Zero duality gap for a large class of separable convex problems

François Glineur

F.N.R.S. research fellow Faculté Polytechnique de Mons François.Glineur@fpms.ac.be

HPMMO'01 High Performance Methods For Mathematical Optimization
December 21, 2001 TILBURG University, NETHERLANDS

Outline

Introduction

- ♦ Convex and conic optimization
- Duality properties

Separable convex optimization

- ♦ Definition
- Conic formulation

Duality for separable convex optimization

- ♦ Weak and strong duality
- ♦ Interior-point methods and self-concordant barriers

Concluding remarks

Introduction

Convex optimization

Let $f_0: \mathbb{R}^n \to \mathbb{R}$ a convex function and $C \subseteq \mathbb{R}^n$ a convex set

$$\inf_{x \in \mathbb{R}^n} f_0(x)$$
 s.t. $x \in C$

Properties

- \diamond Local optima \Rightarrow global, form a convex optimal set
- \diamond Lagrange duality \Rightarrow related (asymmetric) dual problem
- ♦ Efficient interior-point methods (self-concordant barriers)

Conic optimization

Let $\mathcal{C} \subseteq \mathbb{R}^n$ a solid, pointed, closed convex cone:

 $\inf_{x \in \mathbb{R}^n} c^T x$ s.t. Ax = b and $x \in \mathcal{C} \Rightarrow \mathbf{Equivalent}$ setting

Primal-dual pair

Dual cone is also a solid pointed closed convex cone

$$\mathcal{C}^* = \left\{ x^* \in \mathbb{R}^n \mid x^T x^* \ge 0 \text{ for all } x \in \mathcal{C} \right\}$$

 \Rightarrow pair of primal-dual problems

$$\inf_{x \in \mathbb{R}^n} c^T x \text{ s.t. } Ax = b \text{ and } x \in \mathcal{C}$$

$$\sup_{(y,s) \in \mathbb{R}^{m+n}} b^T y \text{ s.t. } A^T y + s = c \text{ and } s \in \mathcal{C}^*$$

Examples

$$\mathcal{C} = \mathbb{R}^n_+ = \mathcal{C}^* \Rightarrow \text{linear optimization},$$

$$\mathcal{C} = \mathbb{S}^n_+ = \mathcal{C}^* \Rightarrow$$
 semidefinite optimization (self-duality)

Advantages over classical formulation

- Remarkable primal-dual symmetry
- \diamond Special handling of (easy) linear equality constraints

Duality for convex optimization

Weak duality.

Every feasible primal (resp. dual) solution is an upper (resp. lower) bound on all feasible dual (resp. primal) solutions.

(Conic case: $b^T y \le c^T x$ for all feasible x, y)

 $\Rightarrow p^* - d^* \ge 0$ is called the *duality gap* (always nonnegative).

This is valid even when no convexity is present.

Strong duality (Slater condition)

The duality gap is guaranteed to be zero $(p^* = d^*)$ if

- ♦ Both problems are convex and
- ♦ ∃ a Slater point, i.e. a strictly feasible (interior) solution

(Conic case: x is $strictly\ feasible \Leftrightarrow x$ is feasible and $x \in int \mathcal{C}$)

But sometimes strong duality holds without Slater condition

Strong duality with no Slater point ...

Can fail: Using the second-order cone

$$\mathbb{L}^{n} = \{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n} \times \mathbb{R}_{+} \mid \sum_{i=1}^{n} x_{i}^{2} \leq x_{n+1}^{2} \}$$
inf x_{2} s.t. $(x_{1}, x_{2}, x_{3}) \in \mathbb{L}^{2}$ and $x_{1} - x_{3} = 0$

$$\sup 0 \ y \quad \text{s.t.} \quad (x_1^*, x_2^*, x_3^*) \in \mathbb{L}^2 \text{ and } \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} y + \begin{pmatrix} x_1^* \\ x_2^* \\ x_3^* \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

We have $p^* = 0$ and $d^* = -\infty \Rightarrow$ infinite duality gap Can **hold**: Linear optimization always features a zero duality gap except when both problems are infeasible:

$$\min -x_2$$
 s.t. $x_1 = -1$ and $x_1, x_2 \ge 0$

$$\max -y$$
 s.t. $\begin{pmatrix} 1 \\ 0 \end{pmatrix} y + \begin{pmatrix} x_1^* \\ x_2^* \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$

