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Introduction: convex and conic optimization Why convex optimization?

Convex optimization

Nonlinear optimization

min
x∈Rn

f0(x) such that fi(x) ≤ 0 for all i ∈ I and fi(x) = 0 for all i ∈ E

� Variables: finite-dimensional vector x ∈ Rn

� Constraints: finite number of (in)equalities, indexed by sets I and E

Problem is convex when

� objective function f0 is convex

� functions fi defining inequalities fi(x) ≤ 0 are convex for all i ∈ I

� functions fi defining equalities fi(x) = 0 are affine for all i ∈ E

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 1
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Introduction: convex and conic optimization Why convex optimization?

Well-known classes of convex problems

min
x∈Rn

f0(x) such that fi(x) ≤ 0 for all i ∈ I and fi(x) = 0 for all i ∈ E

1. Linear optimization (LO): f0 and fi are affine for all i ∈ E ∪ I

fi(x) = aT
i x− bi

2. Quadratically constrained quadratic optimization (QCQO):
f0 and fi are convex quadratic for all i ∈ I

fi(x) = xTQix + rT
i x + si with Qi � 0

(equalities fi, if present, must still be affine for i ∈ E)

2b. Convex quadratic can be rewritten using composition of squared
Euclidean norm and linear (vector) function:

fi(x) = ‖Aix‖2 + (rT
i x + si) with Qi = AT

i Ai

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 2
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Introduction: convex and conic optimization Why convex optimization?

More classes of well-known convex problems

3. Geometric optimization (GO):
f0 and fi are posynomials (in exponential form) for all i ∈ I

fi(x) = ci +
∑
j∈Mi

exp(aijx− bij)

Each term in the sum is the composition of exponential and affine
scalar function

4. Optimization with powers: lp-norm optimization (lpO):
f0 linear, fi are affine plus sum of convex powers with affine scalar
arguments for all i ∈ I

fi(x) = ai0x− bi0 +
∑
j∈Mi

|aijx− bij |pij with pij ≥ 1

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 3
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Introduction: convex and conic optimization Why convex optimization?

Even more classes of well-known convex problems
5. Sum-of-norm optimization (SNO):

f0 (and fi for all i ∈ I, if any) are convex norms with affine arguments

fi(x) =
∑
j∈Mi

‖Aijx− bij‖pij
with pij ≥ 1

with ‖y‖p =
(
|x1|p + |x2|p + · · ·+ |xn|p

) 1
p

6. Entropy optimization (EO):
f0 is a sum of entropy terms, fi are affine for all i ∈ E

f0(x) =
∑

i

xi log xi (implicitly implying x ≥ 0)

7. Analytic centering (AC):
f0 is a sum of logarithmic terms, fi are affine for all i ∈ I ∪ E

f0(x) = −
∑

j∈Mj

log(aijx− bij)

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 4
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Introduction: convex and conic optimization Why convex optimization?

Properties of convex optimization

Why is it interesting to consider (or restrict yourself to) convex
optimization problems?

Passive features (do not rely on knowledge of structure):

� every local minimum is a global minimum

� set of optimal solutions is convex

� optimality (KKT) conditions are necessary and sufficient
(assuming some regularity condition)

Any algorithm or solver applied to a convex problem will automatically
benefit from those features, even if problem is not structured

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 5
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Introduction: convex and conic optimization Why convex optimization?

Properties of convex optimization

Active features (require knowledge of structure):

� existence of a dual problem strongly related to original problem
(Lagrangean dual, with weak and (with assumption) strong duality)

� existence of dedicated algorithm with polynomial algorithmic
complexity (a barrier-based interior-point method - IPM)

� To use those, additional work is needed for each problem class,
exploiting its specific structure

� Reward for additional work is better understanding and ability to solve
problems more efficiently (including large-scale)

Conic optimization helps us to streamline this effort:

� Allows to obtain an explicit and symmetric dual

� Helps us to write down the self-concordant barrier required for a
polynomial-time interior-point algorithm

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 6
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Introduction: convex and conic optimization Conic optimization: a standard form for convex optimization

Conic optimization
Generalization of linear optimization (e.g. dual form)

max bTy such that ATy ≤ c

where a new ordering is used instead of ≤:

max bTy such that ATy �K c

� Ordering defined by a set K:

a �K b ⇔ 0 �K b− a ⇔ b− a ∈ K

� Set K has to be a convex cone for useful properties of ordering to
hold (and also: closed, solid and pointed for technical reasons)

� Conic optimization is completely equivalent to convex optimization

� The point of a conic formulation is to make it easier to benefit from
active features of convex optimization (duality and algorithms)

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 7
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Introduction: convex and conic optimization Conic optimization: a standard form for convex optimization

Combining several cones

Considering several conic constraints

AT
1 y �K1 c1, A

T
2 y �K2 c2, . . . and AT

Ny �KN
cN

which are equivalent to

c1 −AT
1 y ∈ K1, c2 −AT

2 y ∈ K2, . . . and cN −AT
Ny ∈ KN

introduce the Cartesian product cone K̂ = (K1 ×K2 × · · ·KN ) to write

(c1 −AT
1 y, c2 −AT

2 y, . . . , cN −AT
Ny) ∈ (K1 ×K2 · · · ×KN ) c1

...
cN

−

AT
1
...

