fact that C does not
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contain straight lines ensures that the Newton directions for the implicit barrier
(that we will define later) are defined. The assumption Q⋂L⋂{(z, v) : z = z̄}
being bounded for a fixed z̄ ∈ C⋂ will guarantee that the partial minimization
subproblems do have unique solutions.

5.2 Exact partial minimization

Partial minimization denotes the process of minimizing a self-concordant barrier
F with respect to some of its variables. In this section we show that partial min-
imization preserves the self-concordance property. This means that if the partial
minimization problem can be solved efficiently, then it can be used as a means to
reduce the dimension while preserving polynomial complexity of solving the actual
problem.

5.2.1 Partial minimization theorem

Let z ∈ int C⋂ L̄. The partial minimization problem is given by

min
v

F (z, v)

Ez +Bv = d.
(PM(z))

We have assumed that for any fixed z the set Q⋂L is bounded. Since F is a
barrier for its domain intQ, and any intersection of Q with an affine subspace,
there exists a unique solution for (PM(z)). Let us denote this partial minimizer
by v(z). Then we can define the implicit function

ϕ(z) = F (z, v(z)),

which we call the partially minimized barrier. It is clear that domϕ = int C.
Indeed, if z ∈ int C, then there exists by assumption a v such that (z, v) ∈ intQ,
which means that F (z, v) < ∞. Thus, ϕ(z) < ∞, i.e. z ∈ domϕ. Reversely, let
z ∈ domϕ. Then there exists a point v(z) such that (z, v(z)) ∈ domF = intQ
and E z +B v(z) = d. By assumption we have then z ∈ int C.

Note that v(z) is characterized by the optimality conditions: ∃ λv(z) such that

F ′
v(z, v(z)) = −BT λv(z)
B v(z) = d− Ez. (5.6)

When we derive the optimality conditions (5.6) with respect to z, we get

F
′′

vv(z, v(z)) v
′(z) + F

′′

vz(z, v(z)) = −BT λ′v(z)
B v′(z) = −E,

which can be written in the more compact form

[

F
′′

vv(z, v(z)) BT

B 0

]

·
[
v′(z)
λ′v(z)

]

=

[

−F ′′

vz(z, v(z))
−E

]

. (5.7)
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The solutions v′(z) and λ′v(z) are the Jacobians of the partial minimizer v(z)
and the optimal dual multipliers λv(z) with respect to z. Let us compute now
the derivatives of the implicit barrier ϕ. When applying the chain rule and the
optimality conditions (5.6) and (5.7), we get

∇ϕ(z) = F ′
z(z, v(z)) + v′(z)T F ′

v(z, v(z))
︸ ︷︷ ︸

(5.6)
= −BTλv(z)

= F ′
z(z, v(z))− v′(z)TBT

︸ ︷︷ ︸

(5.7)
= −ET

λv(z)

= F ′
z(z, v(z)) + ETλv(z). (5.8)

It follows that the Hessian becomes

∇2ϕ(z) = F ′′
zz(z, v(z)) + F ′′

zv(z, v(z)) v
′(z) + ETλ′v(z). (5.9)

The following theorem is the main result of this section. It states that mini-
mizing a self-concordant barrier with respect to some of its variables preserves the
self-concordance property.

Theorem 5.2.1. Let the Assumptions 4 be satisfied. Then

ϕ(z) = min
v
{F (z, v) : Bv = d− Ez}

is a nondegenerate ν-self-concordant barrier for C.

In [50, Theorem 3] Nesterov provides a similar result for the special case where
Q does not contain a straight line, something we do not assume here, and the
right-hand side of the linear equalities do not depend on z (i.e. E = 0). Theorem
5.2.1 treats therefore a more general case and we have to prove it for our setting.
The outline of the proof, however, is strongly related to the one in [50].

As a first step, we need the following technical results.

Lemma 5.2.2. Let

Ā =

[
A11 AT12
A12 A22

]

∈ Rn1+n2,n1+n2

be symmetric and positive semidefinite and A22 positive definite. Ā defines a
quadratic form in y = (z, v):

〈Āy, y〉 = 〈A11z, z〉+ 2〈A12z, v〉+ 〈A22v, v〉. (5.10)

Let B ∈ Rm1,n2 be a matrix with full row rank, E ∈ Rm1,n1 . Then the matrix P
of the quadratic form

〈Pz, z〉 = min
v
{〈Āy, y〉 : Bv = −Ez} (5.11)

is given by
P = P1 + P2,
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where

P1 = A11 −AT12A−1
22 A12

P2 = (−E +BA−1
22 A12)

T (BA−1
22 B

T )−1(−E +BA−1
22 A12).

Proof. The optimality conditions for (5.11) are

A22v +A12z = BTλ

Bv = −Ez. (5.12)

Since A22 is positive definite, we get

v = A−1
22 · (BTλ−A12z),

and substituting the above expression for v in the second equation of (5.12) yields

BA−1
22 B

T λ = (−E +BA−1
22 A12) z.

B has full row rank, which implies that the matrix on the left-hand side is positive
definite. Therefore, we get

λ = (BA−1
22 B

T )−1 [−E +BA−1
22 A12]

︸ ︷︷ ︸

=:P3

z

and replacing this expression in the above formula for v, we obtain

v = A−1
22 [BT (BA−1

22 B
T )−1 (−E +BA−1

22 A12)−A12]
︸ ︷︷ ︸

=A−1
22 (BTP3−A12)

z.

Let us plug now this expression into (5.10):

〈Āy, y〉 = 〈A11z, z〉+ 2〈A12z,A
−1
22 (BTP3 −A12) z〉+ 〈(BTP3 −A12)z,A

−1
22 (BTP3 −A12) z〉,

which is a quadratic form in z. Let us simplify the corresponding matrix P such
that 〈Āy, y〉 = 〈Pz, z〉. We get

P =A11 + 2AT12A
−1
22 B

TP3 − 2AT12A
−1
22 A12

+ PT3 BA
−1
22 B

TP3
︸ ︷︷ ︸

=P2

−PT3 BA−1
22 A12 −AT12A−1

22 B
TP3 +AT12A

−1
22 A12

=A11 −AT12A−1
22 A12

︸ ︷︷ ︸

P1

+P2 +AT12A
−1
22 B

TP3
︸ ︷︷ ︸

=:M

−PT3 BA−1
22 A12

︸ ︷︷ ︸

=MT

=P1 + P2 +M −MT .

It remains to note that M −MT is skew-symmetric, which implies

〈Pz, z〉 = 〈(P1 + P2)z, z〉+ 〈(−M +MT )z, z〉
︸ ︷︷ ︸

=0

= 〈(P1 + P2)z, z〉
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Remark 5.2.3. We see that P1 is the Schur complement of Ā with respect to
the block A22. Furthermore, we see that the Schur complement of the augmented
matrix 



A11 AT12 ET

A12 A22 BT

E B 0





with respect to the block A22 is

M1 =

[
P1 ET −AT12A−1

22 B
T

E −BA−1
22 A12 −BA−1

22 B
T

]

.

Since B has full row rank, we get as the Schur complement of M1 with respect to
the block −BA−1

22 B
T :

P = P1 + P2.

We have seen that (5.9) gives the Hessian of the implicit barrier ϕ, assuming
that we have computed the partial minimizer v(z) and the Jacobians v′(z) and
λ′v(z). The following result provides an interpretation of the matrix H(z, v) that
we obtain from (5.9) without assuming that v is the partial minimizer for z.

Corollary 5.2.4. Let B ∈ Rm1,n2 be a matrix with full row rank and E ∈ Rm1,n1 .
Let y = (z, v) ∈ intQ⋂L and ∆y = (∆z,∆v) a feasible direction such that
B∆v + E∆z = 0. Let the matrices J(z, v) and L(z, v) be the solution of

[

F
′′

vv(z, v) BT

B 0

]

·
[
J(z, v)
L(z, v)

]

=

[

−F ′′

vz(z, v)
−E

]

(5.13)

and define H(z, v)as

H(z, v) = F
′′

zz(z, v) + F
′′

zv(z, v)J(z, v) + ET L(z, v).

Then we have

〈H(z, v)∆z,∆z〉 = min
∆v
{〈∇2F (y)∆y,∆y〉 : B∆v = −E∆z}.

Proof. We simply apply Lemma 5.2.2 with A11 = F
′′

zz(z, v), A12 = F
′′

vz(z, v) and
A22 = F

′′

vv(z, v). Note that Assumption 4 implies that F
′′

vv(z, v) is positive definite.
Let us denote J = J(z, v), L = L(z, v) and H = H(z, v). We have to show that

P1 + P2 = H.

Recall that, using the above notation, we have

H = A11 +AT12 J + ET L (5.14)

where J and L are the solutions of (5.13) which becomes in the above notation

[
A22 BT

B 0

]

·
[
J
L

]

=

[
−A12

−E

]

.
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Since A22 is positive definite, we get

J = −A−1
22 (BT L+A12)

and substituting the above expression for J in the second equation of the system
yields

BA−1
22 B

T L = −BA−1
22 A12 + E.

B has full row rank, which implies that the matrix on the left-hand side is positive
definite. Therefore, we get

L = −(BA−1
22 B

T )−1 · [−E +BA−1
22 A12] = −P3, (5.15)

where P3 is defined as in the proof of Lemma 5.2.2. If we replace the expression
for L in the above formula for J , we obtain

J = A−1
22 (BTP3 −A12). (5.16)

Plugging (5.15) and (5.16) into (5.14), we get

H = A11 −AT12A−2
22 A12 +AT12A

−1
22 B

TP3 − ETP3

= P1 + (−E +BA−1
22 A12)

TP3

= P1 + P2.

Corollary 5.2.5. Let z ∈ int C with partial minimizer v(z). Denote y = (z, v(z)).
Then it holds for any direction ∆z ∈ Rn1

∆zT∇2ϕ(z)∆z = min
∆v
{∆yT∇2F (y)∆y : B∆v = −E∆z}.

Proof. The result follows directly from Corollary 5.2.4 and the fact that v = v(z)
means that (5.7) is the same system as (5.13). It follows H(z, v(z)) = v′(z),
L(z, v(z)) = λ′v(z) and consequently H(z, v(z)) = ∇2ϕ(z).

We have now all the tools ready to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. Let z0 ∈ int C with partial minimizer v(z0), denote y0 =
(z0, v(z0)). Let ∆z ∈ Rn1 such that z̄ = z0 + ∆z ∈ int C. Let v̄ such that
ȳ = (z̄, v̄) ∈ intQ⋂L, which always exists by assumption. Finally, denote ∆v =
v̄ − v(z0) and ∆y = (∆z,∆v).

Because of Theorem 2.2.15 and equations (5.8) and (5.6) we have

F (ȳ) ≥ F (y0) +∇F (y0)
T∆y + ω(||∆y||∇2F (y0))

= ϕ(z0) + F ′
z(y0)

T
∆z + F ′

v(y0)
T ∆v + ω(||∆y||∇2F (y0))

= ϕ(z0) + (∇ϕ(z0)− ETλv(z0))T∆z − λv(z0)TB∆v + ω(||∆y||∇2F (y0)).
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Since ȳ ∈ L and also y0 ∈ L, we conclude that E(z̄ − z0) + B(v̄ − v(z0)) =
E∆z +B∆v = 0. Therefore, B∆v = −E∆z and we get

F (ȳ) ≥ ϕ(z0) +∇ϕ(z0)
T∆z + ω(||∆y||∇2F (y0)).

Let us minimize now both sides of the inequality for all feasible v, i.e. for all v
such that Ez̄ +Bv = d. Then we get

ϕ(z̄) ≥ ϕ(z0) +∇ϕ(z0)
T∆z + ω

(

min
v:Bv=d−Ez̄

||∆z, v − v∗(z0)||∇2F (y0)

)

= ϕ(z0) +∇ϕ(z0)
T∆z + ω

(

min
∆v:B∆v=−E∆z

||∆z,∆v||∇2F (y0)

)

.

It follows, using Corollary 5.2.5

ϕ(z̄) ≥ ϕ(z0) +∇ϕ(z0)
T∆z + ω

((
∆zT∇2ϕ(z)∆z

)1/2
)

.

Inequality (2.12) implies that ϕ is indeed a self-concordant function.
Let us show now that ϕ is also a ν-self-concordant barrier for C. Using again

(5.6) and (5.8) and the fact that B∆v = −E∆z, we have

∇F (y0)
T∆y = F ′

z(y0)
T
∆z + F ′

v(y0)
T∆v

= (∇ϕ(z0)− ETλv(z0))T∆z − λv(z0)TB∆v

= (∇ϕ(z0)− ETλv(z0))T∆z + λv(z0)
TE∆z

= ∇ϕ(z0)
T∆z.

Using Theorem 2.4.7, we get

F (ȳ) ≥ F (y0) +∇F (y0)
T∆y + νω∗

(
1

ν
∇F (y0)

T∆y

)

= ϕ(z0) +∇ϕ(z0)
T∆z + νω∗

(
1

ν
∇ϕ(z0)

T∆z

)

.

Minimizing the left-hand side of the inequality with respect to all feasible v we get

ϕ(z̄) ≥ ϕ(z0) +∇ϕ(z0)
T∆z + νω∗

(
1

ν
∇ϕ(z0)

T∆z

)

.

According to Theorem 2.4.7 this means that ϕ is a ν-self-concordant barrier for
C.

5.2.2 Two examples of partial minimization

Explicit partial minimizer

Let us consider the convex constraint

eu
2 ≤ w. (5.17)
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We see that (5.17) can be written equivalently as

ev ≤ w
u2 ≤ v

(5.18)

by introducing an artificial variable v. Moreover, we know that

F1(v, w) = − log(w)− log(log(w) − v)

is a 2-self-concordant barrier for the set {ev ≤ w} (see e.g. [44]), and

F2(u, v) = − log(v − u2)

is a 1-self-concordant barrier for {u2 ≤ v} (see e.g. [46, Example 4.2.1(4)]). We
conclude that

F (u,w, v) = − log(w)− log(log(w) − v)− log(v − u2)

is a 3-self-concordant barrier for (5.18). On the other hand, we do not need the
artificial variable v. Minimizing F with respect to v gives as optimal solution

v∗ =
1

2
(u2 + log(w)).

Therefore we can conclude that

ϕ(u,w) = − log(w)− 2 log(log(w)− u2) + 2 log (2) .

is a 3-self-concordant barrier for (5.17).
Unfortunately, it is not always possible to compute analytically the partial min-

imizer. In the above example this was possible because the optimality conditions
for minimizing F with respect to v were particularly simple. However, this is not
always the case, as the following example illustrates.

Implicit partial minimizer

Let us consider the convex constraint

n∑

i=1

exp(ui) ≤ u0 (5.19)

which is equivalent to

exp(ui) ≤ vi
n∑

i=1

vi = u0.
(5.20)

The second formulation has the advantage of having an explicit barrier available.
Indeed,

F (u, v) =

n∑

i=1

(− log(vi)− log(log(vi)− ui))
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is a 2n-self-concordant barrier for (5.20). On the other hand, if we want to mini-
mize a linear function over (5.19), we only need a self-concordant barrier for this
reduced set. According to Theorem 5.2.1 the implicit function

ϕ(u) := min
v:

P

vi=u0

F (u, v)

is a 2n-self-concordant barrier for (5.19). The optimality conditions for the above
partial minimization subproblem are: ∃ λ:

− 1

vi
− 1

(log(vi)− ui) · vi
= λ ∀i

n∑

i=1

vi = u0.

It seems difficult to find an analytic solution to these optimality conditions. How-
ever, we might try to find an approximate solution v̄, as it will be described in
Section 5.3.

5.2.3 Analytic centering using partial minimization

We consider now the analytic centering problem of minimizing F restricted to
linear subspaces defined by L and L̄, i.e.

min
z,v

F (z, v)

Ez +Bv = d

Gz = g.

(AC)

Using Theorem 5.2.1, the analytic centering problem (AC) can be written as

min
z
ϕ(z)

Gz = g.
(5.21)

It is clear that if we want to make sure that a solution to (5.21) exists, we have to
add the assumption that C⋂ L̄ is bounded.

In order to solve (5.21) we employ a damped Newton scheme as discussed in
Section 2.3. The Newton directions are computed by solving the linear system

[
∇2ϕ(z) GT

G 0

]

·
[
∆z
λz

]

=

[
−∇ϕ(z)

0

]

, (5.22)

where the gradient and Hessian of ϕ are given by (5.8) and (5.9).
Using Theorem 2.3.7, we conclude that we can solve (5.21) up to accuracy ǫ in

no more than
ϕ(z0)− ϕ(z∗)

ω(β̄)
+O (log2 (log2 (1/ǭ)))

iterations, where β̄ ∈
(

0, 3−
√

5
2

)

and ǭ := ω−1
∗ (ǫ). Let z̄ such an approximate

solution for (5.21). Then we have that (z̄, v(z̄)) is an ǫ-solution for the full problem
(AC).
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In view of the observations from Section 2.3.3, we have that the numerical cost
of solving (5.22) is

O
(

1

3
(n1 +m2)

3

)

flops, while the complexity of solving the Newton system corresponding to the full
analytic centering problem (AC) would be

O
(

1

3
(n1 + n2 +m1 +m2)

3

)

flops, since the number of variables is n = n1 + n2 and the number of constraints
is m = m1 + m2. We see that the improvement is significant if n2 and/or m1

are large as compared to n1 and m2. Note that the above complexity does not
take sparsity into account, in which case the complexity of solving (AC) would be
lower.

