Representing and aggregating preferences using a stochastic interpretation

François Glineur

UCL/CORE & INMA, Tractebel Energy Networks chair glineur@core.ucl.ac.be

CORE Math. Prog. Seminars

October 22, 2002

François Glineur, Stochastic representation and aggregation of preferences - 1 - First • Prev • Next • Last • Full Screen • Quit

Outline

Introduction

♦ Markov chains♦ Preference relations

Stochastic method

- \diamond Single preference relation
- ♦ Going multicriteria
- ♦ Introducing incomparability

Illustrations

♦ Some preference relations♦ Factory location

Conclusions

Markov chains

Definitions

 $\mathbf{E} = \text{set of } n \text{ states} = \{E_i\} \\ \mathbf{X} = \text{set of random variables } \{X_t\} \text{ such that } X_t \in \mathbf{E} \\ (t \text{ is a discrete time index}) \end{cases}$

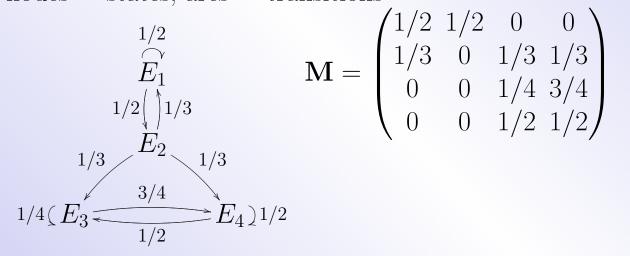
X is a finite discrete-time Markov chain iff
◇ X_t depends only on X_{t-1} (i.e. Markovian, memoryless process)
◇ This dependence is time-invariant (i.e. homogeneous process)

Matrix representation

X completely defined by matrix $\mathbf{M} = \{p_{i,j}\}$ where

$$p_{i,j} = \mathbb{P}(X_t = E_j \mid X_{t-1} = E_i)$$

Representation as a valued directed graph: nodes \equiv states, arcs \equiv transitions



Properties

- $\diamond \mathbf{M}$ is a stochastic matrix (row sum equal to 1)
- \diamond Given an initial probability distribution $a_0 (\rightarrow X_0)$
 - a. Recursively computable a_i (distribution of X_i) $\forall i$
 - b. Sequence $\{a_i\}$ tends to a well-defined limit aindependently of initial distribution a_0 (under some regularity assumptions)
 - c. Limit *a*, called stationary distribution, is efficiently computable (left eigenvector or linear system)

In the example, $a = (0 \ 0 \ 2/5 \ 3/5)$

Preference relations

Definitions

 $\mathbf{A} = \text{set of } n \text{ alternatives} = \{A_i\}$ $\mathcal{R} = \text{binary relation on } \mathbf{A} \ (\subseteq \mathbf{A} \times \mathbf{A})$ $\text{Let } a, b, c \in \mathbf{A}. \text{ Relation } \mathcal{R} \text{ is}$

 \diamond reflexive if $a \mathcal{R} a$

 \diamond complete if $a \mathcal{R} b$ or $b \mathcal{R} a$

 $\diamond \text{ symmetric if } a \ \mathcal{R} \ b \Rightarrow b \ \mathcal{R} \ a$

 \diamond asymmetric if $a \mathcal{R} b \Rightarrow b \neg \mathcal{R} a$

 \diamond transitive if $a \mathcal{R} b, b \mathcal{R} c \Rightarrow a \mathcal{R} c$

Interpretation

Relation \mathcal{R} is understood as \leq , meaning

 $a \mathcal{R} b \Leftrightarrow a \text{ is not strictly preferred to } b$

 $\diamond \mathcal{I} \equiv \text{indifference part of } \mathcal{R}, \text{ defined by}$ $a \mathcal{I} b \Leftrightarrow a \mathcal{R} b \text{ and } b \mathcal{R} a$

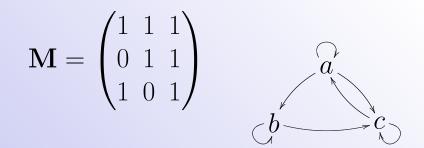
 $\diamond S \equiv \text{strict preference part of } \mathcal{R}, \text{ defined by}$ $a \ S \ b \Leftrightarrow a \ \mathcal{R} \ b \text{ and } b \ \neg \mathcal{R} \ a$