AT
N

 �(K1×K2×···KN ) 0 ⇔ ÂTy �K̂ ĉ

→ for theory, a single cone K̂ can be considered without loss of generality

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 8
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Introduction: convex and conic optimization Conic optimization: a standard form for convex optimization

Duality for conic optimization
Problem

max bTy such that ATy �K c

admits a nice explicit and symmetrical dual

min cTx such that Ax = b and x �K∗ 0

based on the notion of dual cone

K∗ = {z ∈ Rn such that xTz ≥ 0 ∀x ∈ K}

� Weak duality always holds, strong duality holds with regularity
assumption (existence of a strictly interior point)

� To find the dual, only effort involved is computing the dual cone

� Potentially allows design of (symmetrical) primal-dual algorithms

� K̂ = (K1 ×K2 × · · ·KN ) ⇒ K̂∗ = (K∗
1 ×K∗

2 × · · ·K∗
N )

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 9
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Introduction: convex and conic optimization Conic optimization: a standard form for convex optimization

Algorithm for conic optimization
� Interior-point methods can easily be applied to conic optimization
� Main ingredient is a good barrier function for every cone K involved:

logarithmically homogeneous self-concordant barrier with parameter ν

I F : int K 7→ R is convex and three times differentiable
I F is a barrier for cone K

F (x) → +∞ when x → ∂K

I F is logarithmically homogeneous of degree ν:

F (tx) = F (x)− ν log t for all x ∈ intK and t > 0

I F is self-concordant:

∇3F (x)[h, h, h] ≤ 2
(
∇2F (x)[h, h]

) 3
2 for all x ∈ intK and h ∈ Rn

� Once a good barrier is known, design of a polynomial-time algorithm
can be completely straightforward (Nesterov & Nemirovski, 1994)

(e.g. using standard short or long step path-following algorithm)
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Introduction: convex and conic optimization Conic optimization: a standard form for convex optimization

Structured conic optimization

Following 3 cones are (by far) the most commonly used

1. K = R+ is the standard ordering, leading to linear optimization

2. K = Ln leads to second-order cone optimization (including QCQO)

Ln = {(x0, . . . , xn) ∈ Rn+1 |
√

x2
1 + · · ·+ x2

n ≤ x0}

3. K = Sn
+ (positive semidefinite matrices) for semidefinite optimization

� Modelling typically combines constraints defined from several of these
cones

K = Rnl
+ × Ln1 × · · · × Lnq × Sm1

+ × · · · × Sms
+

� Many problems from various domains (e.g. mechanical and electrical
engineering, finance) can be modelled using these cones

� Many solvers available for problems involving these cones
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Introduction: convex and conic optimization Conic optimization: a standard form for convex optimization

Self-scaled cones

� The three cones R+, Ln and Sn
+ are self-dual: K∗ = K

� Each corresponding conic problem admits a dual of the same type
(the dual of a LO problem is a LO problem, the dual of a SDO
problem is a SDO, etc.)

� Moreover, these three cones are also homogeneous: they admit
self-scaled barriers that allow the design of symmetric primal-dual
interior-point methods (Nesterov & Todd, 1997)

� Unfortunately, there exists essentially no other cone that is both
homogeneous and self-dual

� Not all convex problems can be modelled using only R+, Ln and Sn
+
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Introduction: convex and conic optimization Conic optimization: a standard form for convex optimization

Well-known convex problems and self-scaled cones

1. Linear optimization: OK with cone R+

2. Quadratically constrained quadratic optimization: OK with cone Ln

3. Geometric optimization: cannot be modelled exactly, approximation
with several Ln (size of model increases with accuracy required)

4. Optimization of p-powers: OK when p = 1 (R+) or p = 2 (Ln),
possible but complicated when p is rational with several Ln (size of
model increases with size of numerator/denominator of p)

5. Sum-of-norm optimization: OK when p = 2 with Ln, cannot be
modelled directly when p 6= 2

6. Entropy optimization: cannot be modelled directly

7. Analytic centering: cannot be modelled directly (but a modified
algorithm can be used)

In this talk, we introduce the power cone to model all of these exactly and
design a symmetric primal-dual algorithm for it
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Conic optimization based on the power cone Modelling with the power cone

Overview

1. Introduction: convex and conic optimization

� Why convex optimization?

� Conic optimization: a standard form for convex optimization

2. Conic optimization based on the power cone

� Modelling with the power cone

� Finding duals with the power cone

3. A symmetric primal-dual algorithm

� Primal, dual and primal-dual interior-point methods

� A symmetric algorithm

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone �



Conic optimization based on the power cone Modelling with the power cone

How to create a convex cone from a function
Let f : C ⊆ R 7→ R a univariate (closed) convex function
In order to create a convex cone with f , we can

� first create a convex set from function f : take the epigrah

epi f = {(x, y) | f(x) ≤ y}

� then create a convex cone from epi f : take the closed conic hull

cone epi f = cl{(v, z) ∈ epi f × R++ |
v

z
∈ epi f}

which can equivalently be written as

cone epi f = cl{(x, y, z) ∈ C × R × R++ | f(
x

z
) ≤ y

z
}

� cone epi f = K(f) is therefore a closed 3-dimensional convex cone

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 14
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Conic optimization based on the power cone Modelling with the power cone

