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Plan

Single variable case

� Newton-type methods, bisection techniques
� Sum of squares reformulation, companion matrix

Algebraic geometry

� Division, ideals, varieties and Groebner bases
� Elimination method
� Stetter and Möller method (companion matrix)
� Hanzon and Jibetean method

Other methods

� Resultant methods, sum of squares relaxations

Concluding remarks
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Introduction

Definitions

A monomial with n variables

xα = xα1
1 xα2

2 · · ·xαn
n with x ∈ Rn and α ∈ Nn

A polynomial is a finite linear combination of monomials
with coefficients in a field k

f =
∑
α∈A

aαx
α with aα ∈ k and A ⊂ Nn finite

The set of polynomials over k is denoted k[x1, x2, . . . , xn]
Our main concern is R[x1, x2, . . . , xn]
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Polynomial optimization

Given a polynomial f0 ∈ R[x1, x2, . . . , xn], we will mainly
consider unconstrained polynomial optimization:

min
x∈Rn

f0(x1, x2, . . . , xn)

� Obviously many applications

� Global optimization problem (∃ local minima)

� NP-hard problem (w.r.t. number of variables)

(take f0 =
∑

i(x
2
i − 1)2 → binary constraints)

� May have a finite of infinite number of solutions

� May exhibit solutions at infinity: x2
1x

4
2 + x1x

2
2 + x2

1
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Polynomial optimization (cont.)

� Strong links with polynomial equation solving :

find all x ∈ Rn such that fi(x) = 0 for all 1 ≤ i ≤ m

� Stationarity conditions

∂f0

∂x1
=

∂f0

∂x2
= · · · =

∂f0

∂xn
= 0

define a finite number of connected components: check
each to find global minimum

� Some methods will also be applicable to the con-
strained case without much change

min
x∈Rn

f0(x) such that fi(x) = 0 for all 1 ≤ i ≤ m
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Single variable case

min
x∈R

anx
n + an−1x

n−1 + · · · + a2x
2 + a1x + a0

Various available solution techniques:

� Newton methods and variants

� Bisection techniques

� Sum of squares convex reformulation

� Companion matrix

Utility:

� Model single variable problems

� Use as a subroutine for multiple variable case
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Newton methods and variants

� Iterative schemes

� Usually very fast convergence to local minimum

� Multiple zeros might cause trouble

� Convergence only guaranteed if starting point is close
to a (local) minimum

⇒ Local technique without globalization
not suitable to find (all) global minimizers
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Bisection techniques

� Principle: solve stationarity condition as polynomial
equation, using Weyl’s quadtree algorithm

Principle of Weyl’s quadtree algorithm to find all complex
roots of polynomial equation p(x) =

∑n
i=0 aix

i = 0

a. Consider square {x | |Re(x)| , |Im(x)| ≤ M} where
M is a constant such that M > 2 maxi<n(ai/an):

all roots of p(x) must lie therein

b. Recursively partition square into four congruent sub-
squares
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c. At the center of each subsquare, use computationally
cheap procedure to estimate proximity to the closest
root of p

d. Eliminate subsquare if test guarantees that it contains
no root

e. Use Newton-type iterations to refine solutions once
they are isolated

f. Complexity: all zeros are computed with accuracy
2−bM at overall cost O

(
n2 log n log(bn)

)
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Sum of squares reformulation

� A single-variable polynomial is nonnegative if and
only if it can be written as a sum of squares

� A polynomial p(x) =
∑2n

i=0 aix
i = 0 is a sum of

squares if and only if there exists a positive semidefi-
nite matrix M ∈ Sn+1 such that

ak =
∑

i+j=k+2

Mij

� Minimizing p(x) is equivalent to maximizing an addi-
tional variable t with the condition that polynomial
p(x)− t is nonnegative (largest lower bound)
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� Minimizing a single-variable polynomial can thus be
reformulated as a convex semidefinite optimization
problem

� It is efficiently solvable, with a polynomial complexity
(O (

√
n) iterations but total complexity worse than

quadtree)

Note that in principle, this procedure can be used to solve
a single-variable polynomial equation
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Companion matrix
� Again, try to solve the stationarity condition as a

monic polynomial equation

p(x) = xn+an−1x
n−1+an−2x

n−2+· · ·+a2x
2+a1x+a0

� Fact: p(x) is the characteristic polynomial of

A =


0 1

0 1
. . . . . .

