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Motivation

Modelling and decision-making

Help to choose the best decision

Decision ↔ vector of variables
Best ↔ objective function

Constraints ↔ feasible domain

 ⇒ Optimization

Use

� Numerous applications in practice

� Resolution methods efficient in practice

� Modelling and solving large-scale problems
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Introduction

Applications

� Planning, management and scheduling

Supply chain, timetables, crew composition, etc.

� Design

Dimensioning, structural optimization, networks

� Economics and finance

Portfolio optimization, computation of equilibrium

� Location analysis and transport

Facility location, circuit boards, vehicle routing

� And lots of others ...
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Two facets of optimization

� Modelling

Translate the problem into mathematical language

(sometimes trickier than you might think)

m

Formulation of an optimization problem

m

� Solving

Develop and implement algorithms that are efficient
in theory and in practice
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Close relationship

� Formulate models that you know how to solve

� Develop methods applicable to real-world problems
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Outline of Part I

Convex optimization : models and algorithms

� Prelude: the case of linear optimization

� Motivation: convex optimization: what and why?

� Duality : from linear to conic optimization

� Algorithms : the interior-point revolution

Slides available on the web :
http://www.core.ucl.ac.be/∼glineur/

http://www.core.ucl.ac.be/~glineur/
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Algorithmic complexity

Difficulty of a problem depends on the efficiency of meth-
ods that can be applied to solve it
⇒ what is a good algorithm ?

� Solves the problem (approximately)

� Until the middle of the 20th century: in finite time
(number of elementary operations)

� Now (computers): in bounded time (depending on the
problem size)

→ algorithmic complexity (worst / average case)

Crucial distinction:
polynomial ↔ exponential complexity
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Linear optimization

A simple problem

Consider the linear problem(with m variables yi)

max

m∑
i=1

biyi such that

m∑
i=1

aijyi ≤ cj ∀1 ≤ j ≤ n

(objective and n linear inequalities), or

max bTy such that ATy ≤ c

(matrix notation with b, y ∈ Rm, c ∈ Rn and A ∈ Rm×n)

All linear problems can be expressed in this format
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Duality for linear optimization

max bTy such that ATy ≤ c

The following problem, based on the same data

min cTx such that Ax = b and x ≥ 0

is closely linked: it is called the dual

� Weak duality: Inequality bTy ≤ cTx holds for any
x, y such that Ax = b, x ≥ 0 and ATy ≤ c

� Strong duality: If x∗ is an optimal solution for the
primal, there exists an optimal solution y∗ for the dual
such that cTx∗ = bTy∗
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Algorithms for linear optimization

For linear optimization with continuous variables:
very efficient algorithms (n ≈ 107)

� Simplex algorithm (Dantzig, 1947)

Exponential complexity but ...

Very efficient in practice

� Ellipsoid method (Khachiyan, 1978)

Polynomial complexity but ...

Poor practical performance

� Interior-point methods (Karmarkar, 1985)

Polynomial complexity and ...

Very efficient in practice (large-scale problems)
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Nonlinear optimization

Motivation

Linear optimization does not permit satisfactory mod-
elling of all situations → let us look again at

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

where X is defined most of the time by

X = {x ∈ Rn | gi(x) ≤ 0 and hj(x) = 0 for i ∈ I, j ∈ J}
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Back to complexity

Discrete sets X can make the problem difficult
(with exponential complexity)
but even continuous problems can be difficult!

Consider a simple unconstrained minimization

min f (x1, x2, . . . , x10)

with smooth f (Lipschitz continuous with L = 2):

One can show that exists some functions where at least
1020 iterations (function evaluations) are needed to find
a solution with accuracy 1% !
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Two distinct approaches

� Tackle all problems without any efficiency guarantee

– Traditional nonlinear optimization

– (Meta)-Heuristic methods

� Limit the scope to some classes of problems and get
in return an efficiency guarantee

– Linear optimization

∗ very fast specialized algorithms

∗ but sometimes too limited in practice

– Convex optimization

Compromise: generality ↔ efficiency
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Convex optimization

Introduction

min f (x) such that x ∈ X

A feasible solution x∗ is a

� global minimum iff f (x∗) ≤ f (x) ∀x ∈ X

� local minimum iff there exists an open neighborhood
V (x∗) such that

f (x∗) ≤ f (x) ∀x ∈ X ∩ V

Global minima are (much) more difficult to find!
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Convexity definitions

� An optimization problem is convex if it deals with
the minimization of a convex function on a convex set

� A set S ⊆ Rn is convex iff

λx + (1− λ)y ∈ S ∀x, y ∈ S, λ ∈ [0 1]

� A function f : S 7→ R is convex iff

f (λx+(1−λ)y) ≤ λf (x)+(1−λ)f (y) ∀x, y, λ ∈ [0 1]

(this imposes that the domain S is convex)

� Equivalently, a function f : S ⊆ Rn 7→ R is convex
iff its epigraph is convex

epi f = {(x, t) ∈ Rn × R | x ∈ S and f (x) ≤ t}
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Examples: convex sets and convex functions

� ∅, Rn, Rn
+, Rn

++

� {x | ‖x− a‖ < r} and {x | ‖x− a‖ ≤ r}
� {x | bTx < β}, {x | bTx ≤ β} and {x | bTx = β}
� In R: intervals (open/closed, possibly infinite)

� x 7→ c, x 7→ bTy + β0, x 7→ ‖x‖ and x 7→ ‖x‖2,
x 7→ xTQx with Q ∈ Rn×n positive semidefinite

� In the case f : R 7→ R, we mention x 7→ ex, x 7→
− log x, x 7→ |x|p with p ≥ 1.