5.2.4 Solving convex problems using partial minimization

We consider now the convex optimization problem of minimizing a linear function
a over C⋂ L̄.

min aT z

s.t. z ∈ C
Gz = g.

(5.23)

Since the implicit barrier ϕ(z) is a nondegenerate ν-self-concordant barrier for
C, according to Theorem 2.4.14 the complexity of solving (5.23) is bounded by

N ≤ O
(√

ν · log
(ν

ǫ

))

iterations. Moreover, the cost per iteration is significantly lower as compared to
the lifted formulation involving the higher-dimensional set Q (see Section 5.2.3).

5.3 Approximate partial minimization

In the previous section we have showed that minimizing a self-concordant barrier
with respect to some variables that are not needed, preserves the self-concordance
property. As a consequence, we are able to solve the original problem in the
lower-dimensional space using that implicit barrier. However, this result is only
of limited direct use, because often we will not be able to compute the partial
minimizer analytically as in the first example in Section 5.2.2. In this section we
illustrate how the concept of partial minimization can be used even if the partial
minimizer is only computed approximately.

Let us recall the partial minimization subproblem for a fixed strictly feasible
point z ∈ int C⋂L:

ϕ(z) = min
v

F (z, v)

s.t. Bv = d− Ez.
(PM(z))
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As we have argued in Section 5.2, Assumptions 4 guarantee that for any z ∈
int C⋂L a solution for (PM(z)) exists and is unique.

5.3.1 Computing the approximate partial minimizer

In general it is not possible to find analytically a solution for (PM(z)). However,
since F is a self-concordant function, we can efficiently compute an approximate
solution for (PM(z)) by a damped Newton scheme. Let (z, v) ∈ intQ⋂L be a
strictly feasible starting point. The Newton directions can be obtained by solving
the following linear system

[

F
′′

vv(z, v) BT

B 0

]

·
[
∆v
λv

]

=

[

−F ′

v(z, v)
0

]

. (5.24)

For the sake of simplifying notation we denote F
′′

vv = F
′′

vv(z, v) and F
′

v = F
′

v(z, v).
For a fixed z ∈ int C⋂L the domain of F is bounded by Assumption 4. Therefore
the v-block of the Hessian (F

′′

vv) is nondegenerate and we get as solution for (5.24)

∆v = −(F
′′

vv)
−1 (F

′

v + BTλv).

Since B has full row rank we can pre-multiply the above expression by B and get

λv = −
[

B(F
′′

vv)
−1BT

]−1

B(F
′′

vv)
−1F

′

v,

(see also Section 2.3.3).
In order to solve (PM(z)) we apply several damped Newton steps v+ = v+ γ ·

∆v, where γ is a a suitable step size parameter. Lemma 2.3.6 provides us with a
safeguard step length γ = 1

1+δv
that guarantees a decrease in the objective value

(in practice we might try to find a larger step size). Here, δv denotes the Newton
decrement δv := ||∆v||v = (∆vTF

′′

vv∆v)
1/2. The stopping criterion for the damped

Newton scheme is the size of the Newton decrement: as soon as δv ≤ βv < 1 we
call the current iterate v̄ a βv-approximation to the exact partial minimizer v(z)
(and λ̄ the corresponding multiplier that approximates the exact multiplier λv(z)).
Then we have that F (z, v̄) is an approximation for the value of ϕ at z.

5.3.2 Analytic centering using approximate partial mini-

mization

In this section we consider again the analytic centering problem (AC), i.e.

min
z,v

F (z, v)

Ez +Bv = d

Gz = g.

(AC)

As in Section 5.2.3, in order to guarantee that a solution to (AC) exists we impose
the additional assumption that C⋂ L̄ is bounded. Note, however, that this addi-
tional assumption is not needed when there is additionally a nontrivial linear term
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in the objective present. This situation occurs whenever we solve the sequence of
centering problems as it is described in Section 5.3.3.

Since F is a self-concordant function, we can solve this problem using a damped
Newton scheme, whose complexity is

O (F (y0)− F (y∗)) +O
(
log2

(
log2

(
1/ω−1

∗ (ǫ)
)))

iterations to generate an approximate solution ȳ such that

F (ȳ)− F (y∗) ≤ ǫ,
(see Theorem 2.3.7). The cost of computing the Newton directions is

O
(

1

3
(n+m)3

)

,

where n = n1 + n2 and m = m1 + m2 (see Section 2.3.3). We see that the
complexity of one iteration increases dramatically when the number of variables
n, or the number of constraints m, gets large.

The main objective of this section is to modify the standard damped Newton
method (Algorithm 2) so that the cost per iteration is reduced. The comment at
the end of Section 5.2.3 indicates that there is indeed hope for improvement, pro-
vided that the partial minimization subproblem (PM(z)) can be solved efficiently.

Newton steps in a sequence of affine subspaces

For a given strictly feasible point z ∈ int C⋂ L̄ and an approximate partial min-
imizer v̄ ≈ v(z) (that we compute as described in Section 5.3.1), we can approx-
imate the value of the implicit barrier ϕ at z. Indeed, let δv be the Newton
decrement for the partial minimization subproblem (PM(z)) at the point (z, v̄). If
δv < 1, then we have according to Theorem 2.3.4

F (z, v̄)− ϕ(z) ≤ ω∗(δv).

However, in order to work in an outer Newton scheme only in terms of the
variables z, it is necessary to approximate the gradient and Hessian of ϕ at z.
We showed that (5.8) and (5.9) give the gradient and Hessian of ϕ, provided that
v̄ is indeed the exact partial minimizer for z. We could simply replace v(z) by
v̄ in formulae (5.8) and (5.9), but then we would only get approximations for
∇ϕ(z) and ∇2ϕ(z). Unfortunately, we cannot say anything a priori about the
quality of these approximations. However, we will show that for v̄ = v(z) (5.8)
and (5.9) can be thought of as the gradient and Hessian of a restriction of F to
an affine subspace, which is tangent to the surface of partial minimizers at the
point (z, v(z)). Moreover, for v̄ 6= v(z) we get a whole family of restrictions of the
barrier F .

Let us consider a fixed point (z, v̄) ∈ intQ⋂L. We could take for example as v̄
an approximate partial minimizer for z ∈ int C⋂ L̄ that we compute as described
in Section 5.3.1. Let us define the matrices J(z, v̄) and L(z, v̄) to be the unique
solutions to (5.13), i.e.

[

F
′′

vv(z, v̄) BT

B 0

]

·
[
J(z, v̄)
L(z, v̄)

]

=

[

−F ′′

vz(z, v̄)
−E

]

.
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We have pointed out in the proof of Corollary 5.2.5, that if v̄ is the partial mini-
mizer for z, i.e. v̄ = v(z), then J(z, v(z)) = v′(z) and L(z, v(z)) = λ′v(z).

Let us fix J = J(z, v̄) and define for points z̃ around z the function

ψ(z̃) = F (z̃, v̄ + J (z̃ − z)),

relative to the fixed point (z, v̄).

Lemma 5.3.1. For any (z, v̄) ∈ intQ⋂L we have

domψ ⊆ int C.

Proof. Let z̃ ∈ domψ and denote ṽ = v̄ + J (z̃ − z). We have by definition of ψ
that

F (z̃, ṽ) <∞,
that is, (z̃, ṽ) ∈ domF = intQ.

Further, in view of (5.13) we have

Bṽ + Ez̃ = Bv̄ + BJ
︸︷︷︸

=−E

(z̃ − z) + Ez̃ = Bv̄ + Ez = d,

which means (z̃, ṽ) ∈ L. By Assumption 4 we conclude that z̃ ∈ int C.

Let us compute now the derivatives of ψ.

∇ψ(z̃) =F ′
z(z̃, v̄ + J (z̃ − z)) + JT F ′

v(z̃, v̄ + J (z̃ − z)),
∇2ψ(z̃) =F

′′

zz(z̃, v̄ + J · (z̃ − z)) + F
′′

zv(z̃, v̄ + J (z̃ − z))J
+ JT F

′′

vz(z̃, v̄ + J (z̃ − z)) + JT F
′′

vv(z̃, v̄ + J (z̃ − z))J.

For z̃ = z we denote

h(z, v̄) := ∇ψ(z) =F ′
z(z, v̄) + JT F ′

v(z, v̄), (5.25)

H(z, v̄) := ∇2ψ(z) =F
′′

zz(z, v̄) + F
′′

zv(z, v̄)J

+ JT F
′′

vz(z, v̄) + JT F
′′

vv(z, v̄)J
︸ ︷︷ ︸

(5.13)
= −JTBTL

(5.13)
= ETL

=F
′′

zz(z, v̄) + F
′′

zv(z, v̄)J + ETL. (5.26)

In view of Lemma 5.3.1 and Assumption 4 we have that domψ does not contain
straight lines. According to Theorem 2.2.4 the Hessian of ψ is then nonsingular
for every point z̃ ∈ domψ (and in particular for z from above). This justifies that
H(z, v̄) is a positive definite matrix.

It is easy to see that the function ψ can be considered as a restriction of F to
the affine subspace

LJ = {(z̃, ṽ) : ṽ = v̄ + J (z̃ − z)}
relative to (z, v̄). From the proof of Lemma 5.3.1 it follows directly that LJ ⊆ L
for all (z, v̄) ∈ intQ⋂L.
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The approach of restricting F to LJ is justified by the following two facts.
First, we can remove the dependence on the variables v while still maintaining
feasibility with respect to the linear constraints L. Second, if we assume that v̄
is the exact partial minimizer (i.e. v̄ = v(z0)), then according to the optimality
conditions (5.6) we have necessarily

F ′
v(z, v(z)) = −BTλv(z),

and also J = v′(z) and L = λ′v(z) (because (5.13) and (5.7) are the same system),
which implies that ∇ψ(z) = ∇ϕ(z) and ∇2ψ(z) = ∇2ϕ(z). That means also that,
at the point z0, the Newton direction for minimizing ψ is equal to the Newton
direction for the implicit barrier ϕ.

For v̄ 6= v(z) we have the following interpretation of the Newton direction for
minimizing ψ.

Lemma 5.3.2. Let (z, v̄) ∈ intQ⋂L and ∆y = (∆y1,∆y2) the Newton direction
for minimizing F restricted to L, at the point (z, v̄). Then ∆y1 is the Newton
direction for minimizing ψ at z.

Proof. We consider the analytic centering problem

min
z,v

F (z, v)

Ez +Bv = d.

Throughout this proof, all partial derivatives are taken at the point (z, v̄), and
to simplify notation we write F ′

v for F ′
v(z, v̄) etc. The Newton direction ∆y =

(∆y1,∆y2) is the unique solution of




F
′′

zz F
′′

zv ET

F
′′

vz F
′′

vv BT

E B 0



 ·





∆y1
∆y2
λy



 =





−F ′
z

−F ′
v

0



 . (5.27)

Let us compute explicitly ∆y1. From the second equation of (5.27) it follows

∆y2 = −(F
′′

vv)
−1 · [F ′

v + F
′′

vz∆y1 +BTλy ] (5.28)

and by we replacing this expression for ∆y2 in (5.27), we get
[
S MT

M −B(F
′′

vv)
−1BT

]

·
[
∆y1
λy

]

=

[
−F ′

z + F
′′

zv(F
′′

vv)
−1F ′

v

B(F
′′

vv)
−1F ′

v

]

, (5.29)

where M = E −B(F
′′

vv)
−1F

′′

vz and S = F
′′

zz − F
′′

zv(F
′′

vv)
−1F

′′

vz . Using the fact that
B has full row rank, we isolate λy in the the second equation of (5.29) and get

λy =
(

B(F
′′

vv)
−1BT

)−1

[M ·∆y1 −B(F
′′

vv)
−1F ′

v]. (5.30)

Let us replace this expression for λy in (5.29), which yields

[

S +MT
(

B(F
′′

vv)
−1BT

)−1

M

]

·∆y1

= −F ′
z +

[

F
′′

zv +MT
(

B(F
′′

vv)
−1BT

)−1

B

]

· (F ′′

vv)
−1F ′

v. (5.31)
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On the other hand, the matrices J and L are the solutions of the system (5.13)
relative to the point (z, v̄), i.e.

[

F
′′

vv BT

B 0

]

·
[
J
L

]

=

[

−F ′′

vz

−E

]

.

We obtain as solutions

L = −(BF
′′

vv

−1
BT )−1 · [−E +BF

′′

vv

−1
F

′′

vz ]
︸ ︷︷ ︸

=−M

=
(

BF
′′

vv

−1
BT
)−1

·M (5.32)

and

J = −(F
′′

vv)
−1BT L− (F

′′

vv)
−1F

′′

vz

= −(F
′′

vv)
−1BT

(

BF
′′

vv

−1
BT
)−1

M − (F
′′

vv)
−1F

′′

vz

= −(F
′′

vv)
−1

[

BT
(

BF
′′

vv

−1
BT
)−1

M + F
′′

vz

]

. (5.33)

Let us have a closer look at the system (5.31). Using (5.33), its right-hand side
term can be written as

−F ′
z +

[

F
′′

zv +MT
(

B(F
′′

vv)
−1BT

)−1

B

]

· (F ′′

vv)
−1

︸ ︷︷ ︸

=−JT

F ′
v = −F ′

z − JTF ′
v,

and by comparing with (5.25) it follows that the above expression is exactly
−∇ψ(z).

Further, if we combine (5.26) with (5.32) and (5.33), we get

∇2ψ(z) = F
′′

zz + F
′′

zv · J + ETL

= F
′′

zz − F
′′

zv(F
′′

vv)
−1F

′′

vz
︸ ︷︷ ︸

=S

−F ′′

zv(F
′′

vv)
−1BT

(

B(F
′′

vv)
−1BT

)−1

M + ETL

= S +
[

−F ′′

zv(F
′′

vv)
−1BT + ET

]

︸ ︷︷ ︸

=MT

(

B(F
′′

vv)
−1BT

)−1

M

= S +MT
(

B(F
′′

vv)
−1BT

)−1

M.

The last expression is exactly the system matrix of (5.31). That means the system
(5.31) can be written as

∇2ψ(z) ·∆y1 = −∇ψ(z).

which is exactly the Newton system for minimizing ψ at the point z.
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Figure 5.1: (a) The pyramid Q, (b) the surface of partial minimizers v(z).

Graphical illustration of partial minimization

We consider the convex set

Q = {(z1, z2, v) : v ≤ 2z1, v ≤ 2z2, v ≤ 2− 2z1, v ≤ 2− 2z2, v ≥ 0}.

Q is the pyramid which is illustrated in Figure 5.1(a).
We know that a self-concordant barrier for Q is given by

F (z, v) = − log(2z1−v)− log(2z2−v)− log(2−2z1−v)− log(2−2z1−v)− log(v).

It is evident that the z-domain of F is simply the unit box B = {z : 0 ≤ zi ≤ 1, i =
1, 2} ⊆ R2. If we minimize F with respect to v for all strictly feasible z (that is
0 < zi < 1), we obtain the surface v(z) ⊂ Q which is visualized in Figure 5.1(b).
The global minimizer of F is the analytic center of C, which is situated on the
peak of v(z). In Figure 5.2 we illustrate again the surface v(z) and additionally
two hyperplanes. The lower hyperplane Lv′(z̄) is tangent to v(z) going through
the point (z̄, v(z̄)) for some z̄ ∈ intB. The upper hyperplane is LJ , which is going
through (z̄, v̄), where v̄ is an approximation for the exact partial minimizer v(z̄).
We see that LJ is approximately tangent to Lv′(z̄). The Newton step in LJ is
depicted by the arrow.

Bounds on the approximation for the reduced Hessian

As we have mentioned above, if we only have an approximation v̄ for the partial
minimizer v(z) for some z ∈ int C⋂ L̄, then (5.26) yields only an approximation
for the Hessian of the implicit barrier ϕ. The following result gives a bound on the
quality of that approximation H = ∇2ψ(z). In the following, for the fixed point
(z, v̄) and some displacement ∆v ∈ Rn2 we denote ||∆v||v̄ = ||∆v||F ′′

vv(z,v̄).

Lemma 5.3.3. Let z ∈ int C⋂ L̄ and v̄ such that ||v̄ − v(z)||v̄ ≤ r < 1. Then we
have for any direction ∆z

(1− r) ||∆z||∇2ϕ(z) ≤ ||∆z||H ≤
1

1− r ||∆z||∇2ϕ(z).
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Figure 5.2: Surface of partial minimizers v(z) with the tangent hyperplane Lv′(z)
and the approximately tangent hyperplane LJ containing the Newton direction in
LJ , indicated as the arrow.

Proof. First, note that ||v̄ − v(z)||v̄ ≤ r < 1 implies

∣
∣
∣
∣

∣
∣
∣
∣

0
v̄ − v(z)

∣
∣
∣
∣

∣
∣
∣
∣
∇2F (z,v̄)

=

∣
∣
∣
∣

∣
∣
∣
∣

(
z
v̄

)

−
(

z
v(z)

)∣
∣
∣
∣

∣
∣
∣
∣
∇2F (z,v̄)

≤ r < 1.