The power cone

Choose f : x 7→ |x|
1
α with α a real parameter satisfying 0 ≤ α ≤ 1

� f is a closed convex function for every 0 ≤ α ≤ 1
� The corresponding convex cone Kα is called the power cone

Kα = cl{(x, y, z) ∈ R × R × R++ |
∣∣∣x
z

∣∣∣ 1
α ≤ y

z
}

where the defining condition can be rewritten∣∣∣x
z

∣∣∣ 1
α ≤ y

z
⇔ |x|

z
≤ (

y

z
)α ⇔ |x| ≤ yαz1−α

and finally

Kα = {(x, y, z) ∈ R × R+ × R+ | |x| ≤ yαz1−α}
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Conic optimization based on the power cone Modelling with the power cone

Modelling with the power cone
Each well-known class of structured convex problems presented earlier can
be formulated as conic optimization based on the power cone

1. Linear optimization: OK since Kα contains two copies of R+

2. Optimization of p-powers: OK since

(x, y, 1) ∈ Kα ⇔ |x| ≤ yα ⇔ |x|
1
α ≤ y ⇔ |x|p ≤ y

when choosing p = 1
α ≥ 1

→ use dual to formulate lp-norm optimization

3. Optimization of p-norms: note that for z ∈ Rn, the epigraph of the
norm

‖z‖p ≤ t ⇔ |z1|p + |z2|p · · · |zn|p ≤ tp and t ≥ 0

(with p ≥ 1) is not separable and cannot be formulated using a
combination of epigraphs of convex powers |zi|p ≤ x

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 16
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Conic optimization based on the power cone Modelling with the power cone

Modelling with the power cone (II)

3. However, we can use the following trick:

|z1|p + |z2|p · · · |zn|p ≤ tp

⇔ |z1

t
|p + |z2

t
|p · · · |zn

t
|p ≤ 1

⇔ |z1

t
|p ≤ x1

t
, · · · , |zn

t
|p ≤ xn

t
and

x1

t
+ · · ·+ xn

t
= 1

⇔ (x1, t, y1) ∈ K 1
p
, · · · , (xn, t, yn) ∈ K 1

p
and x1 + · · ·+ xn = t

which can be modelled with a conic optimization problem involving n
power cones ; therefore, sum-of-norm optimization is OK

4. In particular, this construction with α = 1
2 gives the standard

second-order cone
→ quadratically constrained quadratic optimization is OK

5. The remaining problems (geometric, entropy, analytic centering)
involve logarithms or exponentials and seem out of reach for the
power cone
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Conic optimization based on the power cone Modelling with the power cone

Modelling with the power cone (III)
5. However, we can use the following well-known limit

lim
α→0+

(1 + αx)
1
α = ex ,

valid for any real x, to obtain the exponential function
Letting x = z + αx′ (a linear transformation), the definition of the
power cone becomes:

yαz1−α ≥
∣∣z + αx′

∣∣ ⇔ yαz−α ≥
∣∣∣∣1 + α

x′

z

∣∣∣∣ ⇔ y

z
≥

∣∣∣∣1 + α
x′

z

∣∣∣∣ 1
α

⇔
∣∣∣∣1 + α

(x′

z

)∣∣∣∣ 1
α

≤ y

z

which, when taking the limit α → 0, gives the condition

exp
(x′

z

)
≤ y

z

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 18



Conic optimization based on the power cone Modelling with the power cone

Modelling with the power cone (III)
5. However, we can use the following well-known limit

lim
α→0+

(1 + αx)
1
α = ex ,

valid for any real x, to obtain the exponential function
Letting x = z + αx′ (a linear transformation), the definition of the
power cone becomes:

yαz1−α ≥
∣∣z + αx′

∣∣ ⇔ yαz−α ≥
∣∣∣∣1 + α

x′

z

∣∣∣∣ ⇔ y

z
≥

∣∣∣∣1 + α
x′

z

∣∣∣∣ 1
α

⇔
∣∣∣∣1 + α

(x′

z

)∣∣∣∣ 1
α

≤ y

z

which, when taking the limit α → 0, gives the condition

exp
(x′

z

)
≤ y

z

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 18



Conic optimization based on the power cone Modelling with the power cone

Modelling with the power cone (III)
5. However, we can use the following well-known limit

lim
α→0+

(1 + αx)
1
α = ex ,

valid for any real x, to obtain the exponential function
Letting x = z + αx′ (a linear transformation), the definition of the
power cone becomes:

yαz1−α ≥
∣∣z + αx′

∣∣ ⇔ yαz−α ≥
∣∣∣∣1 + α

x′

z

∣∣∣∣ ⇔ y

z
≥

∣∣∣∣1 + α
x′

z

∣∣∣∣ 1
α

⇔
∣∣∣∣1 + α

(x′

z

)∣∣∣∣ 1
α

≤ y

z

which, when taking the limit α → 0, gives the condition

exp
(x′

z

)
≤ y

z

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 18



Conic optimization based on the power cone Modelling with the power cone

Modelling with the power cone (III)
5. However, we can use the following well-known limit