� f is concave iff−f is convex (i.e. reversing inequalities
in the definitions) ; there is no notion of concave set!
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Fundamental properties of convex optimization

When dealing with convex optimization problems

� Every local minimum is global

� The optimal set is convex

� Special cases: linear (continuous) optimization, quadratic
optimization (with positive semidefinite quadratic forms)

� Many other problems are convex (or admit equivalent
convex reformulations)

Main advantages:

� efficient (polynomial) interior-point methods

� Lagrange duality → strongly related dual problem
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Conic optimization

Objective

Generalize linear optimization

max bTy such that ATy ≤ c

min cTx such that Ax = b and x ≥ 0

while trying to keep the nice properties

� duality & efficient algorithms

→ change as little as possible

Idea: generalize the inequalities ≤ and ≥
What are properties of nice inequalities ?
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Generalizing ≥ and ≤

Let K ⊆ Rn. Define

a �K 0 ⇔ a ∈ K

We also have

a �K b ⇔ a− b �K 0 ⇔ a− b ∈ K

as well as

a �K b ⇔ b �K a ⇔ b− a �K 0 ⇔ b− a ∈ K

Let us also impose two sensible properties

a �K 0 ⇒ λa �K 0 ∀λ ≥ 0 (K is a cone)

a �K 0 and b �K 0 ⇒ a + b �K 0

(K is closed under addition)
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Properties of admissible sets K

� K is a convex set!

� In fact, if K is a cone, we have

K is closed under addition ⇔ K is convex

Conic optimization

We can then generalize

max bTy such that ATy ≤ c

to
max bTy such that ATy �K c

⇒ This problem is convex
The standard linear cases corresponds to K = Rn

+
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More requirements for K

� x � 0 and x � 0 ⇒ x = 0

which means K ∩ (−K) = {0} (the cone is pointed)

� We define the strict inequality by a � 0 ⇔ a ∈ int K
(and a � b iff a− b ∈ int K)

Hence we require int K 6= ∅ (the cone is solid)

� Finally, we would like to be able to take limits:

If {xi}i→∞ with xi �K 0 ∀i, then lim
i→∞

xi = x̄ ⇒ x̄ �K 0

which is equivalent to saying that K is closed

Example: second-order (or Lorentz or ice-cream) cone

Ln = {(x0, . . . , xn) ∈ Rn+1 |
√

x2
1 + · · · + x2

n ≤ x0}
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Another example: semidefinite cone K = Sn
+ (symmetric

positive semidefinite matrices)

Back to conic optimization

A convex cone K ⊆ Rn that is solid, pointed and closed
will be called a proper cone
In the following, we will always consider proper cones
We obtain

max
y∈Rm

bTy such that ATy �K c

or, equivalently,

max
y∈Rm

bTy such that c− ATy ∈ K

with problem data b ∈ Rm, c ∈ Rn and A ∈ Rm×n
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Combining several cones

Considering several conic constraints

AT
1 y �K1 c1 and AT

2 y �K2 c2

which are equivalent to

c1 − AT
1 y ∈ K1 and c2 − AT

2 y ∈ K2

one introduces the product cone K = K1 ×K2 to write

(c1 − AT
1 y, c2 − AT

2 y) ∈ K1 ×K2

⇔
(

c1

c2

)
−

(
AT

1

AT
2

)
∈ K1×K2 ⇔

(
c1

c2

)
−

(
AT

1

AT
2

)
�K1×K2 0

If K1 and K2 are proper, K1 ×K2 is also proper
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Equivalence with convex optimization

Conic optimization is clearly a special case of convex op-
timization: what about the reverse statement ?

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

� The objective of a convex problem can be assumed
w.l.o.g. to be linear w.l.o.g.: f (x) = cTx

� The feasible region of a convex problem can be as-
sumed w.l.o.g. to be in the conic standard format:

X = {x ∈ K and Ax = b}

⇒ conic optimization equivalent to convex optimization
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A linear objective ?

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

m
min

(x,t)∈Rn×R
t such that x ∈ X and (x, t) ∈ epi f

m
min

(x,t)∈Rn×R
t such that x ∈ X and f (x) ≤ t

⇒ equivalent problem with linear objective
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Conic constraints ?