Let us fix ∆z and choose ∆v to be any feasible direction with respect to the
subspace L, i.e. such that B∆v+E∆z = 0. Then according to Theorem 2.2.10 it
holds

(1− r)2
〈

∇2F (z, v(z))

(
∆z
∆v

)

,

(
∆z
∆v

)〉

≤
〈

∇2F (z, v̄)

(
∆z
∆v

)

,

(
∆z
∆v

)〉

. (5.34)

If we minimize the right-hand side term of inequality (5.34) with respect to all
feasible directions ∆v, we get according to Corollary 5.2.4

〈H∆z,∆z〉 = min
∆v:B∆v+E∆z=0

{〈

∇2F (z, v̄)

(
∆z
∆v

)

,

(
∆z
∆v

)〉}

=

〈

∇2F (z, v̄)

(
∆z
∆v1

)

,

(
∆z
∆v1

)〉

,
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assuming that the minimum is attained at ∆v1. It follows, using (5.34)

〈

∇2F (z, v̄)

(
∆z
∆v1

)

,

(
∆z
∆v1

)〉

≥ (1 − r)2
〈

∇2F (z, v(z))

(
∆z
∆v1

)

,

(
∆z
∆v1

)〉

≥ min
∆v:B∆v+E∆z=0

{

(1− r)2
〈

∇2F (z, v(z))

(
∆z
∆v

)

,

(
∆z
∆v

)〉}

= (1 − r)2 〈∇2ϕ(z)∆z,∆z〉,

using again Corollary 5.2.4. In other words, we have shown

||∆z||H ≥ (1− r) ||∆z||∇2ϕ(z).

With exactly the same arguments, the converse inequality holds, i.e.

||∆z||∇2ϕ(z) ≥ (1 − r) ||∆z||H .

Link between the Newton decrements

The following two results are crucial for the design of efficient algorithms using
approximate partial minimization, as they provide the link between the δy, δv and
δz, where δy is the Newton decrement for the full analytic centering problem (AC),
δv is the Newton decrement for the partial minimization subproblem (PM(z)) and
δz is the Newton decrement for the problem

min
Gz=g

ψ(z).

First let us consider the situation where there are no linear constraints that
only involve z. In that case, the analytic centering problem (AC) reduces to

min
z,v

F (z, v)

Ez +Bv = d.
(AC1)

For any ȳ = (z, v̄) ∈ intQ⋂L we denote the full Newton decrement by δy =
||∆y||ȳ = ||∆y||∇2F (ȳ), where ∆y = (∆y1,∆y2) ∈ Rn1+n2 is the solution of (5.27).

The Newton decrement for the partial minimization subproblem (PM(z)) is
denoted by δv = ||∆v||v̄ = ||∆v||F ′′

vv(ȳ), where ∆v is the solution of (5.24), i.e.

[

F
′′

vv BT

B 0

]

·
[
∆v
λv

]

=

[
−F ′

v

0

]

.

Given v̄, we compute J and L from (5.13) and build the gradient and Hessian of
ψ from (5.25) and (5.26). The Newton direction ∆z for minimizing ψ is given by
the solution of

∇2ψ(z)∆z = −∇ψ(z). (5.35)

We denote the Newton decrement by δz = ||∆z||∇2ψ(z).
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Theorem 5.3.4. Let ȳ = (z, v̄) ∈ intQ⋂L, where B has full row rank. Then

δy =
√

δ2z + δ2v .

Proof. We get

δ2y = ||∆y||2∇2F (ȳ) =−∇F (ȳ)T∆y

=−∆yT1 F
′
z −∆yT2 F

′
v.

Using Lemma 5.3.2 it holds ∆y1 = ∆z. Further, since ∇ψ(z) = F ′
z + JT F ′

v, we
get

−∆yT1 F
′
z = −∆zT F ′

z

= −∆zT
(
∇ψ(z)− JTF ′

v

)

= δ2z + ∆zTJTF ′
v, (5.36)

where J is given by (5.33), i.e.

J = −(F
′′

vv)
−1

[

F
′′

vz +BT
(

B(F
′′

vv)
−1BT

)−1

M

]

.

Replacing the above expression for J in the second term of (5.36), we get

∆zTJTF ′
v

= −∆zTF
′′

zv(F
′′

vv)
−1 F ′

v −∆zTMT
(

B(F
′′

vv)
−1BT

)−1

B(F
′′

vv)
−1 F ′

v. (5.37)

On the other hand, according to (5.28) we have

∆y2 = −(F
′′

vv)
−1
[

F ′
v + F

′′

vz∆z +BTλy

]

,

therefore

−∆yT2 F
′
v =

[

F ′
v + F

′′

vz∆z +BTλy

]T

(F
′′

vv)
−1 F ′

v

= F ′T
v (F

′′

vv)
−1F ′

v + ∆zTF
′′

zv(F
′′

vv)
−1F ′

v + λTy B(F
′′

vv)
−1F ′

v,

and in accordance with (5.30) it becomes

−∆yT2 F
′
v =F ′T

v (F
′′

vv)
−1F ′

v + ∆zTF
′′

zv(F
′′

vv)
−1F ′

v

+ ∆zTMT
(

B(F
′′

vv)
−1BT

)−1

B(F
′′

vv)
−1F ′

v

− F ′T
v (F

′′

vv)
−1BT

(

B(F
′′

vv)
−1BT

)−1

B(F
′′

vv)
−1F ′

v.

(5.38)

Summing (5.37) and (5.38) it gives

(J∆z −∆y2)
T F ′

v =F ′T
v (F

′′

vv)
−1

[

F
′′

vv −BT
(

B(F
′′

vv)
−1BT

)−1

B

]

(F
′′

vv)
−1F ′

v

=− F ′T
v ∆v

=δ2v,
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which follows from the fact that ∆v is the solution of (5.24), i.e.

∆v = −(F
′′

vv)
−1F

′

v + (F
′′

vv)
−1BT

(

B(F
′′

vv)
−1BT

)−1

B(F
′′

vv)
−1F

′

v.

Combining all the results from above, we get

δ2y = −∆zT F ′
z −∆yT2 F

′
v

= δ2z + ∆zTJTF ′
v −∆yT2 F

′
v

= δ2z + (J∆z −∆y2)
T F ′

v

= δ2z + δ2v.

We consider now the general situation, where in (AC) there are linear equality
constraints only involving z, i.e.

min F (z, v)

Ez +Bv = d

Gz = g.

(AC)

We denote δy = ||∆y||ȳ, where ∆y = (∆y1,∆y2) is the solution of the following
linear system







F
′′

zz F
′′

zv ET GT

F
′′

vz F
′′

vv BT 0
E B 0 0
G 0 0 0






·







∆y1
∆y2
λ1

λ2







=







−F ′
z

−F ′
v

0
0






. (5.39)

The Newton decrement for the partial minimization subproblem (PM(z)) is un-
changed because additional linear constraints on the outer level have no effect on
the minimization in terms of v. Let δv = ||∆v||v̄, where ∆v is the solution of
(5.24). Moreover, we consider the problem of minimizing ψ restricted to L̄, i.e.

min
z

ψ(z)

Gz = g.
(5.40)

At the strictly feasible point (z, v̄) ∈ intQ⋂LJ we denote δz = ||∆z||∇2ψ(z), where
∆z is the solution of

[
∇2ψ(z) GT

G 0

]

·
[
∆z
λz

]

=

[
−∇ψ(z)

0

]

. (5.41)

Corollary 5.3.5. Let ȳ = (z, v̄) ∈ intQ⋂L such that z ∈ L̄, where G and B
have full row rank. Then

δy =
√

δ2z + δ2v .

Proof. The only thing that changes compared to the proof of Theorem 5.3.4 is the
definition of ∆y and ∆z (and as a consequence δy and δz), because both directions
have to take into account the linear constraints Gz = g.
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It follows from the second equation of (5.39) that

∆y2 = −(F
′′

vv)
−1 [F ′

v + F
′′

vz∆y1 +BTλ1] (5.42)

which reduces the system (5.39) to





S MT GT

M −B(F
′′

vv)
−1BT 0

G 0 0



 ·





∆y1
λ1

λ2



 =





−F ′
z + F

′′

zv(F
′′

vv)
−1F ′

v

B(F
′′

vv)
−1F ′

v

0



 , (5.43)

where M and S are defined as in the proof of Lemma 5.3.2. Using the fact that
B has full row rank, it follows from the second equation of (5.43)

λ1 =
(

B(F
′′

vv)
−1BT

)−1

[M ∆y1 −B(F
′′

vv)
−1F ′

v], (5.44)

and if we replace this in (5.43), we get immediately

[
H GT

G 0

]

·
[
∆y1
λ2

]

=

[
−F ′

z − JTF ′
v

0

]

, (5.45)

where H = ∇2ψ(z). We see that - analogous to before - ∆y1 = ∆z and λ2 = λz .
Additionally we have

δ2z = ||∆z||2∇2ψ(z) = −∇ψ(z)T∆z,

and

δ2y = ||∆y||2∇2F (ȳ)

= −∇F (ȳ)T∆y

= −F ′T
z ∆y1 − F ′T

v ∆y2

= −(∇ψ(z)− JTF ′
v)
T∆z − F ′T

v ∆y2

= δ2z + (J∆z −∆y2)
TF ′

v

= δ2z + δ2v,

just like in the proof of Theorem 5.3.4.

The above result provides us with the key for embedding approximate partial
minimization in a Newton scheme. Indeed, as soon as we have found a point
ȳ = (z̄, v̄) such that both δz and δv are small, we can conclude that δy is small,
without actually knowing the full Newton direction ∆y. Additionally, in view of
Theorem 2.3.4 we know that ȳ is close to the minimizer of F . The damped Newton
method using approximate partial minimization is presented in Algorithm 7.

As a first step for the complexity analysis of Algorithm 7 we show that even-
tually a point such that δz ≤ βz will be reached. Indeed, this is guaranteed by
showing that in each iteration we decrease the function value of ψ by a nontrivial
amount.
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Algorithm 7 Damped Newton method for minimizing a self-concordant function
due to linear equality constraints, using approximate partial minimization

Input: G, B, E, g, d as as in Assumption 4, F : Rn1+n2 → R self-concordant on
intQ.
Parameter: 0 < βy <

1√
2

the desired accuracy. Set βz = βv = 1√
2
βy, choose

0 < κ < (1− ω−1(ω∗(βv)))3 and set λ = κ(1−2βv)
1−βv

.

Initialize: (z0, v0) ∈ intQ such that Gz0 = g and Bv0 + Ez0 = d, k =
0.

loop

1) starting at vk, go damped Newton steps (5.24) until δv = ||∆v||v ≤ βv,
output: approximate partial minimizer v̄
2) compute Jk and Lk from (5.13)
3) define ∇2ψ(zk) = F

′′

zz + F
′′

zvJk + ETLk, ∇ψ(zk) = F
′

z + JTk F
′

v.
4) compute the Newton direction ∆z from (5.41)
5) define the Newton decrement: δz := ||∆z||∇2ψ(zk)

if δz < βz then

RETURN
end if

6) set step size α = λ
1+δz

7) update zk+1 = zk + α∆z and vk+1 = v̄ + αJk ∆z
8) k = k + 1

end loop

Note that the step size in the algorithm is α = λ 1
1+δz

, where λ = κ(1−2βv)
1−βv

for

some 0 < κ < [1 − ω−1(ω∗(βv))]3. That means κ = τ [1 − ω−1(ω∗(βv))]3 for some
τ ∈ (0, 1) and we obtain

λ = τ · [1− ω−1(ω∗(βv))]
3 · 1− 2βv

1− βv
︸ ︷︷ ︸

=:φ(βv)

for some τ ∈ (0, 1). φ is illustrated in Figure 5.3. We see that φ is positive and
monotonically decreasing from 1 to 0 in the interval [0, 0.5). That means for all
βv ∈ [0, 0.5) the value of φ is an upper bound on the parameter λ (depending on
our choice of τ). The smaller βv, the larger λ can be. Reversely, if βv is close to
1
2 , then λ will be close to 0. In any case it holds λ ∈ (0, 1).

Let us analyze which improvement in terms of the objective value ψ we can
guarantee when going a damped Newton step in direction ∆z with step size
α = λ

1+δz
, where λ ∈ (0, 1). We know that ψ is self-concordant (see the list

of self-concordance preserving operations in Section 2.2.2). This means we can
bound the value of ψ at the new iterate z+ = z + α∆z in the following way (see
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Figure 5.3: Graph of φ(βv) = [1− ω−1(ω∗(βv))]3 · 1−2βv

1−βv
.

Theorem 2.2.16):

ψ(z+) ≤ ψ(z) + α∇ψ(z)T∆z + ω∗(||z+ − z||z)

= ψ(z)− λ δ2z
1 + δz

− λ δz
1 + δz

− log

(

1− λ δz
1 + δz

)

= ψ(z)− λδz − log

(
1 + (1− λ)δz

1 + δz

)

= ψ(z)−λδz + log

(

1 +
λδz

1 + (1− λ)δz

)

︸ ︷︷ ︸

=:−ωλ(δz)

.

Figure 5.4 shows that ωλ(δz) is nonnegative and increasing. Moreover, when λ is
close to 1, which corresponds to βv close to 0 (see Figure 5.3), the guaranteed func-
tional decrease of ωλ(δz) is also close to ω(δz), which is the guaranteed functional
decrease in the case where partial minimization is done exactly. It also means that
if we are far from satisfying the stopping criterion (i.e. if δz ≫ βz), we reduce
the optimality gap by a large amount ωλ(δz). The number of outer iterations is
therefore bounded by

N ≤ F (z0, v0)− F (z∗, v∗)

ωλ(βz)
,

where y∗ = (z∗, v∗) is the optimal solution for (AC).
When the algorithm stops at some point (z̄, v̄), we have by construction δz ≤ βz

and also δv ≤ βv. That implies according to Theorem 5.3.4

δy =
√

δ2z + δ2v ≤
√

β2
z + β2

v =

√

1

2
β2
y +

1

2
β2
y = βy.

Let us conclude with a bound on the number of inner iterations, i.e. the
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number of steps that are needed to generate a point close to the surface of partial
minimizers v(z), after one outer step z+ = z + α∆z.

Let 0 < βv <
1
2 and denote γ = ω∗(βv) < 1 − log(2) and r = ω′

∗(βv). Then,
using Theorem 2.3.4, we get that before each z-step it holds

F (z, v̄)− ϕ(z) ≤ γ.

Nesterov [50] has shown that, given a point v̄ close to v(z), one can update z and
v in a such a way that the new v-iterate v+ is not too far from the new partial
minimizer v(z+), where z+ is the new z-iterate. Let us formally recall this result.

Theorem 5.3.6. Let (z, v̄) ∈ intQ⋂L such that

F (z, v̄)− ϕ(z) ≤ γ,

where γ < 1− log(2). Let ∆z ∈ Rn1 be any direction such that

||∆z||∇2ϕ(z) ≤ κ < (1− ω−1(γ))3

and define ∆v = J ∆z and the new iterates z+ = z + ∆z and v+ = v̄ + ∆v. Then
we have

F (z+, v+)− ϕ(z+) ≤ γ̄,

with γ̄ = ω∗
(

κ
[1−ω−1(γ)]2 + ω−1(γ)

)

.

Proof. [50, Theorem 5].

Let us apply Theorem 5.3.6 to our setting. We mentioned above that βv <
1
2

ensures that γ = ω∗(βv) < 1− log(2). Let 0 < κ < (1− ω−1(γ))3 (for example we
can choose τ ∈ (0, 1) and define κ = τ · (1−ω−1(γ))3). As particular direction we
are taking the Newton direction ∆z from (5.41).
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It remains to ensure that

||α∆z||∇2ϕ(z) ≤ κ. (5.46)

In view of Theorem 2.3.4, we have

||v̄ − v(z)||v̄ ≤ ω′
∗(βv) = r.

We do not have access to the Hessian ∇2ϕ(z), but using Lemma 5.3.3, we get
the bound ||∆z||∇2ϕ(z) ≤ 1

1−r ||∆z||H = δz

1−r . We conclude that (5.46) is satisfied
if

α
δz

1− r ≤ κ

and since r = βv

1−βv
it is necessary to ensure

α ≤ (1− r)κ
δz

=
κ(1− 2βv)

δz(1− βv)
.

This is in particular satisfied for α ≤ κ(1−2βv)
(δz+1)(1−βv) . That means according to

Theorem 2.2.24 (where we only enter the first stage of the damped Newton method)
that we need no more than

N ≤ γ̄ − γ
ω(βv)

damped Newton steps in each inner loop. Thus, we have proved the following
theorem.

Theorem 5.3.7. Let Assumptions 4 be satisfied. Let 0 < βy <
1√
2
, set βz =

βv = 1√
2
βy, and 0 < κ < [1 − ω−1(ω∗(βv))]3. Moreover let y0 = (z0, v0) ∈ intQ

such that Gz0 = g and Bv0 +Ez0 = d. Then the output of Algorithm 7 is a point
ȳ = (z̄, v̄) ∈ Q such that Ez̄ +Bv̄ = d and Gz̄ = g and

δy = ||∆y||ȳ ≤ βy.

The number of outer iterations is bounded by

Nout ≤
F (y0)− F (y∗)

ωλ(βz)
.

Moreover, the number of iterations at each inner loop to generate the approximate
partial minimizers v̄ is bounded by

Nin ≤
γ̄ − γ
ω(βv)

,

where γ = ω∗(βv) and γ̄ = ω∗
(

κ
[1−ω−1(γ)]2 + ω−1(γ)

)

.