We have here $p^* = +\infty$ and $d^* = -\infty \Rightarrow$ infinite duality gap

Separable convex optimization

Definition

Consider a set of n scalar closed proper convex functions $f_i : \mathbb{R} \to \mathbb{R}$, $K = \{1, \ldots, r\}$ and a partition $\{I_k\}_{k \in \mathbb{R}}$ of $\{1, \ldots, n\}$

sup
$$b^T y$$
 s.t. $\sum_{i \in I_k} f_i(c_i - a_i^T y) \le d_k - g_k^T y \quad \forall k \in R$

- \diamond Linear, quadratic, geometric, entropy, l_p -norm optimization
- ♦ Mix different types of constraints
- ♦ Linear objective without loss of generality

Objective

Identify and study a large subset of well-behaved convex problems (find their dual and their duality properties)

Geometric optimization

Optimize positive vector using posynomials as objective/constraints

$$\inf_{t \in \mathbb{R}^m_{++}} G_0(t) \quad \text{s.t.} \quad G_k(t) \le 1 \ \forall k \in \mathbb{R} \quad \text{with posynomials } G_i\text{'s}$$

A posynomial is a sum of positive monomials : $2\frac{t_1^2}{t_2} + 3\sqrt{t_2} + \frac{1}{3}\frac{t_2^{2/3}}{t_1t_3^3}$ Formally: monomials indexed by $i \in I = \{1, \ldots, n\}$, posynomials indexed by $k \in R = \{0, 1, \ldots, r\}$ using a partition $\{I_k\}_{k \in R}$ of I.

$$G_k : \mathbb{R}^m_{++} \mapsto \mathbb{R}_{++} : t \mapsto \sum_{i \in I_k} C_i \prod_{j=1}^m t_j^{a_{ij}}$$
 with $a_{ij} \in \mathbb{R}$ and $C_i \in \mathbb{R}_{++}$

Many applications (e.g. in engineering: model or approximate relations), generalizes linear optimization.

Not convex (take e.g. $G_0(t) = \sqrt{t_1}$) but can be *convexified*! \Rightarrow prototype of separable convex problem

Convexification

W.l.o.g. we consider a linear objective and let $t_j = e^{y_j}$ for all j **Primal:**

$$\sup_{y \in \mathbb{R}^m} b^T y \quad \text{s.t.} \quad g_k(y) \le 1 \text{ for all } k \in R$$

using $c_i = -\log C_i$ and $g_k(y)$ such that $g_k(y) = G_k(t)$, i.e.

$$g_k : \mathbb{R}^m \mapsto \mathbb{R}_{++} : y \mapsto \sum_{i \in I_k} e^{a_i^T y - c_i} \longrightarrow \text{separable!}$$

Dual: (Lagrangean)

$$\inf c^T x + \sum_{k \in R} \sum_{\substack{i \in I_k \\ x_i > 0}} x_i \log \frac{x_i}{\sum_{i \in I_k} x_i} \quad \text{s.t.} \quad Ax = b \text{ and } x \ge 0$$

Results (Duffin, Peterson and Zener, 1967)

- ♦ Convex problem, weak duality, strong duality with a Slater point
- \diamond Never a duality gap ! \Rightarrow strong duality without a Slater point

Strategy: use conic formulation

The separable cone [Gl. 00]

$$\mathcal{K}^f = \operatorname{cl} \mathcal{K}^{\circ f} = \operatorname{cl} \left\{ (x, \theta, \kappa) \in \mathbb{R}^n \times \mathbb{R}_{++} \times \mathbb{R} \mid \theta \sum_{i=1}^n f_i(\frac{x_i}{\theta}) \le \kappa \right\}$$

- $\diamond \mathcal{K}^f$ is a closed convex cone and $\mathcal{K}^f \subseteq \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_+$
- ♦ The dual can be computed: very symmetric formulation

$$(\mathcal{K}^f)^* = \operatorname{cl}\left\{ (x^*, \theta^*, \kappa^*) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{++} \mid \kappa^* \sum_{i=1}^n f_i^* (-\frac{x_i^*}{\kappa^*}) \le \theta^* \right\}$$

using the conjugate functions (also closed, proper and convex)

$$f_i^* : \mathbb{R} \mapsto \mathbb{R} : x^* \mapsto \sup_{x \in \mathbb{R}^n} \{xx^* - f_i(x)\}$$