KX = cl{(x, u) ∈ Rn × R++ |
x

u
∈ X}

is called the (closed) conic hull of X
We have that KX is a closed convex cone and

x ∈ X ⇔ (x, u) ∈ KX and u = 1

min
x∈Rn

cTx such that x ∈ X ⊆ Rn

m
min

(x,u)∈Rn×R
cTx such that (x, u) �KX

0 and u = 1

⇒ equivalent problem with a conic constraint
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Duality properties

Since we generalized

max bTy such that ATy ≤ c

to
max bTy such that ATy �K c

it is tempting to generalize

min cTx such that Ax = b and x ≥ 0

to
min cTx such that Ax = b and x �K 0

But this is not the right primal-dual pair !
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The dual cone

K∗ = {z ∈ Rn such that xTz ≥ 0 ∀x ∈ K}
� For any x ∈ K and z ∈ K∗, we have zTx ≥ 0

� K∗ is a convex cone, called the dual cone of K

� K∗ is always closed, and if K is closed, (K∗)∗ = K

� K is pointed (resp. solid)⇒ K∗ is solid (resp. pointed)

� Cartesian products: (K1 ×K2)
∗ = K∗

1 ×K∗
2

� (Rn
+)∗ = Rn

+, (Ln)∗ = Ln, (Sn
+)∗ = Sn

+ :
these cones are self-dual

� But there exists (many) cones that are not self-dual



François Glineur, Duality and algorithms in convex optimization - 29 - •First •Prev •Next •Last •Full Screen •Quit

Primal-dual pair

We can write the primal conic problem

min cTx such that Ax = b and x �K 0

and the dual conic problem

max bTy such that ATy �K∗ c

(for historical reasons, the min problem is called the pri-
mal ; anyway (K∗)∗ = K∗ holds)

� Very symmetrical formulation

� Computing the dual essentially amounts to finding K∗

� All nonlinearities are confined to the cones K and K∗



François Glineur, Duality and algorithms in convex optimization - 30 - •First •Prev •Next •Last •Full Screen •Quit

Duality properties

� Weak duality: any feasible solution for the primal
(resp. dual) provides an upper (resp. lower) bound
for the dual (resp. primal)

(immediate consequence of the dualizing procedure)

� Inequality bTy ≤ cTx holds for any x, y such that
Ax = b, x �K 0 and ATy �K∗ c (corollary)

� If the primal (resp. dual) is unbounded, the dual (resp.
primal) must be infeasible

(but the converse is not true!)

Completely similar to the situation for linear optimization
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Duality properties (continued)

What about strong duality ?
If y∗ is an optimal solution for the dual, does there exist an
optimal solution x∗ for the primal such that cTx∗ = bTy∗

(in other words: p∗ = d∗) ?

Consider K = L2 with

A =

(
−1 0 −1
0 −1 0

)
, b =

(
0 −1

)T
and c =

(
0 0 0

)T

We can easily check that

� the primal is infeasible

� the dual is bounded and solvable
⇒ strong duality does not hold for conic optimization ...
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Other troublesome situations

Let λ ∈ R+: consider

min λx3−2x4 s.t.

x1 x4 x5

x4 x2 x6

x5 x6 x3

 �S3
+

0,

(
x3 + x4

x2

)
=

(
1
0

)
In this case, p∗ = λ but d∗ = 2: duality gap!

min x1 such that x3 = 1 and

(
x1 x3

x3 x2

)
�S2

+
0

In this case, p∗ = 0 but the problem is unsolvable!

In all cases, one can identify the cause for our troubles:
the affine subspace defined by the linear constraints is
tangent to the cone (it does not intersect its interior)
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Rescuing strong duality

A feasible solution to a conic (primal or dual) problem is
strictly feasible iff it belongs to the interior of the cone
In other words, we must have Ax = b and x �K 0 for
the primal and/or ATy ≺K∗ c for the dual

Strong duality: If the dual problem admits a strictly fea-
sible solution, we have either

� an unbounded dual, in which case d∗ = +∞ = p∗

and the primal is infeasible

� a bounded dual, in which case the primal is solvable
with p∗ = d∗ (hence there exists at least one feasible
primal solution x∗ such that cTx∗ = p∗ = d∗)
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Strong duality (continued)

� If the primal problem admits a strictly feasible solu-
tion, we have either

– an unbounded primal, in which case p∗ = −∞ =
d∗ and the dual is infeasible

– a bounded primal, in which case the dual is solv-
able with d∗ = p∗ (hence there exists at least one
feasible dual solution y∗ such that bTy∗ = d∗ = p∗)

� The first case is a mere consequence of weak duality

� Finally, when both problems admit a strictly feasible
solution, both problems are solvable and we have

cTx∗ = p∗ = d∗ = bTy∗
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Interior-point methods

Back to convex optimization

Let f : Rn 7→ R be a convex function, C ⊆ Rn be a
convex set : optimize a vector x ∈ Rn

inf
x∈Rn

f (x) s.t. x ∈ C (P)

Properties

� All local optima are global, optimal set is convex

� Lagrange duality → strongly related dual problem

� Objective can be taken linear w.l.o.g. (f (x) = cTx)
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Principle

Approximate a constrained problem by

a family of unconstrained problems

Use a barrier function F to replace the inclusion x ∈ C

� F is smooth

� F is strictly convex on int C

� F (x) → +∞ when x → ∂C

→ C = cl dom F = cl {x ∈ Rn | F (x) < +∞}
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Central path

Let µ ∈ R++ be a parameter and consider

inf
x∈Rn

cTx

µ
+ F (x) (Pµ)

x∗µ → x∗ when µ ↘ 0

where

� x∗µ is the (unique) solution of (Pµ) (→ central path)
� x∗ is a solution of the original problem (P)
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Ingredients

� A method for unconstrained optimization

� A barrier function

Interior-point methods rely on

� Newton’s method to compute x∗µ
� When C is defined with convex constraints gi(x) ≤ 0,

one can introduce the logarithmic barrier function

F (x) = −
∑n

i=1 log(−gi(x))

Question: What is a good barrier, i.e. a barrier for
which Newton’s method is efficient ?