lim
α→0+

(1 + αx)
1
α = ex ,

valid for any real x, to obtain the exponential function
Letting x = z + αx′ (a linear transformation), the definition of the
power cone becomes:

yαz1−α ≥
∣∣z + αx′

∣∣ ⇔ yαz−α ≥
∣∣∣∣1 + α

x′

z

∣∣∣∣ ⇔ y

z
≥

∣∣∣∣1 + α
x′

z

∣∣∣∣ 1
α

⇔
∣∣∣∣1 + α

(x′

z

)∣∣∣∣ 1
α

≤ y

z

which, when taking the limit α → 0, gives the condition

exp
(x′

z

)
≤ y

z

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 18



Conic optimization based on the power cone Modelling with the power cone

Modelling with the power cone (IV)

5. Finally, the limit when α → 0 of the image of the cone Kα by the
linear transformation x′ = x−z

α is the exponential cone:

Ep = {(x′, y, z) ∈ R × R+ × R+ | exp
(x′

z

)
≤ y

z
}

We can now model the epigraph of exponential function (add the
linear constraint z = 1)
→ geometric optimization is OK

6. We can also model the epigraph of minus logarithm

(−x, y, 1) ∈ Ep ⇔ exp(−x) ≤ y ⇔ − log y ≤ x

→ analytic centering is OK

7. Finally, we can also model the epigraph of entropy:

(−x, 1, z) ∈ Ep ⇔ exp(−x/z) ≤ 1/z ⇔ −x/z ≤ − log z ⇔ z log z ≤ x

→ entropy optimization is OK
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Conic optimization based on the power cone Modelling with the power cone

Combining different types of constraints

Part of the usefulness of this framework is that it allows combinations of
different types of constraints in a completely seamless way

An example: the Lambert W function, defined by W (x) expW (x) = x

From MathWorld: Banwell and Jayakumar (2000) showed that a W-function

describes the relation between voltage, current and resistance in a diode, and

Packel and Yuen (2004) applied the W-function to a ballistic projectile in the

presence of air resistance. Other applications have been discovered in statistical

mechanics, quantum chemistry, combinatorics, enzyme kinetics, the physiology of

vision, the engineering of thin films, hydrology, and the analysis of algorithms

(Hayes 2005).
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Conic optimization based on the power cone Modelling with the power cone

An example: the Lambert W function
W (x) is real for x ≥ 0, and concave on that domain ; therefore, we can
try to model the convex set defined by 0 ≤ y ≤ W (x) (intersection of its
hypograph with nonnegative orthant)

0 ≤ y ≤ W (x) ⇔ 0 ≤ y exp y ≤ W (x) expW (x) ⇔ 0 ≤ y exp y ≤ x

which can be obtained using

� a exponential constraint exp
(

z
y

)
≤ x

y and

� a quadratic constraint z ≥ y2

Indeed, we can check that

0 ≤ y exp y = y exp(y2/y) ≤ y exp(z/y) ≤ x

In summary, combining a quadratic and an exponential constraint, we have
shown that

0 ≤ y ≤ W (x) ⇔ (x, y, z) ∈ Ep and (z, 1, x) ∈ K2
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Conic optimization based on the power cone Finding duals with the power cone

Overview

1. Introduction: convex and conic optimization

� Why convex optimization?

� Conic optimization: a standard form for convex optimization

2. Conic optimization based on the power cone

� Modelling with the power cone

� Finding duals with the power cone

3. A symmetric primal-dual algorithm

� Primal, dual and primal-dual interior-point methods

� A symmetric algorithm
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Conic optimization based on the power cone Finding duals with the power cone

Dual for cones from functions

Computing an explicit dual for all the problems mentioned can be done in
a single step: simply find the dual cone of Kα

� Recall the following (adapted) definition of a conjugate function:

f∗(y) = sup
x

(
−yTx− f(x)

)
� The following results characterizes the dual of K(f)

K(f)∗ = {(x, y, z) ∈ C × R × R++ | f(x
z ) ≤ y

z}
∗

= cl{(x, y, z) ∈ R × R++ × R | f∗(x
y ) ≤ z

y}

(e.g. Rockafellar)

� This dual (K(f))∗ is nearly equal to K(f∗)
(only difference is the permutation between y and z)
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Conic optimization based on the power cone Finding duals with the power cone

Dual for the power cone

� Recall that the conjugate of x 7→ α |x|
1
α is x 7→ β |x|

1
β with α + β = 1

� Therefore the dual for this scaled version of the power cone

Kα = {(x, y, z) ∈ R × R+ × R+ | α
∣∣∣x
z

∣∣∣ 1
α ≤ y

z
}

is

(Kα)∗ = {(x, y, z) ∈ R × R+ × R+ | β
∣∣∣∣xy

∣∣∣∣ 1
β

≤ z

y
}

� However we have∣∣∣∣xy
∣∣∣∣ 1

β

≤ z

y
⇔

∣∣∣∣xy
∣∣∣∣ ≤ (

z

y
)β ⇔ |x| ≤ zβy1−β = yαzβ

so that, up to some constant factor, the dual of Kα is equal to itself
(with the same value for parameter α)
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Conic optimization based on the power cone Finding duals with the power cone