0 1
−a0 −a1 −a2 · · · −an−1


� The eigenvalues of A are thus the r roots of p(x),

and complexity of computing these n eigenvalues is
O

(
n3

)
(again worse than quadtree)
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Algebraic geometry

Ideals and varieties

Let f1, f2, . . . , fs polynomials in k[x1, x2, . . . , xn], define
the affine variety

V (f1, f2, . . . , fs) = {(x1, x2, . . . , xn) | fi(x) = 0 ∀i}
An ideal is a subset of k[x1, x2, . . . , xn] closed under addi-
tion and multiplication by an element of k[x1, x2, . . . , xn]
Let f1, f2, . . . , fs polynomials in k[x1, x2, . . . , xn], they
generate an ideal defined by

〈f1, f2, . . . , fs〉 = {
s∑

i=1

fihi with hi ∈ k[x1, x2, . . . , xn] ∀i}
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Once again, the application of algebraic geometric tech-
niques to polynomial optimization will rely on the reso-
lution of the stationarity conditions as a system of poly-
nomials equations f1(x) = f2(x) = · · · = fs(x) = 0
→ identify elements of the affine variety V (f1, f2, . . . , fs)

Key property: 〈f1, f2, . . . , fs〉 = 〈g1, g2, . . . , gt〉 is easily
seen to imply V (f1, f2, . . . , fs) = V (g1, g2, . . . , gt)
→ look for a generating set that allows for easy identifi-
cation of the underlying affine variety

Ideals/generating sets resemble vector spaces/bases but
lack the independence/unicity property
The use of Groebner bases is an answer to this problem
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Polynomials and division

� Single variable case: divide f by g

∃ unique q and r such that f = qg + r (degr < degg)

easy to compute (Euclidean algorithm)

Consequence : all ideals in k[x] have the form 〈f〉
� Multiple variables: first issue is to define degree (for

remainder condition)

Define an ordering on the monomials such that

a. it is a total order

b. xα > xβ ⇒ xα+γ > xβ+γ

c. well ordered (nonempty subsets have smallest ele-
ment)
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� The multidegree of a polynomial f =
∑

α∈A aαx
α is

the maximal α ∈ A such that aα 6= 0

� Define also the leading monomial of a polynomial:
LM(f ) = xmultidegf

Examples

� lexicographic order (lex)

decide which monomial is greater by looking first at
the exponent of x1, then in case of a tie at the expo-
nent of x2, , then in case of another tie at the exponent
of x3, etc.
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� graded lexicographic order (grlex)

decide which monomial is greater by looking at the
sum of their exponents, and use lexicographic order
in case of a tie

� graded reverse lexicographic order (grevlex)

decide which monomial is greater by looking at the
sum of their exponents, and use reverse lexicographic
order in case of a tie (which means look first at xn,
then xn−1, etc. but choose the opposite of the first
difference observed)
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Multivariable division

Divide f by (g1, g2, . . . , gs) (ordered s-uple) to obtain

f = q1g1 + q2g2 + · · · + qsgs + r
with multideg f ≥ multideg qigi ∀i
and no monomial of r is divisible by any LM(gi)

This can be achieved by a naive iterative scheme (try re-
peatedly to divide by g1, then by g2, etc. ) but uniqueness
is not guaranteed

Example
divide xy2 − x by (xy + 1, y2 − 1) to find
xy2 − x = y(xy + 1) + 0(y2 − 1) + (−x− y)
while one also has xy2 − x = 0(xy + 1) + x(y2 − 1) + 0
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Groebner bases

Definition: the generating set {g1, g2, . . . , gs} of an ideal
I = 〈g1, g2, . . . , gs〉 is a Groebner basis if and only if

〈LC(g1), . . . , LC(gs)〉 = {xα | xα = LC(f ) for some f ∈ I}

a. In a division by the elements of a Groebner basis, the
remainder is independent of the order of the gi’s (but
not the quotients qi)

b. This means that Groebner bases can be used to deter-
mine whether a polynomial belongs or not to a given
ideal

c. For a given monomial ordering, Groebner bases are
essentially unique
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d. Groebner bases can be computed with Buchberger ’s
algorithm but its complexity is exponential:

polynomials of degree bounded by d can exhibit basis

elements of degree O
(
22d

)
e. Computational experience tends to suggest that Groeb-

ner bases using the grevlex have much less elements
than those computed using the lex or the grlex order

f. However, bad behavior can still occur:

〈xn+1 − yzn−1w, xyn−1 − zn, xnz − ynw〉

with x > y > z > w grevlex leads to zn2+1 − yn2
w

in the basis
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The elimination method

Let I = 〈f1, f2, . . . , fs〉 ⊆ k[x1, x2, . . . , xn] an ideal
Define the lth elimination ideal

Il = I ∩ k[xl+1, xl+2, . . . , xn]

i.e. the set of all consequences of f1, f2, . . . , fs that do
not involve the first l variables x1, x2, . . . , xl

If G = {gi} is a Groebner basis for the lex-order, Gl =
G ∩ k[xl+1, xl+2, . . . , xn] is a Groebner basis for Il

This means in particular that Gn−1 involves only xn, from
which we can compute potential values for xn. Using then
Gn−2, one computes values for xn−1, then xn−2 etc.
Finally check the validity of all potential solutions found



François Glineur, Polynomial optimization & algebraic geometry - 22 - •First •Prev •Next •Last •Full Screen •Quit

The elimination method (cont.)