Answer: A self-concordant barrier
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Self-concordant barriers

Definition [Nesterov & Nemirovski, 1988]

F : int C 7→ R is called (κ, ν)-self-concordant on C iff

� F is convex

� F is three times differentiable

� F (x) → +∞ when x → ∂C

� the following two conditions hold

∇3F (x)[h, h, h] ≤ 2κ
(
∇2F (x)[h, h]

)3
2

∇F (x)T(∇2F (x))−1∇F (x) ≤ ν

for all x ∈ int C and h ∈ Rn
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A (simple?) example

For linear optimization, C = Rn
+: take F (x) = −

∑n
i=1 log xi

When n = 1, we can choose (κ, ν) = (1, 1)

� ∇F (x) = −1
x and ∇F (x)Th = −h

x

� ∇2F (x) = 1
x2 and ∇2F (x)[h, h] = h2

x2

� ∇3F (x) = −2 1
x3 and ∇3F (x)[h, h, h] = −2h3

x3

When n > 1, we have

� ∇F (x) = (−x−1
i ) and ∇F (x)Th = −

∑
hix

−1
i

� ∇2F (x) = diag(x−2
i ) and ∇2F (x)[h, h] =

∑
h2

ix
−2
i

� ∇3F (x) = diag3(−2x−3
i ),∇3F (x)[h, h, h] = −2

∑
h3

ix
−3
i

and one can show that (κ, ν) = (1, n) is valid
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Barrier calculus

Two elementary results:

� Scaling:

F is a (κ, ν)-s.-c. barrier for C ⊆ Rn and λ ∈ R++

⇒ (λF ) is a ( κ√
λ
, λν)-s.-c. barrier for C

� Sum:

F is a (κ1, ν1)-s.-c. barrier for C1 ⊆ Rn

G is a (κ2, ν2)-s.-c. barrier for C2 ⊆ Rn

⇒ (F + G) is a (max{κ1, κ2}, ν1 + ν2)-s.-c. barrier

for the set C1 ∩ C2 (if nonempty)
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Complexity result

Summary

Self-concordant barrier ⇒ polynomial number of
iterations to solve (P) within a given accuracy

Short-step method: follow the central path

� Measure distance to the central path with δ(x, µ)

� Choose a starting iterate with a small δ(x0, µ0) < τ

� While accuracy is not attained

a. Decrease µ geometrically (δ increases above τ )

b. Take a Newton step to minimize barrier
(δ decreases below τ )
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Geometric interpretation

Two self-concordancy conditions: each has its role

� Second condition bounds the size of the Newton step
⇒ controls the increase of the distance to the central
path when µ is updated

� First condition bounds the variation of the Hessian
⇒ guarantees that the Newton step restores the initial
distance to the central path

Summarized complexity result

O
(

κ
√

ν log
1

ε

)
iterations lead a solution with ε accuracy on the objective
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Complexity result

� Let F be a (κ, ν)-self-concordant barrier for C and
let x0 ∈ int C be a starting point,

a short-step interior-point algorithm can solve prob-
lem (P) up to ε accuracy within

O
(

κ
√

ν log
cTx0 − p∗

ε

)
iterations,

such that at each iteration the self-concordant barrier
and its first and second derivatives have to be evalu-
ated and a linear system has to be solved in Rn

� Complexity invariant w.r.t. to scaling of F

� Universal bound on complexity parameter: κ
√

ν ≥ 1
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Corollary

Assume F , ∇F and ∇2F are polynomially computable
⇒ problem (P) can be solved in polynomial time

Existence

There exists a universal SC barrier with parameters

κ = 1 and ν = O (n)

(but not necessarily efficiently computable)

Examples

� linear optimization: (κ, ν) = (1, n) ⇒ O
(√

n log 1
ε

)
� entropy optimization: κ = 1 and ν = 2n ⇒ O

(√
n log 1

ε

)
(inf cTx +

∑
i xi log xi such that Ax = b and x ≥ 0)
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References for Part I

Convex optimization

� Convex Analysis, Rockafellar,

Princeton University Press, 1980

� Convex optimization, Boyd and Vandenberghe,

Cambridge University Press, 2004 (on the web)

Convex modelling

� Lectures on Modern Convex Optimization, Analysis,
Algorithms, and Engineering Applications, Ben-Tal
and Nemirovski,

MPS/SIAM Series on Optimization, 2001
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Interior-point methods (linear)
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� Theory and Algorithms for Linear Optimization, Roos,
Terlaky, Vial, John Wiley & Sons, 1997

Interior-point methods (convex)

� Interior-point polynomial algorithms in convex pro-
gramming, Nesterov & Nemirovski, SIAM, 1994

� A Mathematical View of Interior-Point Methods in
Convex Optimization, Renegar,

MPS/SIAM Series on Optimization, 2001
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Part II

The case of second-order cone programming

with a single cone
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Outline of Part II

Introduction

¦ Reminder: Convex, conic and second-order cone optimization
¦ Two easy subproblems

Second-order cone feasibility problem

¦ Main ideas: homogenization and minimum-norm solution
¦ Our algorithm: a three-case discussion

Second-order cone optimization problem

¦ Using the feasibility problem as a subproblem
¦ What about the dual problem?