Remark 5.3.8. In practice we can choose more aggressive step lengths for ∆z

than the one presented in the algorithm (α = κ(1−2βv)
(1+δz)(1−βv)). But in that case we

are not able to guarantee anymore that we can bound the centering steps that are
needed to compute a point close to the surface of partial minimizers v(z).
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Remark 5.3.9. We want to point out that the complexity result is essentially the
same as for the standard case (compare Theorem 2.3.7), except for the quadrati-
cally convergent phase that we could not establish here. The number of iterations
depends essentially on the initial optimality gap F (y0)−F (y∗) that will be reduced
in each iteration by a constant which is slightly worse than the standard one (see
Figure 5.4).

The number of iterations to generate an approximation for the partial mini-
mizers is a constant that only depends on βv (which is chosen a priori). However,
the upper bound on Nin is rather pessimistic, in particular when we desire a high
accuracy for the partial minimizer, but even for moderate values of βv. For exam-
ple for βv = 0.1 and κ = 0.9 · [1−ω−1(ω∗(βv))]3, the upper bound on Nin is greater
than 300. In practice, however, we typically observe a number of inner iterations
of less than 10.

Theorem 5.3.7 only gives useful upper bounds on the number of outer and inner
iterations when the desired accuracy is moderate. If βy is very close to 0 (which
implies by construction that βz and βv are also close to 0), then the upper bounds
for Nin and Nout tend to ∞. Moreover, if βv is close to 1

2 , then λ is close to 0
(because λ is bounded from above by φ(βv), see Figure 5.3). This, in turn, means
that ωλ(βz) is close to 0 even for large βz (see Figure 5.4). We want to point out
that the choice of the parameters βv = βz = 1√

2
βy was somewhat arbitrary. Any

choice of the parameters βv = αvβy and βz = αzβy with αv and αz such that
α2
v + α2

z ≤ 1 would give essentially the same result.

Let us conclude with a further justification of computing good approximate
partial minimizers v̄.

Remark 5.3.10. If v̄ approximates the exact partial minimizer v(z) well, then
LJ is nearly parallel to the tangent subspace Lv′(z) (see Figure 5.2). Furthermore,
if the surface of partial minimizers v(z) (as a function of z) has a low curvature,
then Lv′(z) is a good approximation for v(z). By consequence, also LJ could ap-
proximate v(z) well, which means we can do relatively large steps in terms of z
before leaving the set C.

Coordinate-descent-like analytic centering

Another much simpler technique of solving (AC) using approximate partial min-
imization can be described as follows: for a given z ∈ int C⋂ L̄ we compute its
partial minimizer v̄ as described in Section 5.3.1. Then we execute one Newton
step for minimizing F with respect to z along the subspace {(z, v) : v = v̄}, i.e.
we fix the value of the partial minimizer v̄. The corresponding Newton system for
minimizing F in terms of z is

[
∇2
zzF (z, v̄) GT

G 0

]

·
[
∆z
λz

]

=

[
−∇zF (z, v̄)

0

]

. (5.47)

After going a Newton step along ∆z,

z+ = z + α∆z
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Algorithm 8 Analytic centering method via coordinate descent

Input: G, B, E, g, d as as in Assumption 4, F : Rn1+n2 → R self-concordant on
intQ.
Parameter: 0 < βv < 1, 0 < βz.
Initialize: (z0, v0) ∈ intQ such that Gz0 = g, Bv0 + Ez0 = d, k =
0.

loop

1) starting at vk, go damped Newton steps (5.24) until δv = ||∆v||v ≤ βv,
output: approximate partial minimizer v̄
2) compute the Newton direction ∆z from (5.47)
3) define the Newton decrement: δz := ||∆z||F ′′

zz(zk,v̄)

if δz < βz then

RETURN
end if

4) set step size α = 1
1+δz

5) update zk+1 = zk + α∆z and keep vk+1 = v̄
6) k = k + 1

end loop

with a suitable step size α, we compute again the approximate partial minimizer
for the new point z+, and so on. The method is summarized in Algorithm 8.

As a first step we have to guarantee that a damped Newton step in the z- space
yields a decrease in the function value, even if the partial minimization is done
only approximately.

Lemma 5.3.11. If βv < ω−1
∗ (ω(βz)), then as long as the above algorithm runs, the

outer iterates z generate a strictly monotonically decreasing sequence in the implicit
barrier with at least a constant functional decrease of τ = ω(βz)−ω∗(βv) > 0, i.e.

ϕ(z+) ≤ ϕ(z)− τ.

Proof. At iteration k, let z = zk with approximate partial minimizer v̄. Then in
view of Theorem 2.3.6 and Theorem 2.3.4 we have the following chain of inequal-
ities:

ϕ(z+) = F (z+, v(z+)) ≤ F (z+, v̄) ≤ F (z, v̄)− ω(βz)

≤ F (z, v(z)) + ω∗(βv)− ω(βz)

= ϕ(z)− τ.

The apparent advantage of Algorithm 8 is its simplicity. We minimize F coor-
dinatewise: first we fix z and minimize with respect to v (partial minimization),
then we fix the partial minimizer v̄ and compute one Newton step in terms of z.

However, since the Newton directions in terms of z are defined by system (5.47),
we cannot use Corollary 5.3.5 to relate δz (in combination with δv) to the Newton
decrement δy for the full analytic centering problem (AC). Therefore one cannot
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provide bounds for the quality of the solution that we obtain when the algorithm
stops. That means we cannot guarantee polynomial complexity of the method,
which is why we reject this coordinate-descent approach.

To illustrate this claim, let us consider the following example. For τ ∈ [0, 1)
we define the degenerate simplex

Cτ = {(z, v) : z ≥ 0, z + v ≤ 1, τ(1− z) ≤ v}.

For τ = 0 the set C0 is the standard two-dimensional simplex. It is well-known
that a 3-self-concordant barrier for Cτ is given by

Fτ (z, v) = − log(z)− log(1− z − v)− log(τ(z − 1) + v).

In this particular example the surface of partial minimizers can be easily computed
by solving the optimality conditions F ′

v(z, v) = 0 with respect to v. One obtains
then v(z) = 1+τ

2 (1 − z), which is in fact simply a straight line. The set Cτ with
the level curves of the barrier Fτ and the set of partial minimizers is illustrated
in Figure 5.5. We will show now that for points on the curve v(z) the Newton

z

v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.5: Cτ = {(z, v) : z ≥ 0, z + v ≤ 1, τ(1 − z) ≤ v} with level curves
of Fτ (z, v) = − log(z) − log(1 − z − v) − log(τ(z − 1) + v) for τ = 0.2. The
intermediate line indicates the set of partial minimizers v(z).

decrement for the coordinate descent method goes to 0, as τ → 1 even though
(z, v(z)) is far from the analytic center of Cτ . Let us introduce some notation.
In the following example we write F (z, v) = Fτ (z, v). Furthermore, for τ ∈ [0, 1)
we denote by δCDz (τ) the Newton decrement for the coordinate descent method
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(Algorithm 8) at some fixed point (z, v(z)), i.e.

(
δCDz (τ)

)2
= ||∆z||2

F ′′
zz(z,v(z))

= F ′
z(F

′′

zz)
−1F ′

z =
(F ′
z)

2

F ′′
zz

.

The gradient and Hessian of F with respect to z can be computed as

F ′
z(z, v) = −1

z
+

1

1− z − v +
τ

τ(z − 1) + v

F
′′

zz(z, v) =
1

z2
+

1

(1− z − v)2 +
τ2

(τ(z − 1) + v)2
.

Using the fact that v is on the surface v(z), i.e. v = 1+τ
2 (1− z) we get

F ′
z(z, v(z)) = −1

z
+

1

1− z − v(z) −
τ

τ(z − 1) + v(z)

= −1

z
+

1

(1− z)(1− 1+τ
2 )
− τ

(1− z)(1− 1+τ
2 )

= −1

z
+

2

(1− z)(1− τ) −
2τ

(1− z)(1− τ)

= −1

z
+

2

1− z ,

which means that F ′
z(z, v(z)) does not depend on τ . However, the Hessian F

′′

zz at
(z, v(z)) can be computed as

F
′′

zz(z, v(z)) =
1

z2
+

1

(1− z − v(z))2 +
τ2

(τ(z − 1) + v(z))2

= − 1

z2
+

4

(1 − z)2(1− τ)2 +
4τ2

(1 − z)2(1 − τ)2

= − 1

z2
+

4(1 + τ2)

(1 − z)2(1− τ)2 .

One can see that F
′′

zz(z, v(z)) → ∞ as τ → 1. This implies that δCDz (τ) → 0 as
τ → 1. Moreover, by optimality conditions we have that F ′

v(z, v(z)) = 0, which
implies that δv = ||F ′

v(z, v(z))||F ′′
vv

= 0.

On the other hand, we see in Figure 5.5 that for z 6= 1
3 the point (z, v(z))

is far from the analytic center (z∗, v∗) = (1/3, v(1/3)) of Cτ . This geometric
observation can be supported by computing the Newton decrement δy for the
problem of minimizing F in terms of both variables z and v, or equivalently, the
Newton decrement δz of Algorithm 7. Indeed, since δv = 0 we have in view of
Theorem 5.3.4 δy = δz, where

δz = ||∇ψ(z)||∇2ψ(z) =
(
∇ψ(z)T (∇2ψ(z))−1∇ψ(z)

)1/2
.

Moreover, since F ′
v(z, v(z)) = 0 by optimality conditions, we get∇ψ(z) = F ′

z(z, v(z))
(see (5.25)). The Hessian becomes in view of (5.26)

∇2ψ(z) = F
′′

zz(z, v)− F
′′

zv(z, v)
(

F
′′

vv(z, v)
)−1

F
′′

vz(z, v),
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where

F
′′

zv(z, v) = F
′′

vz(z, v) =
1

(1 − z − v)2 +
τ

(τ(z − 1) + v)2
,

F
′′

vv(z, v) =
1

(1 − z − v)2 +
1

(τ(z − 1) + v)2
.

Using again the fact that v is on the straight line v(z) = 1+τ
2 (1 − z), we can

simplify and get

F
′′

zv(z, v(z)) = F
′′

vz(z, v(z)) =
1

(1 − z − v(z))2 +
τ

(τ(z − 1) + v(z))2
,

=
4(1 + τ)

(1 − z)2(1 − τ)2 ,

F
′′

vv(z, v(z)) =
1

(1 − z − v(z))2 +
1

(τ(z − 1) + v(z))2

=
8

(1 − z)2(1 − τ)2 .

This implies

∇2ψ(z) = − 1

z2
+

4(1 + τ2)

(1− z)2(1− τ)2 −
(F

′′

zv(z, v(z)))
2

F ′′
vv(z, v(z))

= − 1

z2
+

4(1 + τ2)

(1− z)2(1− τ)2 −
2(1 + τ)2

(1− z)2(1− τ)2

= − 1

z2
+

2(1− τ)2
(1− z)2(1− τ)2

= − 1

z2
+

2

(1− z)2 .

We see that also ∇2ψ(z) is independent from τ . That means that δz is unchanged
when τ → 1. We conclude that for points (z, v(z)) on the surface of partial min-
imizers the Newton decrement δy is independent from τ ∈ [0, 1) (it only depends
on the choice of z ∈ (0, 1)), while the Newton decrement δCDz tends to 0 as τ → 1.
This means we might stop Algorithm 8 at a point (z, v) because δv and δCDz are
small, while in fact (z, v) is far from an optimal solution.

5.3.3 Path-following using approximate partial minimiza-

tion

Let us come back to the general convex problem (5.4), i.e.

min aT z

s.t. z ∈ C
Gz = g.



186 CHAPTER 5. PARTIAL MINIMIZATION

Under Assumptions 4 problem (5.4) is equivalent to

min aT z

s.t. (z, v) ∈ Q
Ez +Bv = d

Gz = g.

(5.48)

Since we have a self-concordant barrier F for Q at hand, we can efficiently solve
(5.48). In this section we demonstrate how the technique of partial minimization
can be embedded in a path-following scheme to solve (5.48).

Note that for any t ≥ 0 the function

ft(z, v) = t · aT z + F (z, v)

is self-concordant with domain intQ. Moreover, since the linear term aT z does
not depend on the artificial variables v, for a fixed point z ∈ int C⋂ L̄ the partial
minimization subproblem (PM(z)) is not affected by adding such a linear term.
Therefore we directly apply the results from Section 5.3.2 and obtain the same
approximate partial minimizer v̄ and the same matrices J(z, v̄) and L(z, v̄) (by
solving (5.13)) as in the case of analytic centering (without the linear term).

Following the ideas of Section 5.3.2, let us introduce the function

ψt(z̃) := t · aT z̃ + ψ(z̃),

where ψ is defined just as in Section 5.3.2 relative to the point (z, v̄). For the same
arguments as above ψt is self-concordant. Its derivatives at the point z̃ = z are

∇ψt(z) = t a+∇ψ(z) = t a+ h(z, v̄),

∇2ψt(z) = ∇2ψ(z) = H(z, v̄).

Putting these observations together, Theorem 5.3.7 guarantees that for any
fixed t > 0 one can solve

min t·aT z + F (z, v)

s.t. Ez +Bv = d

Gz = g

(5.49)

efficiently up to any accuracy βy > 0 by computing the iterates in the two-level
strategy proposed in Algorithm 7.

The only part that changes as compared to Algorithm 7 is the fact that the
Newton directions in the outer level do depend on t. Indeed, we consider now the
minimization of ψt(z̃) over L̄, i.e.

min
z

t · aT z + ψ(z)

Gz = g.

Its Newton direction ∆z(t) at some point z (with partial minimizer v̄) can be
obtained from the system

[
H(z, v̄) GT

G 0

]

·
[
∆z(t)
λz

]

=

[
−t a− h(z, v̄)

0

]

. (5.50)
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Large updates of t

We consider the following update of the duality measure, namely

t+ = θ · t,

where θ > 1. In accordance with the proof of Theorem 2.4.15 the number of
updates of t, starting at some t0 > 0 in order to guarantee

aT (z − z∗) ≤ ǫ

can be bounded by

Nup = O
(

log

(
ν

t0ǫ

))

iterations.
We are ready now to present the long-step path-following algorithm using ap-

proximate partial minimization (Algorithm 9).

Algorithm 9 Long-step path-following method with partial minimization

Input: G, B, E, g, d as as in Assumption 4, F : Rn1+n2 → R ν-self-concordant
barrier for Q.
Parameter: ǫ > 0 desired absolute accuracy, 0 < βy ≤ 1

4 the centering accuracy,
θ > 1 updating coefficient.

Set βz = βv = 1√
2
βy, choose 0 < κ < [1 − ω−1(ω∗(βv))]3. Define λ = κ(1−βv)

1−2βv
and

ρ(βy, ν) = ν +
(βy+

√
ν)βy

1−βy
.

Initialize: (z0, v0) ∈ intQ such that Gz0 = g and Bv0 + Ez0 = d, k = 0, i = 0,
t0 > 0.

while ǫ · tk < ρ(βy, ν) do

loop

1) starting at vk, go damped Newton steps (5.24) until δv = ||∆v||v ≤ βv,
output: approximate partial minimizer v̄
2) compute Jk and Lk from (5.13)
3) define Hk = F

′′

zz + F
′′

zvJk + ETLk, hk = F
′

z + JTk F
′

v.
4) compute the Newton direction ∆z(ti) from (5.50)
5) define the Newton decrement: δz := ||∆z(ti)||Hk

if δz < βz then

BREAK
end if

6) set step size α = λ
1+δz

7) update zk+1 = zk + α∆z(ti) and vk+1 = v̄ + αJk ∆z(ti)
8) k = k + 1

end loop

update ti+1 := θ ti
update i := i+ 1

end while

We get the following complexity result for Algorithm 9.
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Theorem 5.3.12. Let Assumptions 4 be satisfied. Choose ǫ > 0. Let (z0, v0) ∈
intQ such that Gz0 = g and Bv0 + Ez0 = d. Then Algorithm 9 terminates after
at most

N = O
(

ν log

(
ν

t0ǫ

))

iterations with a point zN ∈ C
⋂ L̄ such that

〈a, zN − z∗〉 ≤ ǫ.
Proof. As we outlined above, the number of updates of t to ensure aT (z − z∗) ≤ ǫ
is at most

Nup = O
(

log

(
ν

t0ǫ

))

.

Moreover, when updating t to t+ = θ t, the value of the objective function of
(5.49) changes to

t+ aT z + F (z, v) = ft+(y).

It turns out that the functional difference

ft+(ȳt)− ft+(y(t+)),

where y(t+) is the solution of (5.49) for the new duality measure t+, can be
bounded by θ · (ν +

√
ν) (see Section 2.4). In view of Theorem 5.3.7 the number

of z-steps in the affine subspaces LJ can be bounded by

Nout ≤
θ · (ν +

√
ν)

ωλ(βz)
,

while the number of inner iterations to generate approximations to the partial
minimizers v(z) can be bounded by

Nin ≤
γ̄ − ω∗(βv)

ω(βv)
,

(see Theorem 5.3.7), which is a constant that does not depend on the problem
size. It only depends on the choice of the accuracy βv of the partial minimization
subproblem (PM(z)).

We conclude that the total number of iterations is

N = O
(

ν log

(
ν

t0ǫ

))

.

