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Introduction

Convex optimization

Let f0 : Rn 7→ R a convex function and C ⊆ Rn a convex set

inf
x∈Rn

f0(x) s.t. x ∈ C

Properties

� Local optima ⇒ global, form a convex optimal set

� Lagrange duality ⇒ related (asymmetric) dual problem

� Efficient interior-point methods (self-concordant barriers)

Conic optimization

Let C ⊆ Rn a solid, pointed, closed convex cone :

inf
x∈Rn

cTx s.t. Ax = b and x ∈ C ⇒ Equivalent setting
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Primal-dual pair

Dual cone is also a solid pointed closed convex cone

C∗ =
{
x∗ ∈ Rn | xTx∗ ≥ 0 for all x ∈ C

}
⇒ pair of primal-dual problems

inf
x∈Rn

cTx s.t. Ax = b and x ∈ C

sup
(y,s)∈Rm+n

bTy s.t. ATy + s = c and s ∈ C∗

Examples

C = Rn
+ = C∗ ⇒ linear optimization,

C = Sn
+ = C∗ ⇒ semidefinite optimization (self-duality)

Advantages over classical formulation

� Remarkable primal-dual symmetry

� Special handling of (easy) linear equality constraints
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Duality for convex optimization

Weak duality.

Every feasible primal (resp. dual) solution is an upper (resp. lower)

bound on all feasible dual (resp. primal) solutions.

(Conic case : bTy ≤ cTx for all feasible x, y)

⇒ p∗ − d∗ ≥ 0 is called the duality gap (always nonnegative).

This is valid even when no convexity is present.

Strong duality (Slater condition)

The duality gap is guaranteed to be zero (p∗ = d∗) if

� Both problems are convex and

� ∃ a Slater point, i.e. a strictly feasible (interior) solution

(Conic case : x is strictly feasible ⇔ x is feasible and x ∈ int C)

But sometimes strong duality holds without Slater condition
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More on strong duality

Strong duality can fail if there is no Slater point: using the second-

order cone Ln = {(x1, . . . , xn+1) ∈ Rn × R+ |
∑n

i=1 x2
i ≤ x2

n+1}

inf x2 s.t. (x1, x2, x3) ∈ L2 and x1 − x3 = 0

sup 0 y s.t. (x∗1, x
∗
2, x
∗
3) ∈ L2 and

 1

0

−1

 y +

x∗1
x∗2
x∗3

 =

0

1

0


We have p∗ = 0 and d∗ = −∞ ⇒ infinite duality gap

Linear optimization always features a zero duality gap (no need for

a Slater condition) except when both problems are infeasible:

min−x2 s.t. x1 = −1 and x1, x2 ≥ 0

max−y s.t.

(
1

0

)
y +

(
x∗1
x∗2

)
=

(
0

−1

)
We have here p∗ = +∞ and d∗ = −∞ ⇒ infinite duality gap
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Separable convex optimization

Definition

Consider a set of n scalar closed proper convex functions fi : R 7→ R,

K = {1, . . . , r} and a partition {Ik}k∈R of {1, . . . , n}

sup bTy s.t.
∑
i∈Ik

fi(ci − aT
i y) ≤ dk − gT

k y ∀k ∈ R

� Linear, quadratic, geometric, entropy, lp-norm optimization

� Mix different types of constraints

� Linear objective without loss of generality

� Links with Young optimization

Goal: find the dual problem and study duality properties
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Strategy: use conic formulation

The separable cone [Gl. 00]

Kf = clK◦f = cl
{

(x, θ, κ) ∈ Rn × R++ × R | θ
n∑

i=1

fi(
xi

θ
) ≤ κ

}
� Kf is a closed convex cone and Kf ⊆ Rn × R+ × R

� The dual can be computed: very symmetric formulation

(Kf)∗ = cl
{

(x∗, θ∗, κ∗) ∈ Rn×R×R++ | κ∗
n∑

i=1

f ∗i (−x∗i
κ∗

) ≤ θ∗
}

using the conjugate functions (also closed, proper and convex)

f ∗i : R 7→ R : x∗ 7→ sup
x∈Rn

{xx∗ − fi(x)}
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Additional properties and examples

� intKf can be identified (⇒ Slater condition): intKf = intK◦f ={
(x, θ, κ) ∈ Rn×R++×R | xi

θ
∈ int dom fi, θ

n∑
i=1

fi(
xi

θ
) < κ

}
� If we require in addition that int dom fi 6= ∅ and int dom f ∗i 6= ∅,

we have that Kf and (Kf)∗ are solid and pointed

� Points with θ = 0 can be identified

Kf \ K◦f =
{

(x, 0, κ) |
n∑

i=1

lim
θ→0

θfi(
xi

θ
) ≤ κ

}
.