Concluding remarks

¦ Summary, complexity and generalizations
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Introduction

Convex optimization

Let f0 : Rn 7→ R a convex function and C ⊆ Rn a convex set

inf
x∈Rn

f0(x) s.t. x ∈ C

Properties

¦ Local optima ⇒ global, form a convex optimal set

¦ Lagrange duality ⇒ related (asymmetric) dual problem

¦ Efficient interior-point methods (self-concordant barriers)

Conic optimization

Let C ⊆ Rn a solid, pointed, closed convex cone :

inf
x∈Rn

cTx s.t. Ax = b and x ∈ C ⇒ Equivalent setting
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Primal-dual pair

Dual cone is also a solid pointed closed convex cone

C∗ =
{
x∗ ∈ Rn | xTx∗ ≥ 0 for all x ∈ C}

⇒ pair of primal-dual problems

inf
x∈Rn

cTx s.t. Ax = b and x ∈ C

sup
(y,s)∈Rm+n

bTy s.t. ATy + s = c and s ∈ C∗

Several cones: x1 ∈ C1, . . . , xr ∈ Cr ⇔ (x1, . . . , xr) ∈ C1 × · · · × Cr

Advantages over classical formulation

¦ Remarkable primal-dual symmetry

¦ Special handling of (easy) linear equality constraints
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Examples

C = Rn
+ = C∗ ⇒ linear optimization

C = Sn
+ = C∗ ⇒ semidefinite optimization

Both cones are self-dual.

A single Rn
+/Sn

+ cone can be considered w.l.o.g.

Second-order cone optimization

Ln = {(x0, x1, . . . , xn) ∈ R+ × Rn | ‖(x1, . . . , xn)‖ ≤ x0} ⊂ Rn+1

Second-order or Lorentz cone Ln is self-dual

But a set of several constraints xi ∈ Lni , i = 1, . . . , r cannot be
concatenated into a single second-order cone constraint

Goal of this talk: Study the problem with a single second-order cone
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Single-constraint second-order cone problem

inf
x0∈R, x∈Rn

c0x0 + cTx s.t. a0x0 + Ax = b and (x0, x) ∈ Ln

with c0 ∈ R, c ∈ Rn ; a0 ∈ Rm, A ∈ Rm×n and b ∈ Rm

Known results

It is well-known that this problem can be solved analytically

[Alizadeh and Goldfarb 2003]: solve primal-dual optimality conditions

a0x0 + A0x = b and (x0, x) ∈ Ln

aT
0 y + z0 = c0, ATy + z = c and (z0, z) ∈ Ln

(x0, x) ◦ (z0, z) = 0 ( ⇔ c0x0 + cTx = bTy)

where (x0, x) ◦ (z0, z) = (x0y0 + xTy, x0y + y0x)

But only works when strong duality holds !

François Glineur, CORE/UCL Page 6 HHU Düsseldorf Mathematisches Kolloquium



Second-order cone optimization with a single second-order cone'

&

$

%

Analytical solution of optimality conditions

Define Ā = (a0 A), c̄ = (c0, c), Q = Pnull Ā = I − Ā†Ā.

Assuming x0 > 0 and z0 > 0, one obtains after some linear algebra

γ = 1− 2aT
0 (ĀĀT)−1a0

α =
z0

x0
=

√
−γc̄TQc̄ + 2(eTQc̄)2

γbT(ĀĀT)−1b + 2(aT
0 (ĀĀT)−1b)2

δ =
c̄TQc̄ + α2bT(ĀĀT)−1b

eTQc̄ + αaT
0 (ĀĀT)−1b

y = (ĀĀT)−1(Āc̄ + αb− δa0)

(z0, z) = c̄− ĀTy = Qc̄− Ā†(αb− δa0)

(x0, x) = (z0/α,−z/α)

Technical derivation but why is this possible? Special cases?
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Classification of conic convex problems

Feasibility status of conic problem: define L = {x ∈ Rn | Ax = b}
inf

x∈Rn
cTx s.t. Ax = b and x ∈ C ⇔ x ∈ L ∩ C

¦ Feasible iff L ∩ C 6= ∅. Moreover, in this case,

– Strictly feasible (s.f.) if L ∩ int C 6= ∅
– Weakly feasible (w.f.) otherwise

¦ Infeasible iff L ∩ C = ∅. Moreover, in this case,

– Strictly infeasible (s.i.) if dist(L, C) > 0

– Weakly infeasible (w.i.) otherwise, i.e. dist(L, C) = 0
⇔ ∃{xk} | xk ∈ L and limk→∞ dist(xk, C) = 0
(which implies then that {xk} is unbounded)

All these cases already arise when C = L2 !
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Two easy subproblems

Smallest-norm point on a line

Let α, β ∈ Rn and β 6= 0

min
t∈R

φ(t) = ‖α− tβ‖

φ(t)2 = t2 ‖β‖2 − 2tαTβ + ‖α‖2 is easily minimized → t∗ = αTβ
‖β‖2

Minimum distance is φ(t∗)2 = ‖α‖2 − t2∗ ‖β‖2 = ‖α‖2 − (αTβ)2

‖β‖2

Intersecting a ball with an affine subspace

Decide the feasibility of the following convex problem

Find x ∈ Rn s.t. Ax = b and ‖x‖ ≤ 1

with A ∈ Rm×n and b ∈ Rm.