Dual for the power cone
� Actually, to make Kα exactly self-dual, one should adapt its definition

as follows:

Kα = {(x, y, z) ∈ R × R+ × R+ | |x| ≤
( y√

α

)α( z√
β

)β}

(or, alternatively, keep the original definition and use a different inner
product for the definition of the dual cone

< (x, y, z), (x∗, y∗, z∗) >= xx∗ + αyy∗ + βzz∗ )

� Self-duality clearly also holds for Cartesian products of power cones

(Kα1 ×Kα2 × · · · × KαN ) = (Kα1 ×Kα2 × · · · × KαN )∗

� This implies that the class of conic optimization problems based on
the power cone (that includes all the structured convex problems
mentioned earlier) is closed under taking the dual (which was not the
case for most of the individual classes themselves)

� Kα is self-dual but is not homogeneous (otherwise → self-scaled !)
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A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

Overview

1. Introduction: convex and conic optimization

� Why convex optimization?

� Conic optimization: a standard form for convex optimization

2. Conic optimization based on the power cone

� Modelling with the power cone

� Finding duals with the power cone

3. A symmetric primal-dual algorithm

� Primal, dual and primal-dual interior-point methods

� A symmetric algorithm
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A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a primal algorithm work ?

min cTx such that Ax = b and x �K 0

Given a self-concordant barrier F (x) for K, consider the family of
unconstrained problem parameterized by µ > 0

min cTx + µF (x) such that Ax = b

whose (unique) optimal solution x(µ) obeys the following first-order
conditions

Ax = b and ATλ− µ∇F (x) = c

� An interior-point scheme traces the set {x(µ)} (called the central
path) as parameter µ tends to 0

� Self-concordance of F guarantees that Newton’s method can track
the central path accurately

� The best methods obtain a solution with ε accuracy after

O
(√

ν log 1
ε

)
Newton steps

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 25



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a primal algorithm work ?

min cTx such that Ax = b and x �K 0

Given a self-concordant barrier F (x) for K, consider the family of
unconstrained problem parameterized by µ > 0

min cTx + µF (x) such that Ax = b

whose (unique) optimal solution x(µ) obeys the following first-order
conditions

Ax = b and ATλ− µ∇F (x) = c

� An interior-point scheme traces the set {x(µ)} (called the central
path) as parameter µ tends to 0

� Self-concordance of F guarantees that Newton’s method can track
the central path accurately

� The best methods obtain a solution with ε accuracy after

O
(√

ν log 1
ε

)
Newton steps

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 25



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a primal algorithm work ?

min cTx such that Ax = b and x �K 0

Given a self-concordant barrier F (x) for K, consider the family of
unconstrained problem parameterized by µ > 0

min cTx + µF (x) such that Ax = b

whose (unique) optimal solution x(µ) obeys the following first-order
conditions

Ax = b and ATλ− µ∇F (x) = c

� An interior-point scheme traces the set {x(µ)} (called the central
path) as parameter µ tends to 0

� Self-concordance of F guarantees that Newton’s method can track
the central path accurately

� The best methods obtain a solution with ε accuracy after

O
(√

ν log 1
ε

)
Newton steps

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 25



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a primal algorithm work ?

min cTx such that Ax = b and x �K 0

Given a self-concordant barrier F (x) for K, consider the family of
unconstrained problem parameterized by µ > 0

min cTx + µF (x) such that Ax = b

whose (unique) optimal solution x(µ) obeys the following first-order
conditions

Ax = b and ATλ− µ∇F (x) = c

� An interior-point scheme traces the set {x(µ)} (called the central
path) as parameter µ tends to 0

� Self-concordance of F guarantees that Newton’s method can track
the central path accurately

� The best methods obtain a solution with ε accuracy after

O
(√

ν log 1
ε

)
Newton steps

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 25



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a primal algorithm work ?

min cTx such that Ax = b and x �K 0

Given a self-concordant barrier F (x) for K, consider the family of
unconstrained problem parameterized by µ > 0

min cTx + µF (x) such that Ax = b

whose (unique) optimal solution x(µ) obeys the following first-order
conditions

Ax = b and ATλ− µ∇F (x) = c

� An interior-point scheme traces the set {x(µ)} (called the central
path) as parameter µ tends to 0

� Self-concordance of F guarantees that Newton’s method can track
the central path accurately

� The best methods obtain a solution with ε accuracy after

O
(√

ν log 1
ε

)
Newton steps

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 25



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a primal algorithm work ?

min cTx such that Ax = b and x �K 0

Given a self-concordant barrier F (x) for K, consider the family of
unconstrained problem parameterized by µ > 0

min cTx + µF (x) such that Ax = b

whose (unique) optimal solution x(µ) obeys the following first-order
conditions

Ax = b and ATλ− µ∇F (x) = c

� An interior-point scheme traces the set {x(µ)} (called the central
path) as parameter µ tends to 0

� Self-concordance of F guarantees that Newton’s method can track
the central path accurately

� The best methods obtain a solution with ε accuracy after

O
(√

ν log 1
ε

)
Newton steps

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 25



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a primal algorithm work ?

