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Francois.Glineur@fpms.ac.be

March 8th, 2002

mailto:Francois.Glineur@fpms.ac.be


François Glineur, Advances in Structured Convex Optimization - 2 - •First •Prev •Next •Last •Full Screen •Quit

Motivation

Operations research

Model real-life situations to help take the best decisions

Decision ↔ vector of variables
Best ↔ objective function

Constraints ↔ feasible set

⇒ Optimization

General formulation

min
x∈Rn

f (x) s.t. x ∈ D ⊆ Rn

Choice of parameters, optimal design, scheduling ...
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Generality

Very general formulation (too general ?)
(continuous/discrete, linear or not, smooth or not)
⇒ ability to model a very large number of problems

Applicability

To solve problems in practice, algorithms are needed
⇒ what is a good algorithm ?

� Solves (approximately) the problem

� Until mid 20th century: in finite time

� Now (computers): in bounded time

(depending on size) → computational complexity
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Two approaches

Bad news: solving all problems efficiently is impossible!

Simple problem: min f (x1, x2, . . . , x10)
⇒ 1020 operations to be solved with 1% accuracy !

Reaction: two distinct orientations

� General nonlinear optimization
Applicable to all problems but no efficiency guarantee

� Linear, quadratic, semidefinite, . . . optimization
Restrict set of problems to get efficiency guarantee

Tradeoff generality ↔ efficiency (algorithmic complexity)
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Restrict to which class of problems ?

Linear optimization :
+ specialized, very fast algorithms
− too restricted in practice

→ we focus on Convex optimization

� Convex objective and convex feasible set

� Many problems are convex or can be convexified

� Efficient algorithms (see later)

� Powerful duality theory (but weaker than LO)

� But ... establishing convexity a priori is difficult

→ work with specific classes of convex constraints:
Structured convex optimization (convexity by design)
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Overview of this talk

Convex Optimization

� Conic optimization and duality

An Application to Classification

� Pattern separation using ellipsoids

Solving Structured Convex Problems

� Interior-point methods

� Self-concordant barriers

Separable Convex Optimization

� Conic formulation

� Duality and self-concordant barriers
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Convex optimization

Let f0 : Rn 7→ R be a convex function, C ⊆ Rn be a
convex set : optimize a vector x ∈ Rn

inf
x∈Rn

f0(x) s.t. x ∈ C (P)

Properties

� All local optima are global, optimal set is convex

� Lagrange duality → strongly related dual problem

� Objective can be taken linear w.l.o.g. (f0(x) = cTx)

But we choose a special class of feasible sets ...
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Conic formulation

Primal problem

Let C ⊆ Rn be a convex cone

inf
x∈Rn

cTx s.t. Ax = b and x ∈ C

Formulation is equivalent to convex optimization.

Dual problem

Let C ⊆ Rn be a solid, pointed, closed convex cone.
The dual cone C∗ =

{
x∗ ∈ Rn | xTx∗ ≥ 0 for all x ∈ C

}
is also convex, solid, pointed and closed → dual problem:

sup
(y,s)∈Rm+n

bTy s.t. ATy + s = c and s ∈ C∗
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Primal-dual pair

Symmetrical pair of primal-dual problems

p∗ = inf
x∈Rn

cTx s.t. Ax = b and x ∈ C

d∗ = sup
(y,s)∈Rm+n

bTy s.t. ATy + s = c and s ∈ C∗

Optimum values p∗ and d∗ not necessarily attained !