Assume that A has full row rank (⇒ AAT Â 0 and Ax = b is feasible)
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Idea: compute minimum-norm solution x̂ of Ax = b

x̂ = AT(AAT)−1b

(A† = AT(AAT)−1 is the Moore-Penrose generalized inverse of A)

Discuss according to ‖x̂‖2 =
∥∥A†b

∥∥2 = bT(AAT)−1b

¦ ‖x̂‖2 > 1 ⇒ problem is strictly infeasible

¦ ‖x̂‖2 = 1 ⇒ problem is weakly feasible, x̂ is unique solution

¦ ‖x̂‖2 < 1 ⇒ problem is strictly feasible, x̂ is among the solutions

(obviously problem cannot be weakly infeasible)

Forming AAT ∈ Rm×m → O (
m2n

)
operations

Factorizing AAT = LLT, L ∈ Rm×m triangular → O (
m3

)
operations

⇒ Computing xT(AAT)−1y for any x, y ∈ Rm is O (
m2n

)
operations.
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Second-order cone feasibility problem

Our problem

Determine feasibility status of the following problem

Find (x0, x) ∈ R × Rn s.t. a0x0 + Ax = b and (x0, x) ∈ Ln

with a0 ∈ Rm, A ∈ Rm×n and b ∈ Rm. Assume w.l.o.g. that
a0x0 + Ax = b is feasible and (a0 A) full row rank (a0a

T
0 + AAT Â 0)

Main idea

Use the fact that Ln and Bn are strongly related:

(x0, x) ∈ Ln ⇔ (x/x0) ∈ Bn and x0 > 0 or (x0, x) = (0, 0)

→ use homogenization to get rid of x0 variable
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Our procedure: outline

Let t > 0 be a homogenizing variable. Problem

Find (x0, x) ∈ R × Rn s.t. a0x0 + Ax = b and (x0, x) ∈ Ln

becomes equivalent to the problem of finding

(x0, x, t) ∈ R × Rn × R++ s.t. a0x0 + Ax = b t and (x0, x) ∈ Ln

Each point (x0, x) becomes a ray (tx0, tx, t), t > 0, except for (0, 0)

Problem is completely homogeneous → arbitrarily fix x0 = 1

⇒ constraint (x0, x) ∈ Ln becomes equivalent to x ∈ Bn →
Find (x, t) ∈ Rn × R++ s.t. Ax = b t− a0 and x ∈ Bn

which is the second easy problem with a parameter t ∈ R++

Soln (x, t) to this problem → soln (1/t, x/t) ∈ Ln to original problem
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Special case

Do the linear constraints a0x0 + Ax = b imply that x0 is constant?

⇔ ∃y | ATy = 0 (A is rank deficient)

⇒ x0 = yTb/a0 = C for all feasible solutions

Not a true second-order cone problem

¦ C < 0 → problem strictly infeasible

¦ C = 0 → (0, 0) unique potential solution

– b = 0 → problem weakly feasible

– b 6= 0 → problem strictly infeasible

¦ C > 0 problem becomes A(x/x0) = b/x0 − a0 with (x/x0) ∈ Bn

which is easy (look at
∥∥A†(b/x0 − a0)

∥∥ → s.i., w.f. or s.f.)
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Main case

Assume A has full row rank. Problem is equivalent to

Find (x, t) ∈ Rn × R++ s.t. Ax = b t− a0 and x ∈ Bn

This suggests to look at
∥∥A†(b t− a0)

∥∥2 = ‖α− tβ‖2 with

α = A†a0 = AT(AAT)−1a0 and β = A†b = AT(AAT)−1b

(‖α‖2 = aT
0 (AAT)−1a0, ‖β‖2 = bT(AAT)−1b, αTβ = aT

0 (AAT)−1b)

However the possibility x0 = 0 was left out!

In this case, we have (x0, x) = (0, 0) which implies b = 0 and β = 0

We therefore have to distinguish two cases: b = 0 and b 6= 0

and add soln (0, 0) to homogenized solutions (1/t, x/t) when b = 0
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Find (x, t) ∈ Rn × R++ s.t. Ax = b t− a0 and x ∈ Bn

Case A: b = 0

In this case, ‖α− tβ‖2 = ‖α‖ does not depend from t

¦ ‖α‖ > 1 → no solution except (0, 0) → problem w.f.

¦ ‖α‖ = 1 → ray (t, tα), t ∈ R+ is solution → problem w.f.

¦ ‖α‖ < 1 → interior solutions → problem s.f.