min cTx such that Ax = b and x �K 0

Given a self-concordant barrier F (x) for K, consider the family of
unconstrained problem parameterized by µ > 0

min cTx + µF (x) such that Ax = b

whose (unique) optimal solution x(µ) obeys the following first-order
conditions

Ax = b and ATλ− µ∇F (x) = c

� An interior-point scheme traces the set {x(µ)} (called the central
path) as parameter µ tends to 0

� Self-concordance of F guarantees that Newton’s method can track
the central path accurately

� The best methods obtain a solution with ε accuracy after

O
(√

ν log 1
ε

)
Newton steps

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 25



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

Barrier function for Kα

� Nesterov proposer a self-concordant barrier for the power cone

Kα = {(x, y, z) ∈ R × R+ × R+ | |x| ≤
( y√

α

)α( z√
β

)β = ŷαẑβ}

with a parameter ν = 4 (posing for convenience ŷ = y√
α

and ẑ = z√
β
)

F̄α(x, y, z) = − log
(
ŷ2αẑ2β − x2

)
− log ŷ − log ẑ

� This can be improved: the following barrier

Fα(x, y, z) = − log
(
ŷ2αẑ2β − x2

)
− β log ŷ − α log ẑ

is self-concordant with a lower parameter ν = 3 (G.-Chares, 2008)

� For a Cartesian product Kα1 × · · · × KαN we sum each component:
Fα1(x1, y1, z1) + · · ·+ Fα1(xN , yN , zN ) has parameter ν = 3N

� Therefore the iteration complexity to solve conic problems involving
Kα depends only on the number of cones N (not on parameter α)

O
(√

N log
1
ε

)
to obtain a solution with ε accuracy

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 26



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

Barrier function for Kα

� Nesterov proposer a self-concordant barrier for the power cone

Kα = {(x, y, z) ∈ R × R+ × R+ | |x| ≤
( y√

α

)α( z√
β

)β = ŷαẑβ}
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is self-concordant with a lower parameter ν = 3 (G.-Chares, 2008)

� For a Cartesian product Kα1 × · · · × KαN we sum each component:
Fα1(x1, y1, z1) + · · ·+ Fα1(xN , yN , zN ) has parameter ν = 3N

� Therefore the iteration complexity to solve conic problems involving
Kα depends only on the number of cones N (not on parameter α)

O
(√

N log
1
ε

)
to obtain a solution with ε accuracy

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 26



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

Barrier function for Kα

� Nesterov proposer a self-concordant barrier for the power cone

Kα = {(x, y, z) ∈ R × R+ × R+ | |x| ≤
( y√

α

)α( z√
β

)β = ŷαẑβ}
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and ẑ = z√
β
)

F̄α(x, y, z) = − log
(
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ŷ2αẑ2β − x2

)
− β log ŷ − α log ẑ
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Barrier function for Kα

� Nesterov proposer a self-concordant barrier for the power cone

Kα = {(x, y, z) ∈ R × R+ × R+ | |x| ≤
( y√

α

)α( z√
β

)β = ŷαẑβ}

with a parameter ν = 4 (posing for convenience ŷ = y√
α

and ẑ = z√
β
)

F̄α(x, y, z) = − log
(
ŷ2αẑ2β − x2

)
− log ŷ − log ẑ

� This can be improved: the following barrier
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ŷ2αẑ2β − x2

)
− β log ŷ − α log ẑ
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How does a dual algorithm work ?

max bTy such that ATy + s = c and s ∈ K∗

Given a self-concordant barrier G(s) for K∗, consider the family of
unconstrained problem parameterized by µ > 0

max bTy − µG(s) such that ATy + s = c

whose (unique) optimal solution (y(µ), s(µ)) obeys the following
first-order conditions

ATy + s = c and − µA∇G(s) = b

� Dual algorithm works exactly like primal algorithm
(only the way to write down the linear equations differs)

� For (products of) power cones, we have K∗ = K, so that we can also
take the same barrier as for the primal G(s) = Fα(s)

� However, primal and dual iterate are completely independent:
how can one compute them simultaneously and symmetrically ?

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 27



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a dual algorithm work ?

max bTy such that ATy + s = c and s ∈ K∗

Given a self-concordant barrier G(s) for K∗, consider the family of
unconstrained problem parameterized by µ > 0

max bTy − µG(s) such that ATy + s = c

whose (unique) optimal solution (y(µ), s(µ)) obeys the following
first-order conditions

ATy + s = c and − µA∇G(s) = b

� Dual algorithm works exactly like primal algorithm
(only the way to write down the linear equations differs)

� For (products of) power cones, we have K∗ = K, so that we can also
take the same barrier as for the primal G(s) = Fα(s)

� However, primal and dual iterate are completely independent:
how can one compute them simultaneously and symmetrically ?

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 27



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a dual algorithm work ?

max bTy such that ATy + s = c and s ∈ K∗

Given a self-concordant barrier G(s) for K∗, consider the family of
unconstrained problem parameterized by µ > 0

max bTy − µG(s) such that ATy + s = c

whose (unique) optimal solution (y(µ), s(µ)) obeys the following
first-order conditions

ATy + s = c and − µA∇G(s) = b

� Dual algorithm works exactly like primal algorithm
(only the way to write down the linear equations differs)

� For (products of) power cones, we have K∗ = K, so that we can also
take the same barrier as for the primal G(s) = Fα(s)

� However, primal and dual iterate are completely independent:
how can one compute them simultaneously and symmetrically ?