 $\diamond \ \mathcal{R} = \mathcal{I} \cup \mathcal{S}$

 $\diamond \, \mathcal{I}$ is symmetric and reflexive, \mathcal{S} is asymmetric

Representations and examples

- \diamond Matrix representation $\{r_{i,j}\}$ with $r_{i,j}$ equal to 1 if $A_i \mathcal{R} A_j, r_{i,j}$ equal to 0 otherwise
- ♦ Representation as a directed graph: nodes ≡ alternatives, arcs ≡ relation \mathcal{R}
- A reflexive and complete example: $\mathbf{A} = \{a, b, c\}$ and $\mathcal{R} = \{(a, c), (c, a), (a, b), (b, c), (a, a), (b, b), (c, c)\}$



Some specific preference relations

Let \mathcal{R} be a complete and reflexive relation

- \diamond If ${\mathcal S}$ and ${\mathcal I}$ are both transitive,
 - \mathcal{R} is a complete preorder (weak order).
 - It is possible to assign a number v_i to each alternative such that $A_i \mathcal{R} A_j \Leftrightarrow v_i \leq v_j$
- ◇ If S is transitive et $\mathcal{I} = \{(a, a)\} \forall a \in \mathcal{R}, \mathcal{R}$ is a total order.

It is possible to assign a distinct number v_i to each alternative such that $A_i \mathcal{R} A_j \Leftrightarrow v_i \leq v_j$

Some specific preference relations (cont.)

- ♦ If it is possible to assign a real interval $U_i = [l_i \ r_i]$ to each alternative A_i such that $A_i \ \mathcal{I} \ A_j \Leftrightarrow U_i \cap U_j \neq \emptyset \text{ and } A_i \ \mathcal{S} \ A_j \Leftrightarrow r_i < l_j,$ $\mathcal{R} \text{ is a (total) interval order.}$
- ♦ If it is possible to assign a real interval $U_i = [l_i \ r_i]$ to each alternative such that

 $A_i \mathcal{I} A_j \Leftrightarrow U_i \cap U_j \neq \emptyset, A_i \mathcal{S} A_j \Leftrightarrow r_i < l_j$ and **no** interval is *strictly included* in another one, \mathcal{R} is a (total) semiorder.

In both cases, \mathcal{S} is transitive but \mathcal{I} isn't.

Some preference relations

Examples

$$\diamond \text{ Total order} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} -a - b - c \rightarrow$$

$$\diamond \text{ Total preorder} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} -a - b, c \longrightarrow$$

François Glineur, Stochastic representation and aggregation of preferences - 11 - • First • Prev • Next • Last • Full Screen • Quit

Examples (cont.)

$$\Rightarrow \text{Interval order} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \quad \cdot \left\{ \begin{bmatrix} a \\ \cdot \end{bmatrix}, \begin{bmatrix} b \\ \cdot \end{bmatrix}, \begin{bmatrix} c \\ \cdot \end{bmatrix} \right\} \rightarrow d$$
$$\Rightarrow \text{Semiorder} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \quad - \begin{bmatrix} a \\ \cdot \end{bmatrix}, \begin{bmatrix} b \\ \cdot \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \rightarrow d$$

François Glineur, Stochastic representation and aggregation of preferences - 12 - • First • Prev • Next • Last • Full Screen • Quit

Properties of semiorders

Consider a preference relation \mathcal{R} without any equivalent alternatives

(a and b are equivalent iff $\forall x \in \mathbf{A}$ we have $a \mathcal{R} x \Leftrightarrow b \mathcal{R} x$ and $x \mathcal{R} a \Leftrightarrow x \mathcal{R} b$)

- $\diamond \exists$ a unique total order underlying a semiorder \mathcal{R} .
- \diamond It is induced by the numbers $\{l_i\}$ (or $\{r_i\}$).
- \diamond Moreover, sorting rows and columns of the matrix representation of \mathcal{R} in that order gives a step-type matrix

Properties of interval orders

 \diamond A step-type matrix:

/1 1 1 1 1 1 1

 $\diamond \exists$ two total orders underlying an interval order \mathcal{R} .