Examples : C = Rn
+ = C∗ ⇒ linear optimization,

C = Sn+ = C∗ ⇒ semidefinite optimization (self-duality)

Advantages over classical formulation

� Remarkable primal-dual symmetry

� Special handling of (easy) linear equality constraints
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Weak duality

For every feasible x and y bTy ≤ cTx → bounds
with equality iff xTs = 0 (orthogonality condition)

∆ = p∗ − d∗ is the duality gap ⇒ always nonnegative

Definition: x strictly feasible ⇔ x feasible and x ∈ int C

Strong duality (with Slater condition → 6= LO)

a. Strictly feasible dual point ⇒ p∗ = d∗ (no gap)

b. If in addition primal is bounded
⇒ primal optimum is attained ⇔ p∗ = min cTx

(dualized result obviously holds)
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Overview of this talk

Convex Optimization

� Conic optimization and duality

An Application to Classification

� Pattern separation using ellipsoids

Solving Structured Convex Problems

� Interior-point methods

� Self-concordant barriers

Separable Convex Optimization

� Conic formulation

� Duality and self-concordant barriers
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Pattern separation

Problem definition

Let us consider objects defined by patterns
Object ≡ Pattern ≡ Vector of n attributes

Assume it is possible to group these objects into c classes

Objective

Find a partition of Rn into c disjoint components
such that each component corresponds to one class

Utility: classification

⇒ identify to which class an unknown pattern belongs
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Classification

Consider

� Some well-known objects grouped into classes

� Some unknown objects

Two-step procedure

a. Separate the patterns of well-known objects
≡ learning phase

b. Use that partition to classify the unknown objects
≡ generalization phase

Examples

Medical diagnosis, species identification, credit approval
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Our technique

Consider two classes (without loss of generality)

Main idea

Use ellipsoids to separate the patterns [Glineur 98]

Ellipsoid

An ellipsoid E ⊆ Rn ≡ a center c ∈ Rn and a positive
semidefinite matrix E ∈ Sn+

E = {x ∈ Rn | (x− c)TE(x− c) ≤ 1}

But which ellipsoid performs the best separation ?
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Using ellipsoids to perform separation
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Separation ratio

We want the best possible separation
⇒ define and maximize the separation ratio

Definition

Pair of homothetic ellipsoids sharing the same center
Separation ratio ρ ≡ ratio of sizes

Mathematical formulation

max ρ s.t.

 (ai − c)TE(ai − c) ≤ 1 ∀i
(bj − c)TE(bj − c) ≥ ρ2 ∀j
E ∈ Sn+
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Separation ratio equal to ρ = 1.5
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Optimal separation ratio (ρ = 1.8)
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Analysis

This problem is not convex but can be convexified
(homogenizing the description of the ellipsoid)

⇒ we obtain a semidefinite optimization problem
≡ conic optimization with C = Sn+

A general semidefinite optimization problem

p∗ = inf
X∈Sn

C •X s.t. AX = b and X ∈ Sn+
d∗ = sup

(y,S)∈Rm×Sn
bTy s.t. ATy + S = C and S ∈ Sn+

⇒ efficiently solvable in practice with interior-point method
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Numerical experiments

� Implementation using MATLAB

� Test on sets from the Repository of Machine Learn-
ing Databases and Domain Theories maintained by
the University of California at Irvine (widely used)

� Cross-validation
divide data set into learning and validation set

a. Compute best separating ellipsoid on learning set

b. Evaluate accuracy of separating ellipsoid
on validation set (test generalization capability)
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Data sets

Three representative sets

a. Wisconsin Breast Cancer.

Predict the benign or malignant nature of a breast
tumour (683 patterns, 9 characteristics)

b. Boston Housing.

Predict whether a housing value is above or below the
median (596 patterns, 12 characteristics)

c. Pima Indians Diabetes.

Predict whether a patient is showing signs of diabetes
(768 patterns, 8 characteristics)
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Results: error rates

Best ellipsoid LAD Best other
Training % 20 % 50 % 50 % Variable (% tr.)