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 27



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a dual algorithm work ?

max bTy such that ATy + s = c and s ∈ K∗

Given a self-concordant barrier G(s) for K∗, consider the family of
unconstrained problem parameterized by µ > 0

max bTy − µG(s) such that ATy + s = c

whose (unique) optimal solution (y(µ), s(µ)) obeys the following
first-order conditions

ATy + s = c and − µA∇G(s) = b

� Dual algorithm works exactly like primal algorithm
(only the way to write down the linear equations differs)

� For (products of) power cones, we have K∗ = K, so that we can also
take the same barrier as for the primal G(s) = Fα(s)

� However, primal and dual iterate are completely independent:
how can one compute them simultaneously and symmetrically ?

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 27



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a dual algorithm work ?

max bTy such that ATy + s = c and s ∈ K∗

Given a self-concordant barrier G(s) for K∗, consider the family of
unconstrained problem parameterized by µ > 0

max bTy − µG(s) such that ATy + s = c

whose (unique) optimal solution (y(µ), s(µ)) obeys the following
first-order conditions

ATy + s = c and − µA∇G(s) = b

� Dual algorithm works exactly like primal algorithm
(only the way to write down the linear equations differs)

� For (products of) power cones, we have K∗ = K, so that we can also
take the same barrier as for the primal G(s) = Fα(s)

� However, primal and dual iterate are completely independent:
how can one compute them simultaneously and symmetrically ?

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 27



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a dual algorithm work ?

max bTy such that ATy + s = c and s ∈ K∗

Given a self-concordant barrier G(s) for K∗, consider the family of
unconstrained problem parameterized by µ > 0

max bTy − µG(s) such that ATy + s = c

whose (unique) optimal solution (y(µ), s(µ)) obeys the following
first-order conditions

ATy + s = c and − µA∇G(s) = b

� Dual algorithm works exactly like primal algorithm
(only the way to write down the linear equations differs)

� For (products of) power cones, we have K∗ = K, so that we can also
take the same barrier as for the primal G(s) = Fα(s)

� However, primal and dual iterate are completely independent:
how can one compute them simultaneously and symmetrically ?

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 27



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a dual algorithm work ?

max bTy such that ATy + s = c and s ∈ K∗

Given a self-concordant barrier G(s) for K∗, consider the family of
unconstrained problem parameterized by µ > 0

max bTy − µG(s) such that ATy + s = c

whose (unique) optimal solution (y(µ), s(µ)) obeys the following
first-order conditions

ATy + s = c and − µA∇G(s) = b

� Dual algorithm works exactly like primal algorithm
(only the way to write down the linear equations differs)

� For (products of) power cones, we have K∗ = K, so that we can also
take the same barrier as for the primal G(s) = Fα(s)

� However, primal and dual iterate are completely independent:
how can one compute them simultaneously and symmetrically ?

SIAM conf. Optimization 2008 Symmetric primal-dual algorithm for optimization based on power cone 27



A symmetric primal-dual algorithm Primal, dual and primal-dual interior-point methods

How does a primal-dual algorithm work ?

min cTx such that Ax = b and x �K 0

max bTy such that ATy + s = c and s ∈ K∗

Given self-concordant barriers F (x) for K and G(s) for K∗,
primal and dual central paths obey

Ax = b and ATλ− µ∇F (x) = c

ATy + s = c and − µA∇G(s) = b

Those two sets of equations will coincide if we have

x = −µ∇G(s), λ = y and s = −µ∇F (x)

This holds if the gradients −∇F and −∇G are inverse to each other
(this uses the fact that they are homogeneous of degree −1)
or equivalently if barriers F and G are conjugate to each other
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Primal-dual algorithm for the power cone

In the case of self-scaled cones, one has K = K∗, the same barrier for the
primal and for the dual, and that barrier is self-conjugate

F (x) = G(x) ∀x ∈ K and F ∗(x) = F (x) + constant ∀x ∈ K

For example, in the linear case, F (x) = − log x is a barrier for R+ and

F ∗(x) = −1−log x = F (x)+constant F ′(x) = −1/x ⇒ F ′(F ′(x)) = x

Unfortunately, this is no longer true for the power cone:
it is easy to check numerically that both Nesterov’s barrier and the
improved barrier are not self-conjugate

(exceptions: K 1
2

is a second-order cone, for which − log(2yz − x2) is a

self-conjugate barrier, while K0 and K1 are polyhedral and also admit a
self-conjugate barrier)
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Overview

1. Introduction: convex and conic optimization

� Why convex optimization?