Additional properties and examples

 \diamond int \mathcal{K}^f can be identified (\Rightarrow Slater condition): int $\mathcal{K}^f = \operatorname{int} \mathcal{K}^{\circ f} = \left\{ (x, \theta, \kappa) \in \mathbb{R}^n \times \mathbb{R}_{++} \times \mathbb{R} \mid \frac{x_i}{\theta} \in \operatorname{int} \operatorname{dom} f_i, \ \theta \sum_{i=1}^n f_i(\frac{x_i}{\theta}) < \kappa \right\}$

- \diamond If we require in addition that int dom $f_i \neq \emptyset$ and int dom $f_i^* \neq \emptyset$, we have that \mathcal{K}^f and $(\mathcal{K}^f)^*$ are solid and pointed
- \diamond Points with $\theta = 0$ can be identified

$$\mathcal{K}^f \setminus \mathcal{K}^{\circ f} = \left\{ (x, 0, \kappa) \mid \sum_{i=1}^n \lim_{\theta \to 0} \theta f_i(\frac{x_i}{\theta}) \le \kappa \right\}.$$

- $\diamond l_p$ -norm optimization: $f_i: x \mapsto \frac{1}{p_i} |x|^{p_i}$ and $f_i^*: x^* \mapsto \frac{1}{q_i} |x^*|^{q_i}$
- ♦ Geometric optimization: $f_i: x \mapsto e^{-x}$ and $f_i^*: \mathbb{R}_+ \mapsto \mathbb{R}: x^* \mapsto x^*(1 \log(-x^*))$ for $x^* < 0$, 0 for $x^* = 0$, $+\infty$ for $x^* > 0$.

Formulation with \mathcal{K}^f cone

Primal

sup
$$b^T y$$
 s.t. $\sum_{i \in I_k} f_i(c_i - a_i^T y) \le d_k - g_k^T y \quad \forall k \in R$

Introducing variables $x_i^* = c_i - a_i^T y$ and $z_k^* = d_k - g_k^T y$ we get

sup
$$b^T y$$
 s.t. $x^* = c - A^T y$, $z^* = d - G^T y$, $\sum_{i \in I_k} f_i(x_i^*) \le z_k^* \, \forall k \in R$

$$\sup b^T y \quad \text{s.t.} \quad \begin{pmatrix} A^T \\ G^T \\ 0 \end{pmatrix} y + \begin{pmatrix} x^* \\ z^* \\ v^* \end{pmatrix} = \begin{pmatrix} c \\ d \\ e \end{pmatrix}, \ (x^*_{I_k}, v^*_k, z^*_k) \in \mathcal{K}^{f_{I_k}} \, \forall k \in R$$

(e is the all-one vector and v_i 's are fictitious variables)

 \Rightarrow standard dual conic problem based on data $(\tilde{A}, \tilde{b}, \tilde{c})$ and cone \mathcal{C}^*

$$\tilde{A} = (A \ G \ 0), \ \tilde{b} = b, \ \tilde{c} = \begin{pmatrix} c \\ d \\ e \end{pmatrix}, \ \mathcal{C}^* = \mathcal{K}^{f_{I_1}} \times \cdots \times \mathcal{K}^{f_{I_r}}.$$

 \Rightarrow we can mechanically derive the **dual**!

$$\inf \begin{pmatrix} c \\ d \\ e \end{pmatrix}^T \begin{pmatrix} x \\ z \\ v \end{pmatrix} \quad \text{s.t.} \quad \left(A \ G \ 0 \right) \begin{pmatrix} x \\ z \\ v \end{pmatrix} = b \text{ and } (x_{I_k}, v_k, z_k) \in (\mathcal{K}^{f_{I_k}})^*$$

$$\inf c^T x + d^T z + e^T v \quad \text{s.t.} \quad Ax + Gz = b, z \ge 0 \text{ and } v_k \ge z_k \sum_{i \in I_k} f_i^* \left(-\frac{x_i}{z_k}\right)$$

$$\Leftrightarrow$$
 inf $c^T x + d^T z + \sum_{k \in R} z_k \sum_{i \in I_k} f_i^* (-\frac{x_i}{z_k})$ s.t. $Ax + Gz = b$ and $z \ge 0$