Cancer 5.1 % 4.2 % 3.1 % 3.8 % (80 %)
Housing 15.8 % 12.4 % 16.0 % 16.8 % (80 %)
Diabetes 28.5 % 28.9 % 28.1 % 24.1 % (75 %)

� Competitive error rates ⇒ reliable generalization

� Best results on the Housing problem (even 20 %)

� 50 % not always better than 20 % (⇒ overlearning)

� Results with small learning set already acceptable
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Interior-point methods

Principle

Approximate a constrained problem by

a family of unconstrained problems

Use a barrier function F to replace the inclusion x ∈ C
� F is smooth

� F is strictly convex on intC

� F (x) → +∞ when x→ ∂C

→ C = cl domF = cl {x ∈ Rn | F (x) < +∞}
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Central path

Let µ ∈ R++ be a parameter and consider

inf
x∈Rn

cTx

µ
+ F (x) (Pµ)

x∗µ → x∗ when µ↘ 0

where

� x∗µ is the (unique) solution of (Pµ) (→ central path)
� x∗ is a solution of the original problem (P)
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Ingredients

� A method for unconstrained optimization

� A barrier function

Interior-point methods rely on

� Newton’s method to compute x∗µ
� When C is defined with convex constraints fi(x) ≤ 0,

one can introduce the logarithmic barrier function

F (x) = −
∑n

i=1 log(−fi(x))

Question: What is a good barrier, i.e. a barrier for
which Newton’s method is efficient ?

Answer: A self-concordant barrier
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Self-concordant barriers

Definition [Nesterov & Nemirovski, 1988]

F : intC 7→ R is called (κ, ν)-self-concordant on C iff

� F is convex

� F is three times differentiable

� F (x) → +∞ when x→ ∂C

� the following two conditions hold

∇3F (x)[h, h, h] ≤ 2κ
(
∇2F (x)[h, h]

)3
2

∇F (x)T(∇2F (x))−1∇F (x) ≤ ν

for all x ∈ intC and h ∈ Rn
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Complexity result

Summary

Self-concordant barrier ⇒ polynomial number of
iterations to solve (P) within a given accuracy

Short-step method: follow the central path

� Measure distance to the central path with δ(x, µ)

� Choose a starting iterate with a small δ(x0, µ0) < τ

� While accuracy is not attained

a. Decrease µ geometrically (δ increases above τ )

b. Take a Newton step to minimize barrier
(δ decreases below τ )
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Geometric interpretation

Two self-concordancy conditions: each has its role

� Second condition bounds the size of the Newton step
⇒ controls the increase of the distance to the central
path when µ is updated

� First condition bounds the variation of the Hessian
⇒ guarantees that the Newton step restores the ini-
tial distance to the central path

Complexity result

O
(
κ
√
ν log

1

ε

)
iterations lead a solution with ε accuracy on the objective
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Optimal choice of parameters [Glineur 00]

Two constants define a short-step algorithm

� Maximum distance τ to the central path

� Factor of decrease of barrier parameter µ

Optimizing these parameters leads to

⌈
(8.68κ

√
ν − 0.5) log

1.29µ0κ
√
ν

ε

⌉
iterations guarantee a solution with ε accuracy
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A useful lemma

Proving self-concordancy not always an easy task
⇒ improved version of lemma by [Den Hertog et al.]

Auxiliary functions

Define two auxiliary functions r1 and r2 : R+ 7→ R+
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Lemma’s statement [Glineur 00]

Let F : Rn 7→ R be a convex function on C ⊆ Rn
++.

If there is a constant γ ∈ R+ such that

∇3F (x)[h, h, h] ≤ 3γ∇2F (x)[h, h]

√√√√ n∑
i=1

h2
i

x2
i

then the following barrier functions

F1 : Rn 7→ R : x 7→ F (x)−
n∑
i=1

log xi

F2 : Rn×R 7→ R : (x, u) 7→ − log(u−F (x))−
n∑
i=1

log xi

satisfy the first self-concordancy condition

(respectively) with κ1 = r1(γ) and κ2 = r2(γ)
on the sets domF and epiF = {(x, u) | F (x) ≤ u}.
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Application: extended entropy optimization

inf cTx +

n∑
i=1

gi(xi) s.t. Ax = b and x ≥ 0

with scalar functions gi : R 7→ R such that

|g′′′i (x)| ≤ κi
g′′i (x)

x
∀x ≥ 0

(which implies convexity)

Special case: classical entropy optimization
when gi(x) = x log x ⇒ κi = 1
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Application of the Lemma

Use Lemma with F (xi) = gi(xi) to prove that

− log
(
ti − gi(xi)