 \diamond They are induced by the numbers $\{l_i\}$ and $\{r_i\}$.

 \diamond Moreover, sorting rows (resp. columns) of the matrix representation of \mathcal{R} in the first (resp. second) order also gives a step-type matrix.

Stochastic method

Single preference relation

Let \mathcal{R} be a complete and reflexive binary preference relation. We proceed as follows :

a. Build a Markov chain:

Associate to each alternative A_i a state E_i

b. Choose the transition probabilities, requiring the following conditions to hold

$$◊ p_{i,j} > 0 when A_i \mathcal{R} A_j
 ◊ p_{i,j} = 0 when A_i \neg \mathcal{R} A_j
 ◊ Matrix { p_{i,j} } is stochastic$$

Single preference relation (cont.)

- a. Build a Markov chain.
- b. Choose the transition probabilities, requiring some intuitive conditions
- c. Compute the stationary distribution and rank the alternatives according to the resulting probabilities

Justification

Intuitively, the process always moves from an alternative to a better or equivalent alternative. It is thus sensible to expect a high probability for the best alternatives in the stationary distribution.

Choice of $\{p_{i,j}\}$

We want the value of $p_{i,j}$ to be independent from other alternatives than A_i and A_j

If
$$A_i \mathcal{R} A_j$$
, let $p_{i,j} = \frac{1}{n}$, otherwise let $p_{i,j} = 0$

However **M** is not stochastic \Rightarrow set $p_{i,i}$ according to

$$p_{i,i} = 1 - \sum_{j \neq i} p_{i,j}$$

With this choice, the Markov process can be described as

a. I am currently in state E_i b. Choose randomly a state E_j (uniformly) c. If $A_i \mathcal{R} A_j$, move to E_j , otherwise stay in E_i

Examples

Stationary distribution is $(\frac{1}{4} \ \frac{1}{4} \ \frac{1}{2})$: c is the best, a and b follow.

$$\mathcal{R} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ gives } M = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 \end{pmatrix} \overset{\frown}{a} \overset{\frown}{b} \overset{\frown}{} \overset{\frown}{c} \overset{\frown}{b} \overset{\frown}{} \overset{\frown}{} \overset{\frown}{}$$

Stationary distribution is $(0 \ 0 \ 1)$: c is the best but we have no information about the other alternatives (no way to "escape" from c)

Better choice of $\{p_{i,j}\}$

Let's add a neutral state E_0 , representing no alternative, such that $p_{0,0} = 0$ and $p_{0,i} = \frac{1}{n}$. Transitions from this state do not favor any alternative.

If $A_i \mathcal{R} A_j$, let $p_{i,j} = \frac{1}{n}$, otherwise let $p_{i,j} = 0$ and choose the $p_{i,0}$ to make the matrix stochastic, i.e.

$$p_{i,0} = 1 - \sum_{j \neq 0} p_{i,j}$$

a. I am currently in state E_i b. Choose randomly a state E_j (uniformly) c. If $A_i \mathcal{R} A_j$ move to E_j , otherwise move to neutral E_0

Examples

 $\begin{aligned} \mathcal{R} &= \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ gives } M = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ gives } M = \begin{pmatrix} \frac{1}{27} & \frac{6}{27} & \frac{9}{27} & \frac{5}{27} \end{pmatrix} : c \text{ is the best, } b \text{ is the worst} \\ \mathcal{R} &= \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ gives } M = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix} \\ \text{Stationary distribution is } (\frac{4}{27} & \frac{6}{27} & \frac{9}{27} & \frac{8}{27}) : c \text{ is the best, } a \text{ is the worst} \end{aligned}$

Property

If \mathcal{R} is a complete preorder, the probabilities from the stationary distribution are ranked according to \mathcal{R}

Going multicriteria

Definitions

 $\mathbf{R} = \text{set of preference relations } \{\mathcal{R}_i\} \text{ where } \mathcal{R}_i \text{ is complete and reflexive.}$ These relations are weighted by $\{w_i\}$ (with $\sum w_i = 1$).