(taking the limit if necessary when $z_k = 0$)

Some other types of constraints

 \diamond Model circle/ellipses in \mathbb{R}^2

$$f_1: x \mapsto \begin{cases} -\sqrt{a^2 - x^2} & \text{if } |x| \le a \\ +\infty & \text{if } |x| > a \end{cases}$$
 $f_1^*: x^* \mapsto a\sqrt{1 + x^{*2}}$

 \diamond CES functions (consumer theory), 0

$$f_2: x \mapsto \begin{cases} -\frac{1}{p}x^p & \text{if } x \ge 0 \\ +\infty & \text{if } x < 0 \end{cases}$$
 $f_2^*: x^* \mapsto \begin{cases} -\frac{1}{q}(-x^*)^q & \text{if } x^* < 0 \\ +\infty & \text{if } x^* \ge 0 \end{cases}$

 \diamond Logarithms (with property that $f^*(x^*) = f(-x^*)$)

$$f_3: x \mapsto \begin{cases} -\frac{1}{2} - \log x & \text{if } x^* < 0 \\ +\infty & \text{if } x^* \ge 0 \end{cases} \quad f_3^*: x^* \mapsto \begin{cases} -\frac{1}{2} - \log(-x^*) \\ +\infty \end{cases}$$

Duality in separable optimization

Weak duality

If y is feasible for the primal and (x, z) is feasible for the dual, we have

$$b^T y \le c^T x + d^T z + \sum_{k \in R} z_k \sum_{i \in I_k} f_i^* (-\frac{x_i}{z_k})$$
.

Proof. Use weak duality theorem on conic primal-dual pair and extend objective values to the separable optimization problems (easy).

Strong duality

Theorem.

If the primal and the dual are feasible, their optimum objective values are equal (but not necessarily attained)

 \Rightarrow zero duality gap without Slater condition.

This strong duality property is not valid for all convex problems but depends on the *specific scalar structure* of separable optimization.

Proof

Proceed by proving the existence of a strictly feasible point for the dual conic program $\Leftrightarrow v_k > z_k \sum_{i \in I_k} f_i^*(-\frac{x_i}{z_k})$ and $z_k > 0$.

But the linear constraints Ax + Gz = b may force $z_k = 0$ for some k for every feasible solution!

 \Rightarrow detect these zero z_k components and form a restricted primal-dual pair without these variables \Rightarrow strong duality holds

Detection

Use the following linear problem

min 0 s.t.
$$Ax + Gz = b$$
 and $z \ge 0$

Define $\mathcal{N} = \text{set}$ of indices k such that z_k is identically zero on the feasible region and \mathcal{B} the set of the other indices: $(\mathcal{B}, \mathcal{N})$ is the optimal partition of this linear problem (Goldman-Tucker theorem)

Strategy diagram

$$(P) \equiv (\operatorname{Conic} P) \stackrel{\operatorname{Weak duality}}{\longleftrightarrow} (\operatorname{Conic} D) \equiv (D)$$

$$\uparrow^{*p.} \qquad \uparrow$$

$$(\operatorname{Relaxed} P) \stackrel{\operatorname{Strong duality}}{\longleftrightarrow} (\operatorname{Restricted} D)$$

$$\uparrow$$

$$(\operatorname{Slater condition})$$

Strategy

Remove variables z_k for all $i \in \mathcal{N}$ from the dual

- ⇒ restricted dual problem (less variables)
- \Rightarrow relaxed primal (less constraints)
- \Rightarrow restricted dual has a strictly feasible solution \Rightarrow zero duality gap.

We now have to prove that

- Optimal objective values are equal for restricted and original dual problems (easy)
- ⋄ Optimal objective values are equal for relaxed and original primal. But the optimal solution of the relaxed primal (with zero duality gap) is not necessarily feasible for the original primal. Solution: perturb the relaxed primal optimal solution with a well-chosen vector (existence of a perturbation vector with the correct properties guaranteed by the Goldman-Tucker theorem)

Self-concordant barriers

According to [Nesterov & Nemirovsky], a convex problem in conic format is solvable by a primal short-step interior-point algorithm in polynomial time if \mathcal{C} admits a computable self-concordant barrier. A solution of accuracy ϵ can be reached in $\mathcal{O}\left(\sqrt{\nu}\log\frac{1}{\epsilon}\right)$ iterations.