� lp-norm optimization: fi : x 7→ 1
pi
|x|pi and f ∗i : x∗ 7→ 1

qi
|x∗|qi

� Geometric optimization: fi : x 7→ e−x and f ∗i : R+ 7→ R :

x∗ 7→ x∗(1− log(−x∗)) for x∗ < 0, 0 for x∗ = 0, +∞ for x∗ > 0.
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Formulation with Kf cone

Primal

sup bTy s.t.
∑
i∈Ik

fi(ci − aT
i y) ≤ dk − gT

k y ∀k ∈ R

Introducing variables x∗i = ci − aT
i y and z∗k = dk − gT

k y we get

sup bTy s.t. x∗ = c−ATy, z∗ = d−GTy,
∑
i∈Ik

fi(x
∗
i ) ≤ z∗k ∀k ∈ R

m

sup bTy s.t.

AT

GT

0

 y+

x∗

z∗

v∗

 =

c

d

e

 , (x∗Ik
, v∗k, z

∗
k) ∈ K

fIk ∀k ∈ R

(e is the all-one vector and vi’s are fictitious variables)
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⇒ standard dual conic problem based on data (Ã, b̃, c̃) and cone C∗

Ã =
(
A G 0

)
, b̃ = b, c̃ =

c

d

e

 , C∗ = KfI1 × · · · × KfIr .

⇒ we can mechanically derive the dual !

inf

c

d

e

T x

z

v

 s.t.
(
A G 0

) x

z

v

 = b and (xIk
, vk, zk) ∈ (KfIk)∗

m

inf cTx+dTz+eTv s.t. Ax+Gz = b, z ≥ 0 and vk ≥ zk

∑
i∈Ik

f ∗i (−xi

zk
)

⇔ inf cTx+dTz+
∑
k∈R

zk

∑
i∈Ik

f ∗i (−xi

zk
) s.t. Ax+Gz = b and z ≥ 0

(taking the limit if necessary when zk = 0)
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Some other types of constraints

� Model circle/ellipses in R2

f1 : x 7→

{
−
√

a2 − x2 if |x| ≤ a

+∞ if |x| > a
f ∗1 : x∗ 7→ a

√
1 + x∗2

� CES functions (consumer theory), 0 < p < 1, q < 0, 1
p + 1

q = 1

f2 : x 7→

{
−1

px
p if x ≥ 0

+∞ if x < 0
f ∗2 : x∗ 7→

{
−1

q(−x∗)q if x∗ < 0

+∞ if x∗ ≥ 0

� Logarithms (with property that f ∗(x∗) = f (−x∗))

f3 : x 7→

{
−1

2 − log x if x∗ < 0

+∞ if x∗ ≥ 0
f ∗3 : x∗ 7→

{
−1

2 − log(−x∗)

+∞
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Duality in separable optimization

Weak duality

If y is feasible for the primal and (x, z) is feasible for the dual, we have

bTy ≤ cTx + dTz +
∑
k∈R

zk

∑
i∈Ik

f ∗i (−xi

zk
) .

Proof. Use weak duality theorem on conic primal-dual pair and ex-

tend objective values to the separable optimization problems (easy).

Strong duality

Assume fi is finite and co-finite for all i, i.e. dom fi = dom f ∗i = R
(e.g. in the case of quadratic optimization, lp-norm optimization).

Theorem. If the primal and the dual are feasible, their optimum
objective values are equal (but not necessarily attained)⇒ zero du-
ality gap without Slater condition.
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This strong duality property is not valid for all convex problems but

depends on the specific scalar structure of separable optimization.

Proof

Proceed by proving the existence of a strictly feasible point for the

dual conic program ⇔ vk > zk

∑
i∈Ik

f ∗i (−xi
zk

) and zk > 0.

But the linear constraints Ax + Gz = b may force zk = 0 for some

k for every feasible solution !