We see that the complexity result in Theorem 5.3.12 is the same as the one
in Theorem 2.4.15. However, it is important to point out that the constants are
worse than in the standard case, where for example the number of iterations Nin to
generate an approximate partial minimizer v̄ is a constant that does not appear in
the complexity estimate. This constant could be rather large (see Remark 5.3.9).
On the other hand, it is possible that the cost of one iteration (consisting of
the computation of the approximate partial minimizer v̄ and the Newton direc-
tion ∆z(t)) is cheaper than computing directly the full Newton direction ∆y (see
Lemma 5.3.13). It could additionally or alternatively provide a better direction
towards the current target point y(t) on the central path (see Remark 5.3.10).
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5.3.4 Partial minimization in primal-dual framework

In this section we show how the technique of partial minimization can be embedded
into a primal-dual framework. Algorithm 9 is designed to solve convex problems
of the form (5.48), i.e.

min aT z

s.t. (z, v) ∈ Q
Ez +Bv = d

Gz = g.

where Q is a full-dimensional closed convex set with ν-self-concordant barrier F .
The matrices B and E are assumed to have full row rank (see Assumption 4).

In order to apply a modified version of Algorithm 5 to (5.48), we have to cast
this problem in dual conic form

max
y,s

bT y

s+AT y = c,

ATf y = cf ,

s ∈ K∗,

(D)

where K∗ is a proper cone, [A,Af ] has full row rank, Af has full column rank, and
the dual feasible set {y : c − AT y ∈ K∗, ATf y = cf} does not contain a straight
line.

If we denote y = (z, v) it is clear that s+AT y = c and s ∈ K∗ is equivalent to
c−AT y ∈ K∗. Let us define

b =

[
−a
0

]

∈ Rn1+n2

and

Af =

[
ET GT

BT 0

]

∈ Rn1+n2,m1+m2 , cf =

[
d
g

]

.

It is clear that (5.48) can be brought in dual form (D) if we find c ∈ Rn and
A ∈ Rm,n (for m = n1 + n2 and some n) such that [A,Af ] has full row rank and
y = (z, v) ∈ Q if and only if c−AT y ∈ K∗, for some proper cone K∗ (note that by
Assumption 4 we have that the feasible set of (5.48) does not contain a straight
line). Let us assume that such a dual reformulation is possible, i.e. that we can
find A and c as above. Examples of such conic reformulations of convex problems
were presented in Section 4.4

Let us recall here the main steps of the primal-dual predictor-corrector method
(Algorithm 5). These are

(A) the computation of a point ȳt close to the dual central path,

(B) the primal-dual lifting (2.54),
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(C) the computation of the primal-dual affine-scaling direction (2.67),

(D) the update of the duality measure t.

For step (A) we can use the damped Newton method with partial minimization
(Algorithm 7). Theorem 5.3.7 guarantees that we can solve the centering problem
efficiently as long as the desired accuracy βy is not too high. However, for the
primal-dual lifting (B) we do not only need a point close to the dual central path
ȳt, but also the full Newton direction ∆y and the multipliers λ1 and λ2 (see
(2.54)). This means after having computed ȳt = (z̄t, v̄t) close to a point y(t) on
the dual central path, we have to solve once the full Newton system (2.52) in order
to have the ingredients for the primal-dual lifting. Similarly, for the primal-dual
affine-scaling direction (C) it is not clear if or how we can make use of partial
minimization. Instead, we need to solve (2.67) just like in Algorithm 5.

This means that the embedding of partial minimization in Algorithm 5 is only
possible to some extent. For the computation of the primal-dual central point (B)
and the primal-dual affine-scaling direction partial minimization can possibly not
be applied.

5.3.5 Cost per iteration

Let us analyze now the numerical cost of using partial minimization. We recall
here that the original motivation of partial minimization was the reduction of the
numerical cost of Newton’s method (embedded into an interior-point framework).
We showed in the previous sections that the complexity of such a path-following
method with approximate partial minimization does have essentially the same
complexity as in the standard setting where no partial minimization is used.

In the analysis we restrict ourselves to the analytic centering problem (AC).
We will estimate the numerical cost of one iteration of Algorithm 7. To simplify
the analysis, let us make the following assumptions:

• F ′′

vv is positive definite and diagonal,

• B has full row rank and at most n2 nonzeros.

In fact these two assumptions are not too restrictive. The first assumption is
valid whenever the barrier F is separable in terms of the variables v. This is the
case for example when the convex set C is decomposed into its elementary convex
building blocks. Then we would introduce one modelling variable at a time for
each elementary block. This would mean that the elementary convex sets do not
share modelling variables. The second assumption is reasonable, as we will see in
Section 5.4. It means that each artificial variable vi appears at most once in the
linear equality constraints.

The two assumptions above imply (a) that F
′′

vv is easy to invert (it only involves
2n2 flops, see Section 2.3.3) and (b) B(F

′′

vv)B
T is positive definite and diagonal,

and therefore also easy to invert (see again Section 2.3.3).

We see that the numerically dominating computations in Algorithm 7 are the
following 5 operations.
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1. Computation of the approximate partial minimizer v̄.
In Theorem 5.3.7 we established an upper bound on the number of damped
Newton steps to compute v̄. But as we mentioned in Remark 5.3.9 and
as we will see in Section 5.4, this upper bound is rather pessimistic. Let us
denote the number of iterations to solve the partial minimization subproblem
(PM(z)) by NPM . In view of Section 2.3.3, the complexity of computing v̄
is

cPM = NPM (8n2 +m1) flops.

2. The computation of J and L.

J and L can be computed by solving (5.13). In view of Section 2.3.3, the
complexity of this operation is

cJ,L = 3n2 + 5n1n2 + 2n1m1 flops.

3. Building of H and h.
The gradient h is defined by (5.25). It requires the multiplication JTF ′

v

(2n1n2 flops) and the addition of this product with the vector F ′
z (n1 flops).

The Hessian H is defined by (5.26), which requires the multiplication F
′′

zvJ
(2n2

1n2 flops), the multiplication ETL (2n2
1m1 flops) and the addition of 3

matrices of size n1 × n1 (2n2
1 flops). In total this yields

cH,h = 2n2
1(n2 +m1 + 1) + n1(2n2 + 1) flops.

4. Computation of ∆z.
The direction ∆z can be obtained by solving (5.41). This is a general KKT
system with positive definite Hessian block H of size n1 × n1 and m2 linear
equality constraints. Its complexity is given by (2.28), i.e.

c∆z =
1

3
(n1 +m2)

3 + 2(n1 +m2)
2 + n2

1m2 + n1m
2
2 + n1 flops.

5. Computation of ∆v.
The direction ∆v is defined by ∆v = J ∆z. The complexity of this operation
is

c∆v = 2n1n2 flops.

If we sum all the operations we get a total complexity per iteration in Algorithm 7
of

NPM (8n2 +m1) +
1

3
(n1 +m2)

3 + 2(n1 +m2)
2 + n2

1(2n2 + 2m1 +m2 + 2)

+ n1(9n2 + 2m1 +m2
2 + 2) + 3n2 (5.51)

floating-point operations.
Note that the above value is only a rough estimation of the complexity of one

iteration of Algorithm 7. We are not considering the cost of

1. computing the partial derivatives of the barrier F (this depends on the con-
crete barrier we have chosen),
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2. evaluating the barrier. The evaluation of the barrier will be needed if a line
search is used to compute a better step size parameter than the one proposed
in step 6 of Algorithm 7. One could for example (starting at the safe value
α = λ

1+δz
) gradually increase the step size parameter to find an approximate

minimizer of the barrier F along the direction (∆z, J∆z). This procedure
would require the evaluation of F along this direction at several points. In
a similar fashion we could employ a line search procedure to compute a step
size for the partial minimization subproblem (PM(z)) that is larger than
the one that guarantees a certain decrease in the function value, which is
α = 1

1+δv
.

From the theoretical point of view a line search is not necessary, but in
practical implementations it is highly recommended in order to improve the
overall efficiency of the method. However, it is not possible to bound a
priori the number of times the barrier has to be evaluated in such a line
search procedure.

Comparison to standard Newton method

Let us compare now the complexity (5.51) of one iteration of Algorithm 7 with the
complexity of one iteration of a standard damped Newton method (Algorithm 2)
for solving the analytic centering problem (AC). The computationally most ex-
pensive operation of Algorithm 2 is the computation of the Newton direction from
(5.39). In the proof of Corollary 5.3.5 we saw that solving (5.39) involves solving
(5.45) which is exactly the fourth item in the above list of operations (”Compu-
tation of ∆z”). But this operation implicitly requires the computation of H , h,
J and L. This means both Newton methods (with and without partial minimiza-
tion) share operations 2, 3 and 4 in the above list. The difference is the presence
of operation 1 (computation of the partial minimizer v̄) in the case of Newton
method with partial minimization, and the different v-steps.

We want to stress here that both methods generate different iterates even
though the complexities of both algorithms are essentially the same. In order to
see this, let yk = (zk, vk) ∈ intQ⋂L. Then Algorithm 2 computes directly the full
Newton direction ∆y = (∆y1,∆y2) at yk. On the other hand, Algorithm 7 first
computes an approximate partial minimizer v̄ for zk (and therefore changes the
v-components), and then the directions ∆z and ∆v are computed as in operation 4
and 5 as described above. Even if no partial minimization steps are necessary (i.e.
NPM = 0) both methods are not the same. In view of the proof of Corollary 5.3.5
the Newton direction ∆z in Algorithm 7 is then equal to ∆y1 (that is, the first
n1 components of the full Newton direction ∆y). However, ∆v is given by J ∆z,
while ∆y2 is defined as (5.42).

Let us compute now the additional numerical cost that arises when computing
∆y2. We see that it requires first the computation of λ1 from (5.44), i.e.

λ1 =
(

B(F
′′

vv)
−1BT

)−1

[M ∆y1 −B(F
′′

vv)
−1F ′

v],

where M ∈ Rm1,n1 is defined as in the proof of Lemma 5.3.2. Note that the

matrix
(

B(F
′′

vv)
−1BT

)−1

M is equal to L (see (5.32)) The complexity of com-
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puting λ1 reduces to the multiplication L∆y1 (2n1m1 flops), the diagonal scaling
(F

′′

vv)
−1F ′

v (n2 flops), the multiplication of the latter vector from the left with BT

(n2 flops, since B has at most n2 nonzeros), diagonal scaling of the last vector

with
(

B(F
′′

vv)
−1BT

)−1

(m1 flops) and the sum of 2 vectors of size m1 (m1 flops).

Once λ1 is computed, we plug it together with ∆y1 in (5.42), that is

∆y2 = −(F
′′

vv)
−1 [F ′

v + F
′′

vz∆y1 +BTλ1].

The matrices (F
′′

vv)
−1F

′′

vz and (F
′′

vv)
−1BT are already computed in the process of

defining L (see (5.32)). That means the complexity of computing ∆y2 reduces to
the multiplications of (F

′′

vv)
−1F

′′

vz with ∆y1 (2n1n2 flops) and (F
′′

vv)
−1BT with λ1

(n2 flops). Finally, we have to sum 3 vectors of size n2 (2n2 flops).
That means the computational cost of computing ∆y2 is

2n1(n2 +m1) + 5n2 + 2m1.

We have essentially proved the following Lemma.

Lemma 5.3.13. If in Algorithm 7 no partial minimization steps are needed (i.e.
δv ≤ βv at the beginning of the current iteration), then one iteration of Algorithm 7
is cheaper than one iteration of Algorithm 2 by

2n1m1 + 5n2 + 2m1

floating-point operations.

Proof. If no partial minimization steps are needed in Algorithm 7, then NPM = 0.
The only difference between both algorithms with respect to the computational
effort is the computation of ∆v and ∆y2, respectively. The first costs 2n1n2 flops
(see above), the latter (2n1(n2+m1)+5n2+2m1) flops which proves the result.

If we compare the improvement in Lemma 5.3.13 with the total complexity of
one iteration (5.51), then we see that the relative improvement is rather small, as
the total complexity depends cubically on the sum n1 +m2.

If now some partial minimization steps are needed (because δv > βv), then one
iteration of Algorithm 7 is numerically cheaper than one iteration of Algorithm 2
only if

NPM (8n2 +m1) < 2n1m1 + 5n2 + 2m1, (5.52)

where NPM 6= 0 is the number of partial minimization steps.
We see that (5.52) cannot be true if n2 is much larger than n1 and m1. Indeed,

if n2 = O(n1 ·m1), then (5.52) requires essentially that NPM < 1. This means that
one standard Newton iteration is cheaper than the one iteration of Algorithm 7.
However, for example for n1 = n2 = m1 = 100 we find that (5.52) is true if
NPM < 23.

On the other hand, if NPM is large at iteration k, it means that vk is far from
the partial minimizer v(zk). Therefore we have improved the function value of the
objective by going from (zk, vk) to (zk, v̄) by a constant of at least NPMω(βv).
Moreover, this re-centering justifies hope that we can do large steps in terms of
the z-variables (see Remark 5.3.10).
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5.3.6 Choosing κ

In this section we are going to propose a reasonable choice for the parameter κ
in Algorithm 7. In view of Theorem 5.3.7 we have that the number of partial
minimization steps (inner iterations) is bounded by

Nin ≤
γ̄ − γ
ω(βv)

,

where γ = ω∗(βv) and γ̄ = ω∗
(

κ
[1−ω−1(γ)]2 + ω−1(γ)

)

. Moreover, the number of

main iterations (outer iterations) is bounded by

Nout ≤
F (y0)− F (y∗)

ωλ(βz)

where

ωλ(βz) = −λβz + log

(

1 +
λβz

1 + (1 − λ)βz

)

and λ = κ(1−2βv)
1−βv

.
We have to choose κ such that

0 < κ < (1 − ω−1(γ))3.

It is clear that we can write κ = τ · (1 − ω−1(γ))3 for some τ ∈ (0, 1).
Then it follows

γ̄ = ω∗

(
κ

[1− ω−1(γ)]2
+ ω−1(γ)

)

= ω∗(τ + (1− τ)ω−1(γ)),

in other words the argument of the last term is a convex combination of 1 and
ω−1(γ). The last term is strictly less than 1 because γ < ω(1) = 1 − log(2). We
see that if τ is close to 1, then the argument tends to 1 too, which means that γ̄
tends to ∞.

On the other hand, if τ is close to 0, then also κ and λ are close to 0. This
implies that ωλ(βz) is close to 0 even for large βz (see Figure 5.4). In other
words, we have a trade-off between the number of inner and outer iterations when
choosing τ ∈ (0, 1). Let us consider therefore the total cost which is given by

Nout(cout +Nin cin),

where cin denotes the cost of one partial minimization step and cout denotes the
computational cost of one outer iteration (without the cost of computing the par-
tial minimizer v̄). In Section 5.3.5 we have computed these values as

cin = 8n2 +m1,

cout = cJ,L + cH,h + c∆z + c∆v

in terms of the problem parameters n1, n2, m1 and m2.
For the number of inner and outer iterations we have the upper bounds pre-

sented above. Both upper bounds only depend on βv, βz, τ and the initial opti-
mality gap F (y0) − F (y∗), which we consider here as an absolute constant. Let
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Figure 5.6: Total cost versus τ . Parameter values: n1 = m1 = 100, n2 = 1000,
m2 = 0, βv = βz = 0.1.

us fix βv = βz = 0.1 and consider the cost function as a function of τ and the
problem parameters n1, n2, m1 and m2.

Figure 5.6 illustrates the upper bound on the cost as a function of τ , for a
particular choice of the parameters.

We observe that, when choosing n1 = m1 = 100, n2 = 1000, m2 = 0 and
βv = βz = 0.1, the total cost is minimized for a τ -value of approximately 0.9. For
different combinations of the parameters, we obtain similar values (around 0.9).

As we mentioned above, the cost function relies on the upper bounds for Nin
and Nout. However, we want to stress here that these upper bounds are clearly
pessimistic. For example for βv = βz = 0.1 and τ = 0.9 we get upper bounds
of Nin ≤ 320 and Nout ≤ 264. In numerical experiments we observe a number
of inner iterations of no more than 10 (and as we approach the optimal solution
it is typically only 1 or 0) and a number of outer iterations of typically no more
than 100. But also in these numerical tests we found that τ = 0.9 is a choice that
provides a good compromise between the number of inner and outer iterations.

We conclude that a reasonable choice for κ is

κ = 0.9 · [1− ω−1(ω∗(βv))]
3.

5.4 Numerical results

We showed in the previous sections that it is possible to solve convex optimization
problems of the form (5.4), for whose feasible set C we do not have a self-concordant
barrier at hand, but where C is the projection of a higher-dimensional convex set
Q for which we do have a ν-self-concordant barrier. Moreover, we have shown
how to compute an optimal solution for the original problem by following a 2-level
strategy that does not compute Newton directions for the extended formulation in
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terms of Q, but instead it follows the surface of partial minimizers to an optimal
solution.

Numerical results in Section 4.5 show how Algorithm 4 (and Algorithm 5) can
be used to solve convex problems in dual conic form (D), i.e.

max
y

bT y

c−AT y ∈ K∗,

ATf y = cf .