 \mathbf{M}_i = stochastic matrix for each \mathcal{R}_i (computed as above).

Principle

Let

$$\mathbf{M} = \sum_{i} w_i \mathbf{M}_i$$

 \mathbf{M} is also stochastic and describes a Markov chain.

Principle (cont.)

We rank the alternatives according to the probabilities from the resulting stationary distribution (using \mathbf{M}).

Interpretation

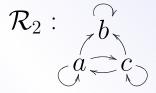
- a. I am currently in state E_i
- b. Choose randomly a relation \mathcal{R}_p (according to the $\{w_i\}$)
- c. Choose randomly a state E_j (uniformly)
- d. If $A_i \mathcal{R}_p A_j$, move to state E_j , otherwise move to neutral state E_0

Examples

$$r = 2, w_1 = \frac{1}{3} \text{ and } w_2 = \frac{2}{3}$$
$$M_1 = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0\\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix} M_2 = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0\\ 0 & \frac{1}{3} & \frac{1}{3} & 0\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0\\ 0 & \frac{1}{3} & \frac{1}{9} & \frac{5}{9} \\ \frac{2}{3} & \frac{2}{9} & \frac{1}{3} & \frac{2}{9} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix}$$

 $\mathcal{R}_1: \overset{\bigcirc}{\overset{}}_{\overset{}$



Stationary distribution is $(\frac{16}{79} \ \frac{24}{79} \ \frac{21}{79} \ \frac{18}{79})$: b is the best, a is the worst

Expressing incomparability

Arrow's theorem

There is no good procedure to aggregate several complete preorders into a single complete preorder (universality, monotonicity, independence, no dictators)

Method

In light of this result, we shouldn't expect too good properties for a preference analysis method producing a complete preorder.

 \Rightarrow a good method should output a weaker relation

Principle

Our previous method made no distinction between $A_i \mathcal{S} A_j$ and $A_i \mathcal{I} A_j$ (indifference and strict preference)

Idea: When A_i and A_j are indifferent, choose something less radical than $p_{i,j} = \frac{1}{n}$

where α is a free parameter varying between 0 and 1.

Interpretation

- a. I am currently in state E_i
- b. Choose randomly a relation \mathcal{R}_p (according to the $\{w_i\}$)
- c. Choose randomly a state E_j
 - $\diamond \text{ If } A_i \ \mathcal{S}_p \ A_j, \text{ move to state } E_j \\ \diamond \text{ If } A_i \ \mathcal{I}_p \ A_j, \text{ move to} \\ \text{ state } E_j \text{ with probability } \alpha$
 - neutral state E_0 with probability (1α)

 \diamond Otherwise, move to state E_0

Interpretation (cont.)

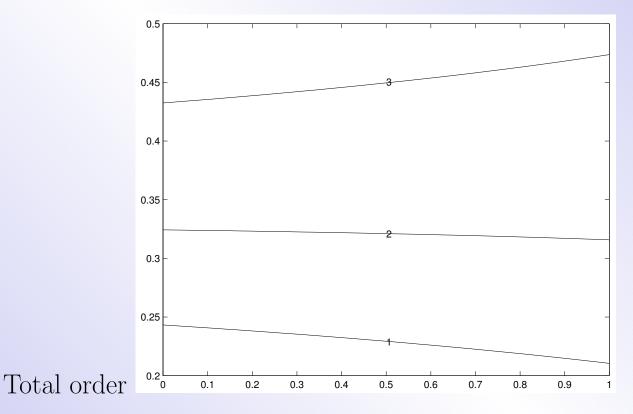
How to exploit this family of complete preorders parameterized by α ?