⇒ detect these zero zk components and form a restricted primal-dual

pair without these variables ⇒ strong duality holds

Detection

Use the following linear problem

min 0 s.t. Ax + Gz = b and z ≥ 0
Define N = set of indices k such that zk is identically zero on the
feasible region and B the set of the other indices: (B,N ) is the
optimal partition of this linear problem (Goldman-Tucker theorem)
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Strategy diagram

(P ) ≡ (Conic P )
Weak duality←→ (Conic D) ≡ (D)

l∗p. l
(Relaxed P )

Strong duality←→ (Restricted D)
↑

(Slater condition)
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Strategy

Remove variables zk for all i ∈ N from the dual

⇒ restricted dual problem (less variables)

⇒ relaxed primal (less constraints)

⇒ restricted dual has a strictly feasible solution⇒ zero duality gap.

We now have to prove that

� Optimal objective values are equal for restricted and original

dual problems (easy)

� Optimal objective values are equal for relaxed and original pri-

mal. But the optimal solution of the relaxed primal (with zero

duality gap) is not necessarily feasible for the original primal.

Solution: perturb the relaxed primal optimal solution with a

well-chosen vector (existence of a perturbation vector with the

correct properties guaranteed by the Goldman-Tucker theorem)
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Self-concordant barriers

According to [Nesterov & Nemirovsky], a convex problem in conic

format is solvable by a primal short-step interior-point algorithm in

polynomial time if C admits a computable self-concordant barrier.

A solution of accuracy ε can be reached in O
(√

ν log 1
ε

)
iterations.

Definition

A function F : int C 7→ R is called a self-concordant barrier with

parameter ν on C iff

� F is convex and three times differentiable
� F (x)→ +∞ when x→ ∂C
� the following two conditions hold for all x ∈ int C and h ∈ Rn

∇3F (x)[h, h, h] ≤ 2
(
∇2F (x)[h, h]

)3
2

∇F (x)T (∇2F (x))−1∇F (x) ≤ ν
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Application to separable optimization

Given a self-concordant barrier Fi with parameter νi for each two-

dimensional epigraph epi fi, 1 ≤ i ≤ n, there exists a self-concordant

barrier F for Kf with parameter O (
∑n

i=1 νi)

Outline of the proof

a. Form the Cartesian product X = epi f1 × · · · × epi fn

X = {(x, y) ∈ R2n | fi(xi) ≤ yi ∀i}

⇒ FX(x, y) =
∑n

i=1 Fi(xi, yi) is s.c. for X with νX =
∑n

i=1 νi

b. Extend X with a linear variable to

X ′ = {(x, y, κ) ∈ R2n+1 | fi(xi) ≤ yi ∀i and κ =

n∑
i=1

yi}

This additional variable κ links the epigraphs, F ′X(x, y, κ) =

F (x, y) is still s.c. for X ′ with νX ′ =
∑n

i=1 νi
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c. Consider the closed conic hull of X ′ (introducing a homogenizing

variable θ)

Y = cl{(x, y, κ, θ) ∈ R2n+2 | (x/θ, y/θ, κ/θ) ∈ X ′}

There exists a s.c. barrier FY for Y with νY = O (νX ′)

d. The projection of Y on the space (x, κ, θ) is exactly equal to Kf

⇒ we have a s.c.b. for Kf with parameter O (
∑n

i=1 νi)

Indeed, we have

(x/θ, y/θ, κ/θ) ∈ X ′ ⇔ fi(
xi

θ
) ≤ yi

θ
∀i and

κ

θ
≤

n∑
i=1

yi

θ

which clearly shows that

(x, κ, θ) ∈ Kf ⇔ ∃y ∈ Rn | (x, y, κ, θ) ∈ Y
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Concluding remarks

� A very wide class of separable convex problems can be formulated

(including linear, quadratic, entropy, lp-norm and geometric op-

timization)

� Using this setting, interesting duality properties can be obtained

in a seamless way (weak and strong duality without Slater con-

dition)

� Finding a computable self-concordant barrier for the Kf cone

(which can be done using self-concordant barriers on 2-dimensional

epigraphs of scalar functions fi) provides a primal algorithm with

polynomial complexity (short-step path-following interior-point

method, [Nesterov & Nemirovsky 83])

� Primal-dual formulation ⇒ first step towards true primal-dual

algorithms (self-regular barriers, [Peng et al. 00])