(D)

While our methods are reliable and the number of iterations is competitive with
the solvers that we compared our implementation with, we also observe that the
total computation time increases significantly with the problem size. This effect
is essentially due to the decomposition approach. In fact, the original problems in
Section 4.5 were of much smaller size than their conic reformulations (D), where
all the nonlinear terms are confined to low-dimensional cones. On the other hand,
the competing methods (MINOS, SNOPT and KNITRO for the location problems
and gpcvx for the GP problems) were working directly on the original problems.
The negative effect of the conic decomposition was that many artificial variables
had to be introduced which increased dramatically the cost per iteration.

In the following two sections we consider again random instances of the gen-
eralized location problems and geometric programs. We compare the standard
long-step path-following method (Algorithm 4) to its variant that is making use
of the technique of partial minimization (Algorithm 9).

As in Section 4.5 we have chosen parameter values of ǫ = 10−6, βy = 1
4 , θ = 10

and for Algorithm 9 the parameter κ = 0.9 [1 − ω−1(ω∗(βv))]3. Both methods
are making use of a line search on the outer level along the search direction ∆y:
starting at the safeguard step length ( 1

1+δy
, and respectively λ

1+δz
) we gradually

increase the step size as long as the objective value of the centering problem
improves. For the partial minimization subproblems (PM(z)) that have to be
solved in each iteration of Algorithm 9 we use a similar line search procedure.

5.4.1 Location problems

In Section 4.5.1 we considered the unconstrained version of generalized location
problems where the distance of a point to given locations (measured in terms of p-
norms) has to be minimized. The formulation is the following (compare to (LOC0)
with R = 0).

min
u∈RN

M∑

j=1

aj ||u− Cj ||pj . (5.53)

We showed that (5.53) can be cast in the standard form (5.4), i.e.

min
z

aT z

s.t. z ∈ C
(5.54)

where z = (u,w) ∈ RN+M , a = (0, . . . , 0, a1, . . . , aM ) and

C = {(u,w) : ||u− Cj ||pj ≤ wj , j = 1, . . . ,M}.
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Note that there are no linear equality constraints present in (5.54), i.e. G and g
do not exist. Since p-norm terms in C can be expressed in terms of power cones,
we arrive at the following formulation:

min
z,v

aT z

s.t. (z, v) ∈ Q,
Ez +Bv = d,

(5.55)

where

Q =
{
(u,w, v) : (vij , wj , ui − Ci,j) ∈ Kαj , i = 1, . . . , N, j = 1, . . . ,M

}
.

The matrices E and B are given by

E =
[
0 −I

]
∈ RM, (N+M)

and
B = blkdiag(1N ) ∈ RM,N M ,

where 1N is a row vector of ones of size N (compare (LOC2) with R = 0). The
right-hand side vector is d = 0 ∈ RM . In the notation of this chapter we have
that n1 = N + M (the number of variables in (5.54)), n2 = N M (the number
of artificial variables v), m1 = M (the number of equality constraints involving z
and v) and m2 = 0 (no equality constraints only involving z).

Before we come to the numerical results, let us first verify that indeed Assump-
tion 4 is satisfied.

1. It is clear that C and Q are full-dimensional closed convex sets, since they
contain interior points (take for example u = 0 and v, w with components
that are sufficiently large).

2. B = blkdiag(1N ) ∈ RM×NM has M linearly independent rows. G is not
present in this case.

3. There is clearly a bijection between C and Q⋂L, where L = {(z, v) : Ez +
Bv = d} (see e.g. Section 4.1.3).

4. C does not contain straight lines since it consists of proper (and therefore

pointed) cones P(n)
p .

5. If we fix z̄ = (ū, w̄) ∈ int C, then Q⋂L⋂{(z, v) : z = z̄} can be written as

v
αj

ij (w̄j)
1−αj ≥ |ūi − Cij |, i = 1, . . . , N, j = 1, . . . ,M,

⇔ vij ≥
( |ūi − Cij |

(w̄j)1−αj

)1/αj

︸ ︷︷ ︸

positive constant

, i = 1, . . . , N, j = 1, . . . ,M,

and
N∑

i=1

vij = w̄j , j = 1, . . . ,M.
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That means Q⋂L⋂{(z, v) : z = z̄} can be considered as a direct product
of the diagonal facets of translated simplices. Therefore it is bounded.

6. It is straightforward to write down a ν-self-concordant barrier F (with ν =
3NM) for Q, using the 3-self-concordant barrier for the power cone Kα.

As in Section 4.5.1 we consider instances of (5.53) with aj = 1 (equal weights on
the objective terms), Cj randomly distributed locations in (0, 1)N for j = 1, . . . ,M
and randomly distributed pj ∈ (1, 3), j = 1, . . . ,M .

In Table 5.1 we illustrate the number of iterations for Algorithm 4 (D-IPM) and
Algorithm 9 (D-IPM (PM)). Note that the iteration numbers for the dual path-
following method are not exactly the same as in Table 4.1. This is due to the fact
that we were running the code on new random instances and we did not average
over 10 runs, as in Table 4.1. One can see that there is a slight improvement

dimension D-IPM D-IPM (PM)

N = 2,M = 10 24 26 (5)
N = 2,M = 100 37 36 (14)
N = 2,M = 1000 48 42 (25)
N = 2,M = 5000 63 58 (46)
N = 2,M = 10000 58 55 (43)

N = 10,M = 10 40 38 (26)
N = 10,M = 50 46 40 (29)
N = 10,M = 100 56 51 (30)
N = 10,M = 500 68 58 (42)
N = 10,M = 1000 70 64 (70)

N = 50,M = 50 68 53 (72)
N = 50,M = 100 80 62 (61)
N = 50,M = 200 113 68 (69)
N = 50,M = 400 101 70 (78)

Table 5.1: LOC - Number of iterations for each solver. In brackets total number
of partial minimization steps.

in terms of the number of iterations of the path-following method using partial
minimization. For small instances the improvement is not significant, but for
larger problems the number of iterations reduces by a factor of up to 25%. Note
that this effect was not expected. As we have outlined in Section 5.3, the partial
minimization technique can be viewed as a restriction of a ν-self-concordant barrier
F to a sequence of subspaces LJk

. In accordance with Section 2.4.3 restrictions to
subspaces preserve the self-concordance property with the same value of the self-
concordance parameter ν. The numerical results, however, seem to suggest that
these restrictions yield a slight improvement of the self-concordance parameter.

We have argued at the end of Section 2.3.3 that if some partial minimization
steps have to be done in some of the outer iterations, then this might result in a
higher cost of one iteration of Algorithm 9 as compared to Algorithm 4. On the
other hand, this additional computational effort could result in better directions
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and/or longer steps on the outer level of Algorithm 9. This conjecture cannot be
observed directly since both algorithms generate a different sequence of iterates, so
comparing these directions (or their lengths) does not have a useful interpretation.
However, as we have observed a slight reduction of the number of iterations when
using partial minimization, it seem to indicate that the directions (∆z, J∆z) on
the outer level are indeed more favorable than the full Newton directions ∆y.

In Theorem 2.3.7 we established an upper bound on the number of partial
minimization (p.m.) steps. This bound can be rather high (see Remark 5.3.9).
However, we observe in Table 5.1 that the average number of p.m. steps is small as
compared to the above-mentioned upper bound (the total number of p.m. steps is
comparable to the number of main iterations, i.e. in average there is only one p.m.
step needed in each iteration). In the numerical experiments we have observed a
number of p.m. steps of less than 10, typically around 3 at the beginning and
always 0 at the end of each centering problem. That means at the end of each
centering process of Algorithm 9 the computation of each main step (∆z,∆v) is
cheaper than one iteration of Algorithm 4 (see Lemma 5.3.13). Furthermore, if
we desire a high accuracy in terms of the centering process (i.e. if we choose βz
small), then we observe a fast reduction in terms of the Newton decrement δz.
Typically δz reduces by a factor or 10 once it is less than 1.

In Table 5.2 we report the total computation time used by both methods.
We observe that for the dual method the computation time is slightly better when

dimension D-IPM D-IPM (PM)

N = 2,M = 10 0.1 0.1
N = 2,M = 100 0.3 0.3
N = 2,M = 1000 2.9 2.6
N = 2,M = 5000 23.8 21.4
N = 2,M = 10000 56.2 53.6
N = 10,M = 10 0.2 0.2
N = 10,M = 50 0.7 0.6
N = 10,M = 100 1.5 1.4
N = 10,M = 500 8.7 7.8
N = 10,M = 1000 19.1 17.9
N = 50,M = 50 4.2 4.4
N = 50,M = 100 9.7 10.6
N = 50,M = 200 28.9 23.5
N = 50,M = 400 55.8 49.9

Table 5.2: LOC - CPU time (in seconds) used by each solver

using partial minimization. This improvement is mainly due to the reduction of the
number of iterations. However, the computation times are still significantly higher
as compared to the three AMPL solvers which we have tested in Section 4.5.1 (see
Table 4.2).

In order to give an idea of where most of the time is spent in Algorithm 9, we
list in Table 5.3 the computationally most expensive operations for one particular
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instance of size N = 10, M = 1000. It is surprising that a large part of the compu-

Operation Percentage

evaluate F 59.0
compute v̄ 22.6
compute ∆z 5.6
compute J and L 5.1
build H and h 2.9
compute ∆v 0.2

Table 5.3: LOC - List of operations where most of the time is spent, N = 10,
M = 1000.

tation time is spent only on evaluating the barrier F . The barrier is evaluated in
the two line search procedures (one on the outer level and one for the partial min-
imization subproblem). In the above test case the barrier was evaluated around
600 times by both line search methods.

Also the fact that computing v̄ is so expensive comes as a surprise, having
in mind the results from Section 2.3.3. This can be explained by the fact that
most of the computational effort for obtaining v̄ is spent on computing the partial
derivatives of F . The actual computation of the directions ∆v is negligible. That
means more than 80% of the computation time is spent only on evaluating F
and its derivatives. These operations were not considered in Section 2.3.3. The
computation of ∆z (which we would expect to be the dominating component)
is rather cheap (5.6%). This observation can be explained by the fact that the
Hessian H has a special arrow-shape structure and a large diagonal block of size
M = 1000. Such a particular case is not considered in Section 2.3.3.

5.4.2 GP problems

Let us recall the definition of a geometric program in posynomial form, i.e.

min
x>0

n0∑

i=1

D
(pos)
i,0 xK

(pos)
i,0

s.t.

nj∑

i=1

D
(pos)
i,j xK

(pos)
i,j ≤ 1, j = 1, . . . ,M,

e
(mon)
j xK

(mon)
j = 1, j = 1, . . . ,Mmon.

(GP )

where x ∈ RN are positive variables, D
(pos)
i,j and e

(mon)
j positive coefficients and

K
(pos)
i,j and K

(mon)
j real exponents.

We have seen in Section 4.4.2 that (GP) can be cast in standard convex form
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(5.4) by a change of variables. We obtain

min
z

aT z

s.t. z ∈ C
Gz = g,

(GP1)

where z = (u,w) ∈ RN+1, a = [0, . . . , 0, 1],

C =

{

(u,w) :

n0∑

i=1

exp
(

uTK
(pos)
i,0 + C

(pos)
i,0

)

≤ w;

nj∑

i=1

exp
(

uTK
(pos)
i,j + C

(pos)
i,j

)

≤ 1, j = 1, . . . ,M

}

,

G =

[
K(mon)

0 · · · 0

]T

∈ RMmon×(N+1) g = − log
(

e(mon)
)

∈ RMmon .

As we demonstrated in Section 4.4.2, (GP1) can be cast in the following decom-
posed form.

min
z,v

aT z

s.t. (z, v) ∈ Q
Ez +Bv = d

Gz = g,

(GP2)

where z = (u,w) and

Q =
{

(u,w, v) : exp
(

uTK
(pos)
i,j + C

(pos)
i,j

)

≤ vi,j , i = 1, . . . , nj, j = 0, . . . ,M
}

.

The linear constraints Ez +Bv = d are given by

E =








0 · · · 0 −1
0

...
...

0 · · · 0 0







∈ R(M+1)×(N+1), B = blkdiag(1nj ) ∈ R(M+1)×(

PM
j=0 nj),

where 1nj is a row vector of ones of size nj , j = 0, . . . ,M . The right-hand side
vector d is defined as d = [0, 1, . . . , 1]T ∈ RM+1 (compare (GP2)).

In the notation of the chapter we have that n1 = N+1 (the number of variables

in (GP1)), n2 =
∑M

j=0 nj (the number of artificial variables v), m1 = M + 1 (the
number of equality constraints involving z and v) and m2 = Mmon (the number of
equality constraints only involving z).

Before we present the numerical results, let us first check again that Assump-
tion 4 is satisfied.
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1. Of course C is not always full-dimensional for all data K
(pos)
i,j and C

(pos)
i,j , but

the GP generator mkgp that we have used to create instances, is generating
random instances that do have strictly feasible solutions. Since C is full-
dimensional then so is Q.

2. B = blkdiag(1nj ) ∈ R(M+1)×(
PM

j=0 nj) has M+1 linearly independent rows.

G has full row rank since the vectors K
(mon)
j , j = 1, . . . ,Mmon are assumed

to be linearly independent.

3. There is clearly a bijection between C and Q⋂L, where L = {(z, v) : Ez +
Bv = d} (see arguments in Section 4.4.2).

4. To see that C does not contain straight lines, let us consider a nontrivial
direction (∆u,∆w). If ∆w 6= 0 then it is always possible to find a step size
γ such that w + γ∆w < 0, which is not possible. Let therefore ∆w = 0 and
assume ∆u 6= 0 (otherwise (∆u,∆w) = 0). Since Kpos has full row rank, it

cannot contain any 0-rows, which means there exists a column K
(pos)
i,j such

that ∆uTK
(pos)
i,j 6= 0. It is clear that we can find a step size γ such that

(u+ γ∆u)TK
(pos)
i,j + Ci,j > max{log(w), 0}

︸ ︷︷ ︸

constant

,

which violates one of the inequality constraints. That means C does not
contain straight lines because there is no direction (∆u,∆w) 6= 0 that we
can extend to ±∞ without leaving C.

5. If we fix z̄ = (ū, w̄) ∈ int C, then Q⋂L⋂{(z, v) : z = z̄} can be written as

vij ≥ exp
(

ūTK
(pos)
i,j + C

(pos)
i,j

)

︸ ︷︷ ︸

positive constant

, i = 1, . . . , nj , j = 0, . . . ,M,

and
nj∑

i=1

vij =

{

w, j = 0,

1, j = 1, . . . ,M.

That means Q⋂L⋂{(z, v) : z = z̄} can be thought of as a direct product
of the diagonal facets of translated simplices. Therefore it is bounded.

6. It is straightforward to write down a ν-self-concordant barrier F (with ν =

3
∑M
j=0 nj) for Q, using the 3-self-concordant barrier for the exponential cone

Kexp.

As in the previous section we investigate the effect of partial minimization on
Algorithm 4 with respect to the number of iterations and the total computation
time. In order to test our algorithms we consider a family of random GP’s gen-
erated by mkgp, a Matlab function included in gpcvx1 that has originally been
written by Lieven Vandenberghe and later been modified by Kwangmoo Koh.

1See http://www.stanford.edu/~boyd/ggplab/gpcvx.pdf
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Our tests have been made on random instances with nj = 5, j = 0, . . . ,M ,
Mmon = 5 for different values of N and M . In Table 5.4 we display the number of
iterations for both methods, that is Algorithm 4 (D-IPM) and Algorithm 9 (D-IPM
(PM)). One can see that the use of partial minimization yields a significant reduc-

dimension D-IPM D-IPM (PM)

N = 50,M = 50 92 55
N = 50,M = 100 237 78
N = 50,M = 150 158 68

N = 100,M = 100 133 116
N = 100,M = 200 172 77
N = 100,M = 300 127 72
N = 100,M = 400 98 61
N = 100,M = 500 246 64

N = 200,M = 200 348 169
N = 200,M = 400 292 88
N = 200,M = 600 105 69
N = 200,M = 800 211 78

Table 5.4: GP - Number of iterations used by each solver.

tion in terms of the number of iterations. Note that this effect is not guaranteed
by the worst-case complexity result (Theorem 5.3.12). Surprisingly, for increas-
ing value of M , the number of iterations remains constant (N = 50) or decreases
(N = 100, N = 200).

Table 5.5 displays the total computation time used by each method. We see

dimension D-IPM D-IPM (PM)

N = 50,M = 50 1.19 0.70
N = 50,M = 100 3.79 1.19
N = 50,M = 150 3.18 1.25

N = 100,M = 100 3.17 2.44
N = 100,M = 200 4.97 1.95
N = 100,M = 300 4.46 2.20
N = 100,M = 400 4.03 2.04
N = 100,M = 500 13.15 2.57

N = 200,M = 200 13.61 6.35
N = 200,M = 400 15.01 4.24
N = 200,M = 600 6.49 3.42
N = 200,M = 800 14.37 4.55

Table 5.5: GP - CPU time (in seconds) used by each solver.

that the computation time for the dual path-following method is lower by a factor
of 3 when using partial minimization. This improvement is mainly due to the
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reduction in the number of iterations (see Table 5.4), but also to the lower cost
per iteration as we can see in Table 5.6. If we compare the computation time to
GPCVX (see Table 4.5), we observe that the use of partial minimization could
close the gap to some extent. However, the dedicated GP solver is still superior
with respect to the computation time because GPCVX does not have the addi-
tional computational burden of the inner iterations to approximate the partial
minimizers.

dimension D-IPM D-IPM (PM) improvement

N = 50,M = 50 1.57 1.46 7.4
N = 50,M = 100 1.87 1.62 13.5
N = 50,M = 150 2.18 1.89 13.4
N = 100,M = 100 2.75 2.18 20.6
N = 100,M = 200 3.20 2.57 19.7
N = 100,M = 300 3.96 3.02 23.6
N = 100,M = 400 4.60 3.40 26.1
N = 100,M = 500 4.81 3.79 21.3
N = 200,M = 200 4.90 3.75 23.3
N = 200,M = 400 5.39 4.31 20.0
N = 200,M = 600 6.63 5.05 23.8
N = 200,M = 800 7.65 6.12 20.0

Table 5.6: GP - CPU time per iteration (in 10−2 seconds) used by both methods,
and improvement (in %).