Use it to deduce a partial preorder :

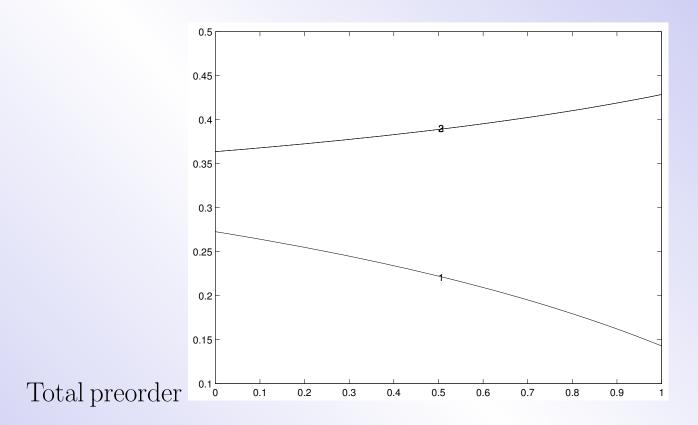
- ♦ If A_i is better than A_j for all values of α, declare $A_i > A_j$
- ♦ If A_i is worse than A_j for all values of α, declare $A_i < A_j$

 \diamond Otherwise, declare that A_i and A_j are not comparable

Examples

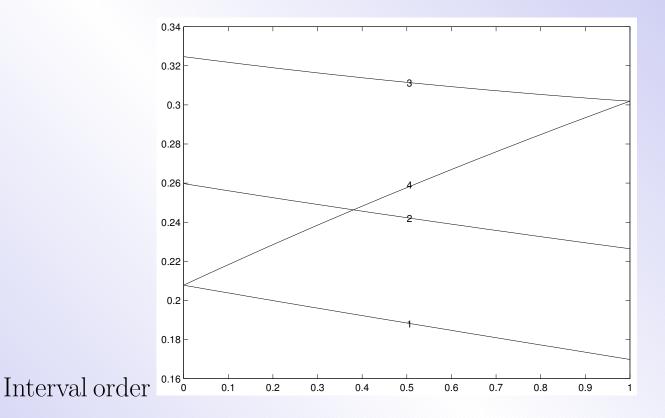


François Glineur, Stochastic representation and aggregation of preferences



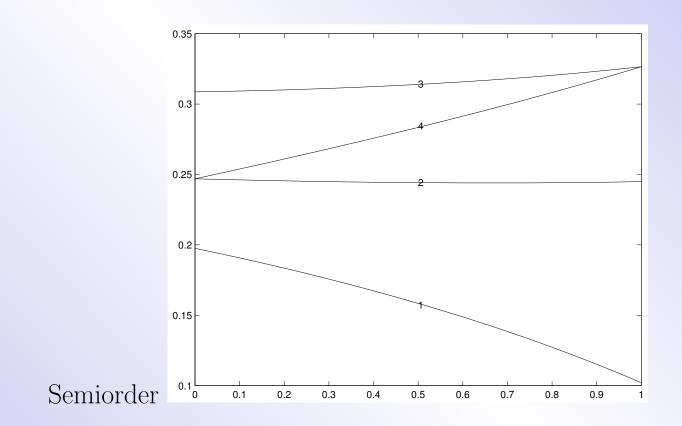
François Glineur, Stochastic representation and aggregation of preferences

- 29 - • First • Prev • Next • Last • Full Screen • Quit



François Glineur, Stochastic representation and aggregation of preferences

- **30** - • *First* • *Prev* • *Next* • *Last* • *Full Screen* • *Quit*



François Glineur, Stochastic representation and aggregation of preferences - 31 - • First • Prev • Ne

- **31** - • *First* • *Prev* • *Next* • *Last* • *Full Screen* • *Quit*

Properties

- \diamond If \mathcal{R} is a total (pre)order, the rankings obtained $\forall \alpha \in$ [0 1] match \mathcal{R}
- ♦ If \mathcal{R} is a semiorder, the rankings obtained $\forall \alpha \in]0 1[$ match the unique total order underlying \mathcal{R}
- \diamond If \mathcal{R} is an interval order, the rankings obtained by letting α tend to 0 and 1 match the two total orders underlying \mathcal{R}
 - \Rightarrow there is at least one case of incomparability