)
− log(xi) is

(
r2(
κi
3

), 2
)
-SC

Total complexity of EEO is [Glineur 00]

O
(√√√√2

n∑
i=1

r2(
κi
3

)2
)

iterations

or

O(
√

2n) iterations for entropy optimization

Possible application: polynomial gi’s
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Specializing interior-point methods

Consider class of cones that are [Nesterov & Todd 97]

self-dual and homogeneous

� The nonnegative orthant Rn
+ (⇒ LO)

� The second-order cone Ln
+ (⇒ QO and SOCO)

Ln
+ = {(r, x) ∈ R × Rn | r ≥ ‖x‖}

� The cone of positive semidefinite matrices Sn+ (⇒ SDO)

Applications

� Ln
+ → truss topology, limit analysis, etc.

� Sn+ → control, combinatorial optimization, etc.
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Modelling

� Linear, quadratic and semidefinite optimization

� Nonlinear (convex) objectives such as x
2

y , ‖x‖, λmax(E)

� Constraints such as xy ≥ 1, E ∈ Sn+, λmax(E) ≤ 1

� Handle free variables in a very natural way (using Ln
+)

� But only convex programs

Cones Rn
+, Ln

+ and Sn+ allow the design of very efficient
primal-dual algorithms (that also work well in practice)

→ What about other classes of convex problems ?
(in particular with non-symmetric duality)
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� Self-concordant barriers

Separable Convex Optimization

� Conic formulation

� Duality and self-concordant barriers
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Separable convex optimization

Definition

Set of n scalar closed proper convex functions fi : R 7→ R
R = {1, . . . , r} and a partition {Ik}k∈R of {1, . . . , n}

sup bTy s.t.
∑
i∈Ik

fi(ci − aTi y) ≤ dk − gTk y ∀k ∈ R

� Linear objective without loss of generality

� Linear, quadratic, geometric, entropy, lp-norm opt.

� Mix different types of constraints

Goal: study duality and algorithms
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Examples - primal separable problems

� Geometric optimization (after convexification)

sup bTy s.t.
∑
i∈Ik

ea
T
i y−ci ≤ 1 ∀k ∈ R

using fi : x 7→ e−x .

� lp-norm optimization

sup bTy s.t.
∑
i∈Ik

1

pi

∣∣ci − aTi y
∣∣pi ≤ dk−gTk y ∀k ∈ R

using fi : x 7→ 1
pi
|x|pi
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Strategy: use conic formulation

The separable cone [Glineur 00]

Kf = cl
{

(x, θ, κ) ∈ Rn × R++ × R | θ
n∑
i=1

fi(
xi
θ

) ≤ κ
}

� Kf is a closed convex cone and Kf ⊆ Rn × R × R+

� Dual cone (Kf)∗ is computable and very symmetric

cl
{

(x∗, θ∗, κ∗) ∈ Rn×R×R++ | κ∗
n∑
i=1

f ∗i (−
x∗i
κ∗

) ≤ θ∗
}

using the conjugate functions

f ∗i : R 7→ R : x∗ 7→ sup
x∈Rn

{xx∗ − fi(x)}

(also closed, proper and convex)
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Formulation with Kf cone

Primal

sup bTy s.t.
∑
i∈Ik

fi(ci − aTi y) ≤ dk − gTk y ∀k ∈ R

Introducing variables x∗i = ci − aTi y and z∗k = dk − gTk y

sup bTy s.t. x∗ = c−ATy, z∗ = d−GTy,
∑
i∈Ik

fi(x
∗
i ) ≤ z∗k

mAT

GT

0

 y+

x∗z∗
v∗

 =

cd
e

 , (x∗Ik, v
∗
k, z

∗
k) ∈ K

fIk ∀k ∈ R

(e is the all-one vector and vi’s are fictitious variables)



François Glineur, Advances in Structured Convex Optimization - 42 - •First •Prev •Next •Last •Full Screen •Quit

⇒ dual problem based on data (Ã, b̃, c̃) and cone C∗

Ã =
(
A G 0

)
, b̃ = b, c̃ =

cd
e

 , C∗ = KfI1×· · ·×KfIr .