Let us have a look again at where most of the time is spent in Algorithm 9. The
most expensive operations are listed in Table 5.7, for one random (GP) instance
of size N = 200, M = 800, Mmon = 5, nj = 5 for j = 0, . . . ,M . The cost of

Operation Percentage

evaluate F 38.1
compute v̄ 18.6
compute ∆z 10.8
build H and h 8.7
compute J and L 5.6
compute ∆v 0.3

Table 5.7: GP - List of operations where most of the time is spent, N = 200,
M = 800, Mmon = 5, nj = 5 for j = 0, . . . ,M .

evaluating F is still rather high (38.1%), even though it is not as pronounced
as in the example of location problems (compare Table 5.3). Note that in this
concrete example F had to be evaluated around 750 times. The cost of computing
v̄ is higher than expected. But the computation time of this operation is again
dominated by computations and manipulations of the derivatives of F . The actual
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time for obtaining v̄ is only 6.8% of the total computation time.
Let us conclude with a comparison of partial minimization applied to location

problems (5.53) and geometric programming problems (GP ). We observe that
partial minimization is more beneficial for (GP ): the total computation time is
reduced by roughly a factor of 3, while for the location problems we have observed
only a very small improvement (see Table 4.2 and Table 4.5). This reduction
is in both cases due to the reduced total number of iterations (which is more
pronounced in the case of (GP ), see Table 5.4 as compared to Table 5.1) and the
reduced cost per iteration. The cost per iteration is in both cases dominated by
simply evaluating the barrier F and its derivatives (see Table 5.3 and Table 5.7).
For (GP ) these evaluations seem to be cheaper as compared to location problems.

5.5 Summary

Let us conclude with a summary on partial minimization.

1. Complexity preserved: We saw in Theorem 5.3.12 that the global com-
plexity of Algorithm 9 is essentially the same as the complexity of the stan-
dard long-step path-following method (Algorithm 4), namely

O
(

ν log

(
ν

t0ǫ

))

.

Moreover, as we illustrated in Section 5.3.4 that the partial minimization
framework can be embedded in the primal-dual predictor-corrector method
(Algorithm 5), at least to some extent.

2. Numerical results: The numerical results of Section 5.4 indicate that the
embedding of partial minimization into dual interior-point methods is indeed
beneficial. For the two problem classes considered (location problems and
geometric programs) the number of iterations reduces (compare Table 5.1
and Table 5.4). As a result, the total computation time decreases (compare
Table 5.2 and Table 5.5) for the dual path-following method using partial
minimization.

3. Fast convergence: Even though we cannot establish formally quadratic
convergence of the centering problems (Theorem 5.3.7), we do observe fast
convergence at the end of each of the centering problems for both problem
classes. In particular, the numerical tests seem to indicate that if δz < 1,
then we can do full steps (α = 1) and no centering steps are needed, i.e.
δv+ ≤ βv. Moreover, δz typically reduces by a factor of 10 once it is less
than 1.

4. Possible improvements: We observe that a large amount of computation
time is spent only on evaluating the barrier (40-60%) for the line search
procedures. There are line searches implemented on two levels: (a) for the
partial minimization subproblems, (b) for the dual centering problems. As
a result, the barrier typically has to be evaluated a couple of hundred times.
A possible improvement could be a cheaper way of evaluating the barrier or
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approximating the barrier values.
As we have outlined at the beginning of the chapter, the framework of partial
minimization is well-suited for parallelization, since we consider problems
that are partially separable. It could be possible to improve the performance
by separating the partial minimization subproblems. This would mean one
could evaluate the barrier and its derivatives in parallel and also compute
the Newton directions for each small subproblem simultaneously.
Another improvement could be the use of larger neighborhoods. Algorithm 7
is designed such that in each outer iteration we generate an approximate
partial minimizer with accuracy δv ≤ βv <

1
2 . On the other hand, it might

not be necessary to enforce such a high accuracy, especially at the beginning.
Therefore, it might prove beneficial to require only δv ≤ β̄v, where β̄v is large.

5. Scope: We illustrate how partial minimization can be applied whenever we
want to optimize over a convex set C that has to be lifted to some higher-
dimensional set Q in order to have a self-concordant barrier at hand. It is
clear that the proposed framework is particularly successful when there are
many artificial variables v that had to be introduced in the modelling process
and if they are sparsely present in the final model. In other words, we need
that the subproblems (PM(z)) can be solved efficiently. This is the case for
example when the Hessian of F with respect to the artificial variables v is
diagonal, but also the matrix B is sparse so that B(F

′′

vv)
−1BT is cheaply

invertible. This is for example the case when there is exactly one nonzero
present in each column of B. Then B(F

′′

vv)
−1BT is diagonal to, if F

′′

vv is
diagonal (see Section 2.3.3).
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Conclusions

We have demonstrated in this thesis that interior-point methods exhibit many
very favorable theoretical and practical properties such as polynomial complex-
ity (under some technical assumptions) and reliability of their implementations.
However, we have also outlined that there are certain limitations to their usage for
practical applications, such as the access to a self-concordant barrier for the feasi-
ble set. In view of these drawbacks we have formulated in Chapter 1 three goals,
i.e. an algorithmic framework with the following three properties. First, the com-
plexity for solving any particular instance from the chosen problem class should be
polynomial in the problem size. Second, the chosen problem class should be suf-
ficiently general. Third, the framework should exploit structure from the original
problem in order to improve efficiency.

How we met our goals

We have proposed in Chapter 2 two interior-point methods (a dual and a primal-
dual path-following method) for convex problems in conic form. We have shown
that these methods exhibit a polynomial complexity provided that a self-concordant
barrier for the dual (or primal) cone are at hand. In Chapter 3 we have proved
self-concordance of a new barrier for the power cone. This result turns out to be
fundamental, in that we have shown in Chapter 4 that the power cone is very
versatile since many convex sets and functions are representable using that cone.
This is why we have chosen our basic formulation to be a dual conic problem
based on the power cone and a limit of the power cone (the so-called exponential
cone). Furthermore, we have explicitly computed the dual cones of these two prin-
cipal cones, with the aim to be able to use the nonsymmetric primal-dual method
proposed in Chapter 2. The process of reformulating the original problem in the
dual conic form based on the power cone is called lifting. Unfortunately, such a
lifting has the negative side effect that typically many artificial variables have to
be introduced which slows down the solution process due to a higher cost per iter-
ation. This phenomenon was observed in numerical test for two problems classes

207
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(P )

(Q)

lifting

{(Pk)}

family of restrictions
number of

variables

Figure 6.1: Lift and restrict

(generalized location problems and geometric programs). In order to overcome
this negative effect of the conic modelling we have proposed in Chapter 5 a new
framework, called partial minimization, which can be embedded in interior-point
methods. We have proposed a two-level interior-point scheme where in each outer
iteration we solve the partial minimization subproblem approximately. Using this
approximate solution we define directions where the artificial variables are con-
fined to affine subspaces that are approximately tangent to the surface of partial
minimizers. Therefore, this technique effectively removes dependence on the arti-
ficial variables. We have shown that polynomial complexity is preserved. Finally,
we have demonstrated that this new technique also works in practical implemen-
tations, where we have observed a reduction in the cost per iteration, and also in
the total number of iterations.

Our strategy can be illustrated in the following way. Given an α-representable
optimization problem (P ), we denote its α-representation by (Q), which is the
dual conic formulation based on the power cone and exponential cone presented
in Chapter 4. This lifting is illustrated on the left-hand side in Figure 6.1. As we
have argued above, the lifting is necessary in order to profit from the polynomial
time algorithms. The right-hand side in Figure 6.1 illustrates the technique of
partial minimization as a means to compute a solution for (Q) by not solving
(Q) directly. Instead, we compute search directions for a family {(Pk)} of lower-
dimensional problems, where artificial variables are essentially removed.

Our thesis in the context of convex optimization

Optimization is an important field of applied mathematics with many applications
in various domains, ranging from engineering to finance and operations research.
In particular convex optimization is very popular because of highly efficient meth-
ods which are supported by strong theoretical results. The advantages of convex
optimization problems can be classified into passive and active features. Passive
features are for example the fact that local optimal solutions that are always also
global solutions; or the fact that optimality conditions are also sufficient (and
not only necessary). The active features are those that require some additional
user expertise, such as the access to efficient methods with guaranteed polyno-
mial complexity; and a rich duality theory that can be used for finding bounds
on the optimal value. However, in order to profit from the favorable properties of



209

convexity, it is necessary to ensure that the considered problem is indeed convex.
Unfortunately, checking convexity is a highly non-trivial task. Once convexity is
established, one profits automatically from its passive features. On the other hand,
the active features do not come for free. In order to benefit from them we have to
bring the optimization problem in a structured convex form, e.g. a form for which
interior-point algorithms are designed; or a form for which a ”good” dual problem
can be identified.

In the context of interior-point methods structure means the access to self-
concordant barriers for the feasible set (and possibly the epigraph of the objective
function). In general it is a tedious work to find self-concordant barriers for given
convex sets. Recently, we have observed some research activity in that direction,
e.g. [47]. In this thesis we have chosen as the structured basic formulation a dual
problem based on the power cone, for which we have proved self-concordance of
a new barrier. On the other hand, the concept of self-concordance might not be
the only paradigm. Indeed, self-concordance is a global property that might be
too restrictive. For example, it could be sufficient to ensure so-called local self-
concordance (see [57]) in a neighborhood around the central path, since this is the
area where the iterates are confined. Analogously, other concepts might guarantee
also polynomial complexity for certain problem classes.

The tasks of formulating and optimization problem, detecting to which problem
class(es) it belongs and the transformation into the input format of the solver
of choice can be facilitated with the help of modelling languages. These tools
can be standalone software packes such as AMPL [19] and GAMS [7], or Matlab
toolboxes like CVX [27] and Yalmip [39]. We want to point out here CVX, which
is designed for so-called disciplined convex optimization problems (see [26]), i.e.
convex problems that can be detected as such. The other three above-mentioned
modelling languages are not necessarily restricted to convex optimization. In that
sense the purpose of this thesis has some intersection with the concept of CVX, in
that we build up a class of well-behaved convex optimization problems. The main
difference is that CVX is currently restricted to symmetric conic optimization
(as it only supports SeDuMi and SDPT3 as solvers). However, in principle CVX
could be adapted to support also power cone representable sets (using the concepts
presented in Chapter 4). Another difference is that our work is more biased towards
the algorithmic side, while CVX entirely focuses on the modelling aspects of convex
optimization.

The prerequisite of efficient interior-point methods for convex optimization
problems is the reformulation of the original problem into a structured convex form
for which interior-point algorithms are available. This extraction of the structure
can be considered as active knowledge about the original problem, which in turn
can be exploited to increase efficiency. There are several ways how structure can be
exploited. For example sparsity in the Hessian can be used to reduce the storage
memory and the cost for computing the search direction (see [22]). Similarly,
separability (see [8]) can increase efficiency of the algorithms. In this work we
have proposed to use the new technique of approximate partial minimization to
compute the search directions in a lower-dimensional space at a reduced cost.
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Future research

There are several potential future fields of research that can improve our results.

Conjectured self-concordant barriers

In Chapter 3 we formulated three conjectures for self-concordant barriers: an

(n + 1)-self-concordant barrier for the high-dimensional power cone K(n)
α and for

a further a generalization of K(n)
α , and (partial) scaling of the 3-self-concordant

barrier for Kα which results in a self-concordance parameter of ν ∈ [2, 3] depending
on the value of α. We obtained indication for these statements from numerical tests
where we checked the self-concordance property for random points in the cones.
However, it would be interesting to find an analytic proof of these conjectures.

In the same chapter we computed numerically the universal barrier for the
p-cone. The evaluation of the barrier and its derivatives involves the computation
of several integrals, which makes this barrier not practical for real applications.
Moreover, we found in numerical tests that it should be possible to scale the barrier
and obtain a self-concordance parameter of ν ∈ [2, 3], depending on the value of p.
This result is in line with the theory, since for the particular values of p = 1, 2,∞
we know the optimal value of ν, which is also the value that we obtain in our tests.
An improvement to this study could be an establishment of a formal proof that
supports this observation of the self-concordance parameter.

Dual cones

In Chapter 4 we computed the dual cones of the power cone Kα and of the expo-
nential cone Kexp. Moreover, we illustrated that Kexp is in fact the limit of a linear

transformation (K̃α)∗ of the power cone Kα. It would be interesting to extend this
study by showing whether a similar limit relation exists on the dual side, i.e. if
K∗

exp is also the limit of (K̃α)∗.

Newton’s method with approximate partial minimization

In Chapter 5 we presented a complexity result for a variant of Newton’s method
that uses approximate partial minimization. We could successfully show that this
method guarantees a constant decrease of the objective function in each iteration
(see Theorem 5.3.7). However, we could not establish the quadratically convergent
phase of Newton’s method close to an optimal solution, even though we do observe
in our numerical tests a rapid convergence close to an optimal solution: once
the Newton decrement for the outer level is sufficiently small it typically reduces
by a factor of 10 in each following outer iteration. Moreover, the number of
partial minimization steps is low, in particular close to the overall optimal solution.
Finally, we observed a reduction in the number of outer iterations of the overall
method. This observation was not covered by the theoretical results and it seems to
indicate that partial minimization actually reduces the self-concordance parameter
of the original barrier. The aim of a future work could be to theoretically support
these observations by analytic proofs.
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The conic solver

The numerical results in Chapter 4 and Chapter 5 have been achieved with a
Matlab1 implementation of Algorithm 4 and Algorithm 9. The solver can be
freely downloaded2 and installed as described therein.

We are going to give a brief documentation of the solver, its input and output
format and a concrete example of a small convex optimization problem whose
conic reformulation can be fed into the solver.

A.1 Problem class

The solver supports a primal-dual format that has been presented already in Sec-
tion 2.5.3, i.e.

min
x,xf

cTx+ cTf xf

Ax+Afxf = b,

x ∈ K,
xf free,

max
y,s

bT y

s+AT y = c,

ATf y = cf ,

s ∈ K∗,

where x, c ∈ Rn, xf , cf ∈ Rnf , y, b ∈ Rm, A ∈ Rm,n and Af ∈ Rm,nf and
K,K∗ ⊂ Rn are dual to each other and K (respectively K∗) is the direct product
of the three elementary cones

• Kα =
{
x ∈ R2

+ × R : xα1 · x1−α
2 ≥ |x3|

}

• Kexp = cl
({

x ∈ R× R+ × R++ : exp
(
x1

x3

)

≤ x2

x3

})

1Version 7.2.0 (R2006a), see http://www.mathworks.com
2http://www.core.ucl.ac.be/∼glineur/PowerSolver
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• Rnl
+ = {x : xi ≥ 0, i = 1, . . . , nl}.

The necessary requirement for the design of polynomial-time interior-point
methods is the access to a self-concordant barrier for K and/or K∗. In Chapter 3
we have presented a (n+1)-self-concordant barrier for the high-dimensional power

cone K(n)
α . For n = 2, we obtain the 3-self-concordant barrier

Fα(x) = − log
(
x2α

1 x2−2α
2 − x2

3

)
− (1 − α) log(x1)− α log(x2)

for the thee-dimensional power cone Kα. Further, it is well-known that Kexp

admits the 3-self-concordant barrier

Fexp(x) = − log (x3 · log (x2/x3)− x1)− log(x2)− log(x3).

We denote by nα the number of power cones Kα and by ne the number of ex-
ponential cones Kexp. In that notation we have that the primal (respectively the
dual) cone becomes

Kα1 × · · · × Kαnα
︸ ︷︷ ︸

nα times

×Kexp × · · · × Kexp
︸ ︷︷ ︸

ne times

×Rnl
+ (A.1)

with the (3nα + 3ne + nl)-self-concordant barrier

F (x) =

nα∑

i=1

Fαi(xα) +

ne∑

i=1

Fexp(xe) + Fl(xl),

where x = (xα, xe, xl), and xα ∈ R3nα , xe ∈ R3ne and x∈Rnl
+ . Fl denotes the

standard logarithmic barrier for the nonnegative orthant.

In Section 4.3 we have computed the dual cones of Kα and Kexp. Therefore it
is straightforward to write down the dual cone for (A.1) attached with a (3nα +
3ne + nl)-self-concordant barrier. Note, however, that (A.1) is not symmetric
(unless there are no Kα and Kexp constraints present, in that case the conic pair
boils down to a pair of linear programs). Moreover, the barriers for (A.1) and its
dual are not conjugate.