Definition

A function $F: \operatorname{int} \mathcal{C} \mapsto \mathbb{R}$ is called a *self-concordant* barrier with parameter ν on \mathcal{C} iff

- \diamond F is convex and three times differentiable
- $\diamond F(x) \to +\infty \text{ when } x \to \partial \mathcal{C}$
- \diamond the following two conditions hold for all $x \in \text{int } \mathcal{C}$ and $h \in \mathbb{R}^n$

$$\nabla^3 F(x)[h, h, h] \le 2 \left(\nabla^2 F(x)[h, h]\right)^{\frac{3}{2}}$$
$$\nabla F(x)^T (\nabla^2 F(x))^{-1} \nabla F(x) \le \nu$$

Application to separable optimization

Given a self-concordant barrier F_i with parameter ν_i for each twodimensional epigraph epi f_i , $1 \le i \le n$ (easy to find), there exists a self-concordant barrier F for \mathcal{K}^f with parameter $\mathcal{O}(\sum_{i=1}^n \nu_i)$

Outline of the proof

a. Form the Cartesian product $X = \text{epi } f_1 \times \cdots \times \text{epi } f_n$

$$X = \{(x, y) \in \mathbb{R}^{2n} \mid f_i(x_i) \le y_i \ \forall i\}$$

$$\Rightarrow F_X(x,y) = \sum_{i=1}^n F_i(x_i,y_i)$$
 is s.c. for X with $\nu_X = \sum_{i=1}^n \nu_i$

b. Extend X with a linear variable to

$$X' = \{(x, y, \kappa) \in \mathbb{R}^{2n+1} \mid f_i(x_i) \le y_i \ \forall i \text{ and } \kappa = \sum_{i=1}^n y_i\}$$

This additional variable κ links the epigraphs,

$$F_X'(x,y,\kappa) = F(x,y)$$
 is still s.c. for X' with $\nu_{X'} = \sum_{i=1}^n \nu_i$

c. Consider the closed conic hull of X' (introducing a homogenizing variable θ)

$$Y = \operatorname{cl}\{(x, y, \kappa, \theta) \in \mathbb{R}^{2n+2} \mid (x/\theta, y/\theta, \kappa/\theta) \in X'\}$$

There exists a s.c. barrier F_Y for Y with $\nu_Y = \mathcal{O}(\nu_{X'})$

d. The projection of Y on the space (x, κ, θ) is exactly equal to \mathcal{K}^f \Rightarrow we have a s.c.b. for \mathcal{K}^f with parameter $\mathcal{O}(\sum_{i=1}^n \nu_i)$ Indeed, we have

$$(x/\theta, y/\theta, \kappa/\theta) \in X' \Leftrightarrow f_i(\frac{x_i}{\theta}) \le \frac{y_i}{\theta} \ \forall i \text{ and } \frac{\kappa}{\theta} \le \sum_{i=1}^n \frac{y_i}{\theta}$$

which clearly shows that

$$(x, \kappa, \theta) \in \mathcal{K}^f \Leftrightarrow \exists y \in \mathbb{R}^n \mid (x, y, \kappa, \theta) \in Y$$

 \Rightarrow solve separable problems in $\mathcal{O}\left(\sqrt{\sum_{i=1}^{n} \nu_i} \log \frac{1}{\epsilon}\right)$ iterations $(\rightarrow \text{polynomial-time})$ if each F_i is computable in polynomial time)

Concluding remarks

- \diamond A very wide class of separable convex problems can be formulated (including linear, quadratic, entropy, l_p -norm and geometric optimization)
- ♦ Using this setting, interesting duality properties can be obtained in a seamless way (weak and strong duality without Slater condition)
- ⋄ Finding a computable self-concordant barrier for the \mathcal{K}^f cone (which can be done using self-concordant barriers on 2-dimensional epigraphs of scalar functions f_i) provides a primal algorithm with polynomial complexity (short-step path-following interior-point method, [Nesterov & Nemirovsky 83])
- \diamond Primal-dual formulation \Rightarrow first step towards true primal-dual algorithms (self-regular barriers, [Peng et al. 00])