� Conic optimization: a standard form for convex optimization

2. Conic optimization based on the power cone

� Modelling with the power cone

� Finding duals with the power cone

3. A symmetric primal-dual algorithm

� Primal, dual and primal-dual interior-point methods

� A symmetric algorithm
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Decomposition of barrier Fα
Although not self-conjugate, improved barrier Fα can be decomposed as

Fα(x, y, z) = − log
(
ŷ2αẑ2β − x2

)
− β log ŷ − α log ẑ

= − log
(
x−1ŷαẑβ − xŷ−αẑ−β

)
− log x− log ŷ − log ẑ

= Hα(x, y, z) + L(x, y, z)

� Hα(x, y, z) = − log
(
x−1ŷαẑβ − xŷ−αẑ−β

)
is logarithmically 0-homogeneous

� L(x, y, z) = − log x− log ŷ − log ẑ
is logarithmically 3-homogeneous ;
recall that it is self-conjugate: L∗(x, y, z) = L∗(x, y, z)

� Moreover, simple computations show that

H∗
α(x, y, z) = −Hα(x, y, z) for all 0 ≤ α ≤ 1

(Hα is self-conjugate with an additional change of sign)
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A symmetric reformulation

Consider the primal barrier subproblem

min cTx + µFα(x) such that Ax = b

and instead of using directly F (x) = Hα(x) + L(x)

(min cTx + µHα(x) + µL(x) such that Ax = b)

we reformulate it as follows

min cTx + µHα(x) + µL(x′) such that Ax = b and x = x′

Note that on the feasible region, the objective function is self-concordant
→ polynomial-time complexity achievable
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Dual for the symmetric reformulation

min cTx + µHα(x) + µL(x′) such that Ax = b and x = x′

admits the following dual problem

max bTy − µHα(−s)− µL(s′) such that ATy + y′ + s = c and y′ = s′

where we used the fact that(
Hα(x) + L(x′)

)∗ = H∗
α(x) + L∗(x′) = Hα(−x) + L(x′)

(valid because each term involves different variables)

On the following slide, in the interest of clarity, we write all expressions in
the case µ = 1 (dependence on µ is always linear and easy to handle)
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Primal-dual central path for the symmetric
reformulation

min cTx + Hα(x) + µL(x′) such that Ax = b and x = x′

max bTy −Hα(−s)− µL(s′) such that ATy + y′ + s = c and y′ = s′

admit the following optimality conditions

Ax = b, x = x′, ATλ + λ′ −∇Hα(x) = c, λ′ = −∇L(x′)

ATy + y′ + s = c, y′ = s′, A∇Hα(−s) = b and ∇Hα(−s) = −∇L(s′)

which coincide if we let λ = y, λ′ = y′ and

s = −∇Hα(x) ⇔ x = +∇Hα(−s) and s′ = −∇L(x′) ⇔ x′ = −∇L(s′)

We have a self-dual system of optimality conditions
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Symmetric form of the optimality conditions

Our optimality conditions are now self-dual, but they are not algebraically
symmetric: we have to write either s = −µ∇F (x) or x = −µ∇G(x)

For the ”linear” logarithmic barrier L(x, y, z) = − log x− log ŷ − log ẑ

s′ = −µ∇L(x′) ⇔ x′ = −µ∇L(s′)

an equivalent symmetric equation is well-known:

s′ = −µ(−x′−1) ⇔ x′is
′
i = µ

(a similar equation can be written for all self-scaled cones)

Is it also possible for the ”nonlinear” logarithmic component
Hα(x, y, z) = − log

(
x−1ŷαẑβ − xŷ−αẑ−β

)
?

s = −∇Hα(x) ⇔ x = +∇Hα(−s)
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Symmetric form for the Hα condition

s = −∇Hα(x) ⇔ x = +∇Hα(−s)

Writing x = (x, y, z) and s = (x∗, y∗, z∗)
and using again the notation ŷ = y√

α
, ŷ′ = y′√

α
, etc.

these conditions can be rewritten as

−xix
∗
i = K

ŷiŷ
∗
i = K

ẑiẑ
∗
i = K

with

K =
x−1ŷαẑβ − x∗−1ŷ∗αẑ∗β

x−1ŷαẑβ + x∗−1ŷ∗αẑ∗β

which is completely symmetric under taking the dual
→ the optimality conditions can also be written in an algebraically
symmetric way
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Concluding remarks
Modelling with the power cone

In conclusion, the family of self-dual 3-dimensional cones Kα

Kα = {(x, y, z) ∈ R × R+ × R+ | |x| ≤
( y√

α

)α( z√
β

)β}

� can model a very large class of structured convex problems (with the
notable exception of semidefinite optimization)

� enables their resolution with powerful interior-point methods

� allows the easy computation of their dual problems

Convex problems covered include linear, quadratic, second-order cone,
quadratically constrained, geometric, lp-norm, sum-of-norm, entropy
optimization and others, as well as any combinations of these

Potential drawback: conic modelling sometimes require the introduction of
some additional variables (e.g. ‖x‖p ≤ t constraint)
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Concluding remarks
Algorithms for power cone optimization

� Standard primal or dual interior-point algorithms can be applied to
power cone optimization problems, using the following self-concordant
barrier with parameter 3

Fα(x, y, z) = − log
(( y√

α

)2α( z√
β

)2β − x2
)
− β log y − α log z

� A completely symmetric primal-dual formulation has been proposed
which for which the optimality conditions can also be written in an
algebraically symmetric way

→ design a completely primal-dual symmetric interior-point method

(still need a rigorous proof of polynomial-time complexity)
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