⇒ we can mechanically derive the dual !

inf

cd
e

T xz
v


s.t.

(
A G 0

)xz
v

 = b and (xIk, vk, zk) ∈ (KfIk)∗



François Glineur, Advances in Structured Convex Optimization - 43 - •First •Prev •Next •Last •Full Screen •Quit

m
inf cTx + dTz + eTv

s.t. Ax +Gz = b, z ≥ 0 and vk ≥ zk
∑
i∈Ik

f ∗i (−
xi
zk

)

m
Dual

inf cTx + dTz +
∑
k∈R

zk
∑
i∈Ik

f ∗i (−
xi
zk

)

s.t. Ax +Gz = b and z ≥ 0

(taking the limit if necessary when zk = 0)
⇒ find e.g. the dual quadratic, geometric and lp-norm
optimization problems in a completely seamless way
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Examples - dual separable problems

� Geometric optimization, using f ∗i : x 7→ x−x log(−x)

inf cTx+
∑
k∈R

∑
i∈Ik
xi>0

xi log
xi∑
i∈Ik xi

s.t. Ax = b , x ≥ 0

� lp-norm optimization, f ∗i (x) = 1
qi
|x|qi ( 1

pi
+ 1

qi
= 1)

inf ψ(x, z) = cTx + dTz +

r∑
k=1

zk
∑
i∈Ik

1

qi

∣∣∣∣xizk
∣∣∣∣qi

s.t. Ax +Gz = η and z ≥ 0

→ standard dual problems found in the literature
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Duality in separable optimization

Weak duality

If y is feasible for the primal and (x, z) is feasible for the
dual, we have

bTy ≤ cTx + dTz +
∑
k∈R

zk
∑
i∈Ik

f ∗i (−
xi
zk

) .

Proof. Use weak duality theorem on conic primal-dual
pair and extend objective values to the separable opti-
mization problems.

Strong duality

If the primal and the dual are feasible, their optimum
objective values are equal (but not necessarily attained).
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Strong duality (cont.)

This theorem guarantees a zero duality gap

without any Slater condition

This strong duality property is not valid for all convex
problems but depends on the specific scalar structure of
separable optimization.

Proof

∃ strictly feasible point for the dual conic program

⇔ vk > zk
∑
i∈Ik

f ∗i (−
xi
zk

) and zk > 0

⇒ easily prove strong duality properties of e.g. quadratic,
geometric and lp-norm optimization problems
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Self-concordant barriers for separable optimization

Given a self-concordant barrier Fi with parameter νi
for each two-dimensional epigraph epi fi, 1 ≤ i ≤ n
There exists a self-concordant barrier F for Kf with

ν = O

(
n∑
i=1

νi

)
⇒ separable convex problems can be solved in

O

√√√√ n∑
i=1

νi log
1

ε

 iterations

⇒ polynomial-time if Fi’s are polynomial-time computable
(unified proof of polynomiality) [Glineur 00]
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Summary and conclusions

Structured Convex Optimization

� Models a very large class of problems

� Powerful duality theory

� Efficient interior-point methods

� Symmetric conic formulation

Interior-point methods

� Self-concordancy theory

� Optimal complexity of short-step method

� Improvement of useful Lemma
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Application to Classification

� Pattern separation using SDO and ellipsoids

Separable Convex Optimization

� Generalizes quadratic optimization, geometric opti-
mization, lp-norm optimization, etc.

� Using a conic formulation ≡ unified framework to

a. Formulate the dual problem,

b. Prove weak/strong duality,

c. Find self-concordant barriers

→ polynomial algorithms.
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Research directions

Modelling

� Investigate problems that can be modelled as

convex separable optimization problems

� Networks (modelled as graphs):

objective and constraints naturally separable

(scalar quantities defined at arcs and nodes)

Solving Separable Convex Problems

� Develop symmetric primal-dual algorithms

� Implementation → solve large-scale problems
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Thank you for your attention