Let us summarize the dual problem (using the above notation), as it will yield
for further illustration. Let A and c be partitioned in the following way

Ā = [Af , A] = [Af , Al, Aα, Ae],

c̄ = [cf ; c] = [cf ; cl; cα; ce],

where Al are the first nl columns of A that correspond to the primal nonnegativity
constraints. Ap are the further nα columns of A that correspond to the primal
power cone variables and Ae are the last ne columns of A that correspond to
the exponential cone constraints. Analogously, the primal objective vector c is
partitioned into cl, cα and ce. Then we get as the dual problem
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max bT y

s.t. cf −ATf y ∈ {0} ⊂ Rnf ,

cl −ATl y ∈ Rnl
+ ,

cα −ATα y ∈ Kα1 × · · · × Kαnα
,

ce −ATe y ∈ Kexp × · · · × Kexp.

(A.2)

A.2 Initialization

Our solver is restricted to the proper cones that are the direct product of Rn+, Kα
and Kexp. We propose the following initialization that requires the introduction
of only 3 additional variables and 3 additional linear inequality constraints. In the
following we discuss the initialization for each of the three cones separately. The
generalization to mixed problems is straightforward.

A.2.1 Initializing the linear constraints

In order to initialize the linear constraints

cl −ATl y ∈ Rnl
+ , (A.3)

we propose to solve the following auxiliary problem

(AUXlin) min θ

s.t. cl,i −ATl,i y + θ ≥ 0, i = 1, . . . , nl,

ATf y = cf .

It is clear that (AUXlin) can be easily initialized by taking any y0 that solves the
linear system ATf y = cf and setting

θ0 = max
i=1,...,nl

cl,i −ATl,i y0 + 1.

As soon as we have found a feasible point (ȳ, θ̄) for (AUXlin) such that θ̄ < 0 we can
stop and take ȳ as a strictly feasible point for the linear constraints cl−ATl y ∈ Rnl

+ .
On the other hand, if (A.3) admits a strictly feasible solution, then the optimal
value of (AUXlin) is negative.

A.2.2 Initializing the power cone constraints

For initializing the power cone constraints we propose the following auxiliary prob-
lem. For sake of simplicity we consider here the case of one single power cone
constraint cα − ATα y ∈ Kα, where cα = [c1, c2, c3] ∈ R3 and Aα = [a1, a2, a3] and
ai ∈ Rm. Then the above power cone constraint becomes

(c1 − aT1 y)α · (c2 − aT2 y)1−α ≥ |c3 − aT3 y|. (A.4)
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Let us consider the auxiliary problem.

(AUXα) min θ

s.t. (c1 − aT1 y + θ)α · (c2 − aT2 y + θ)1−α ≥ |c3 − aT3 y|,
ATf y = cf .

Equivalently, the power cone constraint of (AUXα) can be written as

cα − ÃTα ỹ ∈ Kα,

where Ãα =

[
Aα

−1 −1 0

]

∈ Rm+1,3 and ỹ = (y, θ).

(AUXα) can be initialized easily by taking any y0 that solves the linear system
ATf y = cf and setting θ0 = max{θ1, θ2}, where

θ1 = max(−s1,−s2) + 1,

θ2 = |s3|1/(α(1−α)) −min{s1, s2}+ 1

and si = ci − aTi y0 for i = 1, 2, 3. Then we have

si + θ0 ≥ si + θ1 ≥ 1 > 0, i = 1, 2

and

(s1 + θ0)
α · (s2 + θ0)

1−α ≥ (min{s1, s2}+ θ0)
α(1−α) ≥ (min{s1, s2}+ θ2)

α(1−α)

because of monotonicity of the power function. Using the definition of θ2, we get

(s1 + θ0)
α · (s2 + θ0)

1−α ≥ (|s3|1/(α(1−α)) + 1)α(1−α) > |s3|,

which means that the initial (y0, θ0) satisfies strictly the power cone constraint in
(AUXα). It remains to note that as soon as we have found a point (ȳ, θ̄) that
is feasible for (AUXα) with θ̄ < 0, we can conclude that ȳ is strictly feasible for
(A.4).

Conversely, it is clear that if the optimal value of (AUXα) is θ∗ = 0, then the
power cone constraint in (AUXα) must be tight at the optimum and y∗ is feasible
for (A.4), but not strictly feasible. Similarly, if θ∗ > 0, then there exists no feasible
point y for (A.4).

A.2.3 Initializing the exponential cone constraints

For initializing the exponential cone constraints we propose the following auxiliary
problem. Again, we only consider here the case of one single exponential cone con-
straint cexp − ATexp y ∈ Kexp, where cexp = [c1, c2, c3] ∈ R3 and Aexp = [a1, a2, a3]
and ai ∈ Rm. Then the above exponential cone constraint becomes

exp

(
c1 − aT1 y
c3 − aT3 y

)

≤ c2 − aT2 y
c3 − aT3 y

. (A.5)
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Let us consider the auxiliary problem.

(AUXexp) min θ

s.t. exp

(
c1 − aT1 y − δ
c3 − aT3 y + τ

)

≤ c2 − aT2 y + δ

c3 − aT3 y + τ
,

θ ≥ δ,
θ ≥ |τ |,
ATf y = cf .

The exponential cone constraint of (AUXexp) can be written as

cexp − ÃTexp ỹ ∈ Kexp,

where Ãexp =







Aα
0 0 0
1 −1 0
0 0 −1






∈ Rm+3,3 and ỹ = (y, θ, δ, τ).

We see that a strictly feasible starting point for (AUXexp) can be found by
taking y0 as any solution to the linear system of equations ATf y = cf . Denote

si = ci − aTi y0 for i = 1, 2, 3. Then we can define

δ0 = max{s1,−s2}+ 1,

τ0 = −s3 + 1.

Then we see that τ0 + s3 = 1, and on the other hand s2 + δ0 ≥ 1 and s1 − δ0 ≤
−1 < 0. This implies

exp

(
c1 − aT1 y0 − δ0
c3 − aT3 y0 + τ0

)

= exp(s1 − δ0) < exp(0) = 1 ≤ s2 + δ0 =
c2 − aT2 y0 + δ0

c3 − aT3 y0 + τ0
.

Finally, we can define θ0 = max{δ0, |τ0|}+ 1.
It is clear that if there exists a feasible point ȳ for (A.5), then (ȳ, 0, 0, 0)) is

feasible for (AUXexp) with objective value 0. On the other hand, 0 is a trivial
lower bound for the optimal objective value of (AUXexp). Reversely, if we find a
point (ȳ, θ̄, δ̄, τ̄ ) that is feasible for (AUXexp) with θ̄ = 0, then τ = 0 and δ ≤ 0,
which implies

exp

(
c1 − aT1 ȳ
c3 − aT3 ȳ

)

≤ exp

(
c1 − aT1 ȳ − δ̄
c3 − aT3 ȳ + τ̄

)

≤ c2 − aT2 ȳ + δ̄

c3 − aT3 ȳ + τ̄
≤ c2 − aT2 ȳ
c3 − aT3 ȳ

,

i.e. ȳ is feasible for (A.5). Moreover, if δ̄ < 0 (and θ̄ = 0), then the above inequality
is strict which means that ȳ is strictly feasible for (A.5).

On the other hand, if we find that θ∗ > 0, then we can conclude that (A.5) is
not feasible.

A.3 Input and output format

The input and output format of our conic solver is similar to the one of SeDuMi3

format. The input consists of parts, the data matrix A which is partitioned as

3http://sedumi.ie.lehigh.edu/
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described above, the primal objective vector c which is also described as earlier,
the dual objective vector b and a Matlab structure K which describes the structure
of the primal or dual cone. The necessary fields in K are:

• K.f , the number of primal free variables,

• K.l, the number of nonnegativity constraints,

• K.p, a vector of size nα containing the exponents αi of the power cones,

• K.e, the number of exponential cones,

• K.pd, the flag determining whether the principal problem is the primal or
dual formulation, values: ’p’ or ’d’.

The optional fields of K are:

• K.method, the flag determining which method shall be used (’1’: dual-path-
following, ’2’: nonsymmetric predictor-corrector method, default value: ’1’),

• K.problem class, a string determining the problem class (’GP’: geometric
programming, ’LOC’: generalized location problems, default value: ’default’),

• K.partial, boolean variable determining whether or not to use partial mini-
mization, only available if problem class is either ’GP’ or ’LOC’, default value:
’false’,

• K.quiet, boolean variable determining whether quiet or verbose output, de-
fault value: ’false’,

• K.no output, boolean variable determining whether no output at all, default
value: ’false’,

• K.szs, vector containing additional problem information, for problem class
’GP’ its components is the number of monomials in each of the posynomials,
for problem class ’LOC’ the first component of K.szs is the dimension N , the
second is the number of norm terms M .

The output of the solver contains the primal-dual solution (x, y) and a Mat-
lab structure info containing additional output information. If the dual path-
following method is used, then the the variable x contains only zeros (because the
primal optimal solutions has not been computed). The structure info contains
the following fields:

• info.iter, the number of main iterations

• info.time, the computation time (in seconds) for the main phase)

• info.time init, the computation time (in seconds) for the initialization
phase),

• info.time iter, the time (in seconds) per iteration in the main phase

• info.feas: dual problem ’feasible’ or ’infeasible’,
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• info.bounded: dual problem ’bounded’ or ’unbounded’,

• info.status: dual problem ’solved’ or ’not solved’.

Optionally, a dual starting point y0 can be provided. If y0 is indeed strictly feasible,
then the main phase starts at y0. Otherwise a strictly feasible starting point is
computed by solving an auxiliary model as proposed in Section A.2.

To summarize, the calling sequence for the conic solver based on the power
cone is

[x,y,info] = powersolver(A,b,c,K,y0)

where y0 is an optional dual (strictly feasible) starting point. The first input
argument A is the full data matrix Ā = [Af , Al, Aα, Ae], b is the dual objective
vector and c is the full primal objective vector c̄ = [cf ; cl; cα; ce].

The output contains the primal optimal solution x (which is only available
if the primal-dual method is used, otherwise it is set to zero), the dual optimal
solution y and an information structure info with fields as described above.

A.4 Yalmip interface

As we have mentioned above, in order to call our solver one needs to provide the
data Ā, b and c̄ as well as a Matlab structure K defining the cone K∗. Even for
tiny problems this can be a tedious and error-prone task.

Therefore we have established with the help of Johan Löfberg ([39]) an inter-
face to YALMIP4. YALMIP is a Matlab-based modelling language for defining
and solving advanced optimization problems. The calling sequence for solving an
optimization problem in YALIMP is given by solvesdp(C,h), where C is a set of
constraints and h is the (linear) objective function. By default, minimization is
assumed. For example, given a matrix A and vectors b and c in suitable dimension

x = sdpvar(length(c),1);

C = [A*x<b];

h = c’*x;

solvesdp(C,h);

solves the linear problem

min cTx

s.t. A · x ≤ b.

In order to call our conic solver using YALMIP, one needs to have YALMIP
installed and the root directory (and all of its subdirectories) of our solver have to
be in the Matlab path.

The set C may contain linear constraints and power cone constraints. At the
moment exponential cone constraints are not yet supported. Power cone con-
straints are defined in the following way.

4 http://control.ee.ethz.ch/∼joloef/wiki/pmwiki.php?n=Main.HomePage
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sdpvar x y z

C = powercone(z,x,y,alpha)

where alpha is a scalar constant between 0 and 1. The above definition corresponds
to the constraint (x, y, z) ∈ Kα, where α is the above-mentioned constant. Note
the sequence of the input arguments (i.e. z, x, y instead of x, y, z).

The calling sequence for solving a conic problem involving linear and power
cone constraints using our conic solver is

options = sdpsettings(’solver’,’powersolver’,’savesolveroutput’,1);

output = solvesdp(C,h,options)

The first line specifies the options (i.e. to use our conic solver, and to provide
additional output information). The second line calls the main Yalmip routine to
solve the optimization problem to minimize the objective h due to the constraints
C with the options specified above.

Additionally, we have added support for p-cone constraints. Let x and t be
SDPVAR objects and p ≥ 1 a scalar constant. Then the constraint ||x||p ≤ t (or

equivalently (x, t) ∈ P(n)
p ) can be expressed by the command p cone(x,t,p).

A.5 A concrete example

Let us illustrate the usage of our conic solver on the problem class that we have
encountered already in Section 4.5.3, i.e.

min
x,t

dTx+ t

s.t. (x, t) ∈ Cp
t ≤ 1,

(A.6)

where

Cp =

{

(x, t) :
N∑

i=1

|xi|pi ≤ tp0 , t ≥ 0

}

,

d ∈ RN and 1 ≤ p0 ≤ mini=1,...,N pi. We have seen in Section 4.1.4 how Cp can
be decomposed in terms of power cones Kα. For N = 2 the conic reformulation of
(A.6) becomes

− max
x,t,v,w

− dTx− t

s.t. (vi, 1, xi) ∈ Kαi , αi =
p0

pi
, i = 1, 2,

(wi, t, vi) ∈ Kα0 , α0 =
1

p0
, i = 1, 2,

1− t ∈ R+,

w1 + w2 = t.

(A.7)

We see that we could remove the dependence on the variable t, but for the sake of
transparency we will keep this extended formulation. There is one linear equality
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constraint present (w1 +w2 = t), one linear inequality constraint (1− t ∈ R+) and
four power cone constraints. This means we have nf = 1, nl = 1, nα = 4 and the
number of dual variables is m = 7.

A.5.1 Direct call

In order to call our conic solver, we need to provide the data Ā, b and c̄ as well
as a structure K defining the cone K∗. We see immediately that K.f = nf = 1,

K.l = nl = 1, K.p =
[
p0
p1
, p0p2 ,

1
p0
, 1
p0

]

, K.e = 0 and K.pd =’d’ because we are using

a dual formulation.
Further, if we define the dual variables y = (x, t, v, w), the dual objective vector

becomes b = (−d,−1, 0) ∈ R7. The linear equality constraint w1 +w2 = t only in-
volve the variables w and t (and no constant term). Therefore we conclude cf = 0
and Af = [0, 0,−1, 0, 0, 1, 1]T . The linear inequality constraint involves the con-
stant term cl = 1 and only the variably t, therefore we have Al = [0, 0, 1, 0, 0, 0, 0]T .
The first power cone constraint (v1, 1, x1) ∈ Kα1 involves only the variable v1 (and
no constant term) in the first component; the second component does not involve
any of the variables, but the only the constant term 1; the last component involves
only the variable x1. Therefore, if we define cα,1 = [0, 1, 0]T and

Aα,1 =





0 0 0 −1 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 0





T

we have that (v1, 1, x1) ∈ Kα1 is equivalent to cα,1 − ATα,1y ∈ Kα1 . In a similar
fashion we can define cα,i and Aα,i, for i = 1, 2, 3, that correspond to the re-
maining three power cone constraints. The following Matlab code solves the conic
reformulation (A.7) of the problem (A.6):

alpha = [p(end)/p(1);p(end)/p(2);1/p(end)*ones(2,1)];

K = struct(’f’,1,’l’,1,’p’,alpha,’e’,0,’pd’,’d’);

b = sparse((1:3),ones(3,1),[-d;-1],7,1);

c = sparse([2,4,7],[1,1,1],[1,1,1],14,1);

A_f = sparse([3,6,7],ones(3,1),[-1,1,1],7,1);

A_l = sparse(3,1,1,7,1);

A_p = sparse([1,2,3,3,4,4,5,5,6,7],[3,6,8,11,1,9,4,12,7,10],...

-ones(10,1),7,12);

A = [A_f,A_l,A_p];

[x,y,s,info] = powersolver(A,b,c,K);

The first line defines the power cone exponents that correspond to the four power
cones that are present in the conic formulation (A.7). The second line defines the
Matlab structure that determines the cone K∗. The following 7 lines define the
data Ā,b and c̄ in sparse form, where b is the objective vector of (A.7), c̄ contains
three ones (one corresponding to cf and two corresponding to cα). Finally, Ā
consists of three blocks: Af , Al and Aα, where Aα in turn consists of four sparse
7× 3-blocks Aα,1, Aα,2, Aα,3, Aα,4
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A.5.2 Indirect call using Yalmip

As we have mentioned above, our solver is partially supported by Yalmip, a Mat-
lab interface for solving optimization problems with links to an extensive list of
nonlinear solvers. This link to Yalmip significantly simplifies the modelling pro-
cess.

Using the results from Section 4.5.3, we see that the conic reformulation of
(A.7) using p-cones is

min
x,t,v

dTx+ t

s.t. (vi, 1, xi) ∈ Kαi , αi =
p0

pi
, i = 1, 2,

(v, t) ∈ Kp0 ,
t ≤ 1.

(A.8)

The Matlab code for solving (A.8) is

x = sdpvar(n,1); t = sdpvar;

v = sdpvar(n,1);

C = [powercone(x(1),v(1),1,p(end)/p(1))];

C = C + [powercone(x(2),v(2),1,p(end)/p(2))];

C = C + [p_cone(v,t,p(end))];

C = C + [t<=1];

h = d’*x +t;

options = sdpsettings(’solver’,’powersolver’,’savesolveroutput’,1);

output = solvesdp(C,h,options);

We see that the above code snippets are very close to the actual mathematical
formulation (A.8). Lines 1 and 2 are introducing the original variables x and t as
well as the artificial variables v as SDPVAR objects. The following four lines define
the four constraints (two power cone constraints, one p-cone constraint and one
linear constraint), the 7th line defines the objective and the last two lines define
the options and call of the solver.
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