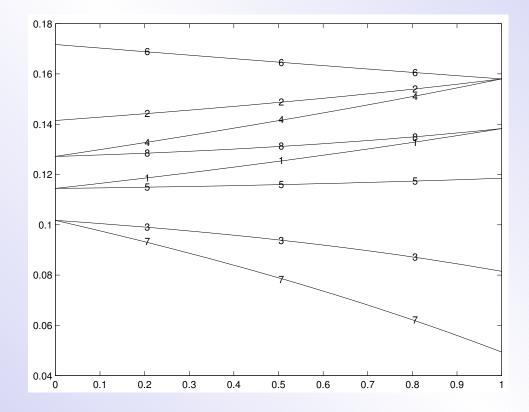
Usage

To select the best alternative, choose among those being ranked first for at least one value of α \Rightarrow these alternatives are incomparable to each other

Incomparability strength

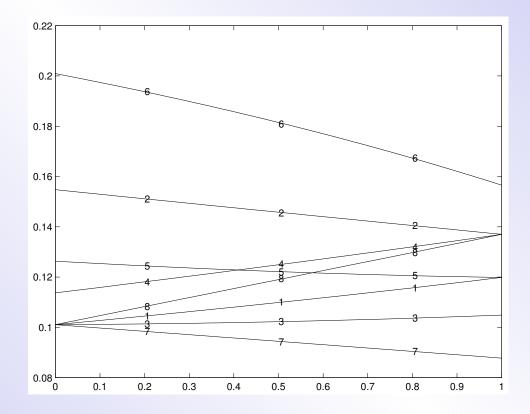
Intuitively, one can suggest that the more a crossing is close to 0 or 1, the less the associated incomparability is strong

Illustrations: Semiorders and interval orders



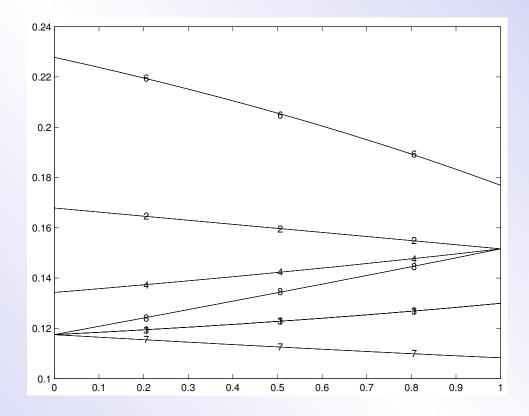
François Glineur, Stochastic representation and aggregation of preferences

- 34 - • First • Prev • Next • Last • Full Screen • Quit



François Glineur, Stochastic representation and aggregation of preferences

- **35** - • First • Prev • Next • Last • Full Screen • Quit

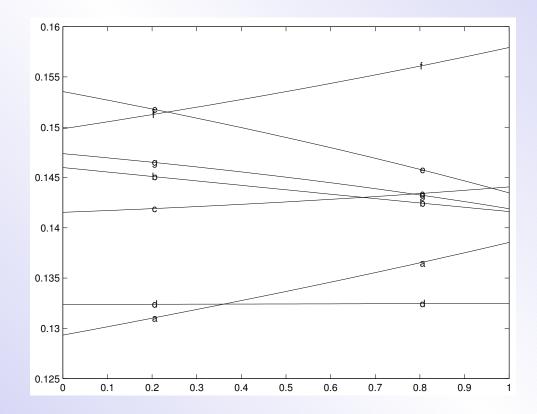


Factory location

Problem description and approach

- ♦ 5 numerical criteria : Price, Transport, Environment, Residential, Competition
- Could transform each criterion into a complete preorder but introducing indifference thresholds adds more information
 - \Rightarrow each criterion produces a semiorder
- \diamond Use our stochastic procedure to aggregate these 5 semiorders

Results



François Glineur, Stochastic representation and aggregation of preferences

- 38 - • First • Prev • Next • Last • Full Screen • Quit

Conclusions

Stochastic method

- ♦ Intuitive principle
- \diamond Graphical results
- \diamond No parameter value to choose
- \diamond Easy to implement

Multicriteria analysis

- \diamond Natural generalization
- \diamond Sensitivity analysis easy to perform
- ♦ Cardinal information allowed

Further research

- \diamond Valued relations
- ♦ Theoretical properties (independence)