� Easily applicable to the constrained case (use slacks
for inequality constraints)

� Requires finite number of solutions to work

� Number of potential solutions can grow exponentially
with the number of variables

� Computation of the lex-order Groebner basis can be
very slow in practice

The following method will tackle this last drawback by
allowing any Groebner basis to be used
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The Stetter-Möller method (1993)

Let I = 〈f1, f2, . . . , fs〉 ⊆ k[x1, x2, . . . , xn]

Consider the space k[x1, x2, . . . , xn]/I , i.e. the quotient
space of the whole set of polynomials by the ideal: this
means we do not distinguish between polynomials if they
differ by a member of the ideal
One can show that this is a vector space whose dimension
is finite if and only if the affine variety V (I) is finite

Choosing now a Groebner basis for the ideal I , one can
check that each class of this quotient space can be repre-
sented by its remainder when divided by the Groebner
basis
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The Stetter-Möller method (cont.)

Using a basis of k[x1, x2, . . . , xn]/I (which can be easily
done by inspection of the Groebner basis), one can write
down Ai, the matrix corresponding to the linear opera-
tor describing multiplication by xi in the quotient space
k[x1, x2, . . . , xn]/I

One has then the following key result:

The eigenvalues of Ai correspond to the values that vari-
able xi takes on the affine variety V (I)

This allows to readily compute all solutions to the poly-
nomial system of equations
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The Stetter-Möller method (cont.)

� Easily applicable to the constrained case (use slacks
for inequality constraints)

� Requires finite number of solutions to work

� Number of potential solutions can grow exponentially
with the number of variables

� Key step is identification of a basis of k[x1, x2, . . . , xn]/I ,
which requires the computation of any Groebner ba-
sis (this can still be difficult)

The next method will try to alleviate the need for the
explicit computation of any type of Groebner basis
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The Hanzon-Jibetean method (2001)

Instead of minimizing p(x1, x2, . . . , xn), consider

qλ(x1, x2, . . . , xn) = p(x1, x2, . . . , xn)+λ(x2m
1 +x2m

2 +. . .+x2m
n )

where λ is a parameter and m an integer such that 2m
is greater than the total degree of p

We have
inf

x∈Rn
p(x) = lim

λ→0
min
x∈Rn

qλ(x)

→ minimize the (parameterized) polynomial q(x)
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The Hanzon-Jibetean method (cont.)

Key result: the polynomials arising from the stationarity
conditions of qλ always constitute a Groebner basis for
the ideal they generate

→ implicit Groebner basis → Stetter-Möller method

� Limit of the eigenvalues λ → 0 can be evaluated using
a power series technique

� Not applicable to the constrained case! (breaks im-
plicit Groebner basis)

� Allows for infinite number of solutions (finds minimum-
norm solution one in each connected component)!
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Resultant methods

� Resultant methods are bases on the fact that a suffi-
cient condition for that fact that two polynomials in
k[x] share a common root is the vanishing of the deter-
minant of a certain matrix called the Sylvester matrix
(easy to build from the polynomial coefficients)

� This result can be used to solve two polynomial equa-
tions involving two variables by considering one of
the variables to be a parameter and solving the poly-
nomial equation obtained by equating the resulting
Sylvester determinant to zero

� This can be applied recursively to solve any multivari-
able equation
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Sum of square methods

� In the multivariable case, sum of squares methods
only provide relaxations since there exists nonnega-
tive polynomials than cannot be expressed as a sum
of squares: x4y2 + x2y4 + z6 − 3x2y2z2 (Motzkin)

� Use some more theory, it is however possible to build a
sequence of semidefinite relaxations of increasing size
whose optima converge to the global optimum

� These methods also provide a proof for the lower bound
they compute

� Practical computational efficiency (using the first few
relaxations) seems promising (GloptiPoly, D. Henrion)
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Concluding remarks

� Many different methods for the single variable case.
Weyl’s quadtree seems the best complexity-wise but
the fact that it beats the convex reformulation is sur-
prising

� Why is it more efficient to concentrate on the station-
arity conditions rather than optimizing directly ?

� Groebner bases techniques are powerful but their worst-
case complexity is awful and practical performance
sometimes too slow

� Sum of squares relaxation vs. Hanzon & Jibetean

comparison wanted !