Case B: b 6= 0

We can here safely ignore solutions with x0 = 0

In theory, minimum value of ‖α− tβ‖2 is attained for t∗ = αTβ
‖β‖2

But t is required to be positive

→ distinguish whether t∗ is positive or not ⇒ discuss the sign of αTβ
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Geometrically: study intersection of open half-line with ball

{α− R++β} ∩ Bn

Case B1: αTβ > 0
Minimum t∗ is achieved. The smallest-norm solution is then

t∗β − α with ‖t∗β − α‖2 = ‖α‖2 − t2∗ ‖β‖2 = ‖α‖2 − (αTβ)2

‖β‖2 = δ

¦ δ > 1 → no solution → problem s.i.

¦ δ < 1 → there are interior solutions → problem s.f.

¦ δ = 1 → only one solution (1/t∗, α/t∗ − β) → problem w.f.

Note this solution is easy to compute (in O (
m2n

)
operations)

(x0, x) =
(
1/t∗, AT(AAT)−1(b− a0/t∗)

)
with t∗ =

aT
0 (AAT)−1b

bT(AAT)−1b
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Case B2: αTβ ≤ 0
Minimum t∗ cannot be reached

→ actual minimum attained for t → 0+

This means we have to look at ‖α‖2

¦ ‖α‖ > 1 → no solution → problem s.i.

¦ ‖α‖ < 1 → ∃t > 0 such that ‖α− tβ‖2 < 1 → problem s.f.

¦ ‖α‖ = 1 → no solution since t = 0 is forbidden

But dist(βt− α,Bn) → 0. Let xt = (1/t, β − α/t).

What about dist(xt,Ln) as t → 0?

One has dist(xt,Ln) ≈ (1/t) dist(βt− α,Bn) and thus

– αTβ = 0 → dist(xt,Ln) → 0 → w.i.

– αTβ < 0 → dist(xt,Ln) > ε → s.i.
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Summarizing table

¦ A not full row rank → x0 = C

– C < 0 → s.i.

– C = 0 and b = 0 → w.f. ; C = 0 and b 6= 0 → s.i.

– C > 0 → s.f., w.f. or s.i. when
∥∥A†(b/x0 − a0)

∥∥ <, =, > 1

¦ A has full row rank, define α, β and δ = ‖α‖2 − (αTβ)2

‖β‖2

‖α‖ < 1 ‖α‖ = 1 ‖α‖ > 1

αTβ < 0 s.f. s.i. s.i.

b 6= 0, αTβ = 0 s.f. w.i. s.i.

b = 0, αTβ = 0 s.f. w.f. w.f.

αTβ > 0 s.f. s.f. s.f., w.f., s.i. (δ <, =, > 1)
Notes: ”Loose” dependence from a0 and b ; ‖β‖ in single case
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Simplifying notations

Find (x0, x) ∈ R × Rn s.t. a0x0 + Ax = b and (x0, x) ∈ Ln

→ Find x̄ ∈ R × Rn s.t. Āx̄ = b and x̄ ∈ Ln

Let
P = ĀT(ĀĀT)−1Ā

(orthogonal projection on range ĀT)

(d0, d) = d̄ = ĀT(ĀĀT)−1b ∈ range ĀT

(minimum-norm solution of Āx̄ = b)

→ Find x̄ ∈ R × Rn s.t. Px̄ = d̄ and x̄ ∈ Ln
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Summarizing table

Let w = (1 0 · · · 0) ∈ Rn+1 and λ = ‖Pw‖2

We have

‖α‖2 =
λ

1− λ
, sign(αTβ) = sign d0 and sign(δ−1) = sign(λ

∥∥d̄
∥∥2−d2

0)

Main case (not considering rank-deficient A nor b = 0)

λ < 0 λ = 0 λ > 0

d0 < 0 s.f. s.i. s.i.

d0 = 0 s.f. w.i. s.i.

d0 > 0 s.f. s.f. s.f., w.f., s.i. (λ
∥∥d̄

∥∥2
<, =, > d2

0)
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Second-order cone optimization problem

Problem definition

inf
x0∈R, x∈Rn

c0x0 + cTx s.t. a0x0 + Ax = b and (x0, x) ∈ Ln

with c0 ∈ R, c ∈ Rn ; a0 ∈ Rm, A ∈ Rm×n and b ∈ Rm. Assume
w.l.o.g. that a0x0 + Ax = b is feasible and (a0 A) full row rank

Using feasibility problem as subproblem

Idea: add c0x0 + cTx = γ as a constraint with γ ∈ R as a parameter

→ test whether γ is a feasible objective value

Find (x0, x) ∈ R×Rn s.t.


c0

a0


x0+


cT

A


x =


γ

b


 and (x0, x) ∈ Ln

which is a feasibility second-order cone problem with new data
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Data of the subproblem

We have

ã0 =


c0

a0


 , Ã =


cT

A


 , b̃ =


γ

b




What are the new quantities α and β?

We need to evaluate (ÃÃT)−1 =


cTc cTAT

Ac AAT



−1

Possible to compute this as a function of (AAT)−1 and c but tedious

Better approach

We can actually suppose without loss of generality that c̄ ∈ null Ā
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New problem definition

inf
x0∈R, x∈Rn

c0x0 + cTx s.t. a0x0 + Ax = b and (x0, x) ∈ Ln

→ inf
x̄∈R×Rn

c̄Tx̄ s.t. Px̄ = d̄ and x̄ ∈ Ln

with d̄ ∈ range ĀT and c̄ ∈ null Ā

Testing whether γ is a feasible objective value:

Find x̄ ∈ R × Rn s.t. Px̄ = d̄, c̄Tx̄ = γ and x̄ ∈ Ln

Data of the original feasibility problem becomes

P → P +
c̄c̄T

‖c̄‖2 , λ → λ +
c2
0

‖c̄‖2

d0 → d0 + γ
c0

‖c̄‖2 ,
∥∥d̄

∥∥2 → ∥∥d̄
∥∥2 +

γ2

‖c̄‖2
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Special case: c0 = 0

In this case, one can simply read the values from the feasibility table
λ < 0 λ = 0 λ > 0

d0 < 0 s.f. s.i. s.i.

d0 = 0 s.f. w.i. s.i.

d0 > 0 s.f. s.f. s.f., w.f., s.i. (λ(
∥∥d̄

∥∥2 + γ2

‖c̄‖2 ) <,=, > d2
0)

Observations

s.i. → s.i, s.f. and w.f. → problem unbounded from above and below

w.i. → problem asymptotically unbounded from above and below

Exception: Case (d0 > 0, λ > 0): feasible γ satisfy
∥∥d̄

∥∥2 +
γ2

‖c̄‖2 ≤
d2
0

λ

⇒ γ2 = ‖c̄‖2 (d2
0 − λ

∥∥d̄
∥∥2)/λ defines min and max
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General case: c0 6= 0
Feasibility table becomes

λ + c2
0

‖c̄‖2 < 0 λ + c2
0

‖c̄‖2 = 0 λ + c2
0

‖c̄‖2 > 0

d0 + γ c0
‖c̄‖2 < 0 s.f. s.i. s.i.

d0 + γ c0
‖c̄‖2 = 0 s.f. w.i. s.i.

d0 + γ c0
‖c̄‖2 > 0 s.f. s.f. s.f., w.f., s.i. (*)

Condition (*) is

(λ +
c2
0

‖c̄‖2 )(
∥∥d̄

∥∥2 +
γ2

‖c̄‖2 ) <, =, > (d0 + γ
c0

‖c̄‖2 )2

Observations

First column: unbounded problems

Second column: problem is not attained
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General case: c0 6= 0 (cont.)

λ + c2
0

‖c̄‖2 < 0 λ + c2
0

‖c̄‖2 = 0 λ + c2
0

‖c̄‖2 > 0

d0 + γ c0
‖c̄‖2 < 0 s.f. s.i. s.i.

d0 + γ c0
‖c̄‖2 = 0 s.f. w.i. s.i.

d0 + γ c0
‖c̄‖2 > 0 s.f. s.f. s.f., w.f., s.i. (*)

Observations (cont.)

Second column: infimum and supremum for problem are not attained

¦ c0 > 0: infimum at −d0‖c̄‖2
c0

, unbounded from above

¦ c0 < 0: supremum at −d0‖c̄‖2
c0

, unbounded from below

Third column: need to look at condition (*):

equality case ⇔ w.f. ⇔ attained min and max
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General case: c0 6= 0 (cont.)

When λ + c2
0

‖c̄‖2 > 0, one has to solve

(λ +
c2
0

‖c̄‖2 )(
∥∥d̄

∥∥2 +
γ2

‖c̄‖2 ) = (d0 + γ
c0

‖c̄‖2 )2

Quadratic equation whose solutions are given by

γ =
c0d0 ±

√
(d2

0 − λ
∥∥d̄

∥∥2)(c2
0 + λ ‖c̄‖2)

λ

which define min and max for the problem.

Generalizes correctly previous special cases

Direction of vectors c̄ and d̄ is irrelevant!
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Duality

Primal problem

p∗ = inf
x̄∈R×Rn

c̄Tx̄ s.t. Px̄ = d̄ and x̄ ∈ Ln

with d̄ ∈ range ĀT and c̄ ∈ null Ā

Dual problem

d∗ = inf
z̄∈R×Rn

d̄Tz̄ s.t. Qz̄ = c̄ and z̄ ∈ Ln

with Q = I − P (orthogonal projection on null Ā)

Properties

p∗ + d∗ ≥ 0 (weak duality)

p∗ + d∗ = 0 (strong duality) under Slater condition

Primal and dual share the same format
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Solving the dual problem

Reuse table for the primal while exchanging

c̄ ↔ d̄, P ↔ Q and λ ↔ −λ

In particular, formula for min and max simply changes its sign

γ =
c0d0 ±

√
(d2

0 − λ
∥∥d̄

∥∥2)(c2
0 + λ ‖c̄‖2)

λ

→ γ =
d0c0 ±

√
(c2

0 + λ ‖c̄‖2)(d2
0 − λ

∥∥d̄
∥∥2)

−λ

⇒ duality gap is equal to zero
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Conclusions

Summary and perspectives

¦ Conic problems with a single second-order cone constraint can be
solved analytically

Bad cases (when strong duality fails) are detected and handled

¦ Interior-point method complexity for this problem is O (
n3 log 1

ε

)

this procedure is O (
m2n

) → dependence on accuracy removed

¦ Application of the same technique to dual problem (study of gap)

¦ Possible generalizations

– Allow additional free variables → still possible

– Allow linear inequality constraints → quadratic programming

– Use of this result for several second-order cones (subproblem?)
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