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Administrivia

Schedule

� Part I - Convex optimization: March 11 & 16

� Part II - (Traditional) nonlinear optimization:
March 25 and April 1

� Part III - Some applications in systems and control
(by Michael Overton): April 22 & 29

Questions and comments ...

... are more than welcome, at any time !
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Plan of Lecture I

Convex optimization : duality and cones

� Introduction to nonlinear optimization

� Motivation : why convex optimization ?

� Duality

� Convex optimization

� Conic optimization

Evaluation

Modelling project (groups of two, using MATLAB)
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Plan of Lecture II

Convex optimization : models and algorithms

� Duality : from linear to conic optimization

� Conic modelling: three very expressive cones

� Algorithms : the interior-point revolution

� More applications : positive polynomials and max-cut

Corrected slides available on the web :
http://www.core.ucl.ac.be/∼glineur/

http://www.core.ucl.ac.be/~glineur/
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Duality properties

Since we generalized

max bTy such that ATy ≤ c

to
max bTy such that ATy �K c

it is tempting to generalize

min cTx such that Ax = b and x ≥ 0

to
min cTx such that Ax = b and x �K 0

But this is not the right primal-dual pair !
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Dualizing a conic problem

Remembering the dualizing procedure for linear optimiza-
tion, a crucial point lied in the ability to derive conse-
quences by taking nonnegative linear combinations of in-
equalities
Consider now the following statement 2

−1
−1

 �L2

0
0
0


which is true since (−1)2 + (−1)2 ≤ 22

Multiplying the first line by 0, 1 and the next two by 1,
we get 0.1× 2− 1× 1− 1× 1 ≥ 0 or −1.8 ≥ 0:
⇒ this is a contradiction!
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We obtained a contraction although the original system
of inequalities was consistent ⇒ something is wrong!
Some nonnegative linear combinations do not work!

Rescuing duality

Starting with

x ∈ K ⊆ Rn ⇔ x �K 0

we identify all vectors (of multipliers) z ∈ Rn such that
the consequence zTx ≥ 0 holds as soon as x �K 0

Hence we define the set

K∗ = {z ∈ Rn such that xTz ≥ 0 ∀x ∈ K}
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The dual cone

K∗ = {z ∈ Rn such that xTz ≥ 0 ∀x ∈ K}
� For any x ∈ K and z ∈ K∗, we have zTx ≥ 0

� K∗ is a convex cone, called the dual cone of K

� K∗ is always closed, and if K is closed, (K∗)∗ = K

� K is pointed (resp. solid)⇒ K∗ is solid (resp. pointed)

� Cartesian products: (K1 ×K2)
∗ = K∗1 ×K∗2

� (Rn
+)∗ = Rn

+, (Ln)∗ = Ln, (Sn
+)∗ = Sn

+ :
these cones are self-dual

� But there exists (many) cones that are not self-dual
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Bounds and optimality

Let ȳ a feasible solution (satisfying ATy �K c)
→ bTȳ is a lower bound on the optimal value f ∗

But how to

� obtain upper bounds on the optimal value ?

� prove that a feasible solution y∗ is optimal ?

Those questions are linked since

proving that y∗ is optimal
m

proving that bTy∗ is an upper bound
on the optimal value f ∗
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Generating upper bounds

Consider

max 2y1+3y2+2y3 such that

y1 + y2

y2 + y3

y3

 �L2

1
2
3

 (a)
(b)
(c)

Solution y = (−2, 1, 2) is feasible with objective value 3
→ lower bound f ∗ ≥ 3 (since (2,−1, 1) ∈ L2)

Let us combine constraints: 2(a) + (b) + (c)
(we have the right to do so since (2, 1, 1) ∈ (L2)∗ = L2)

2y1 +2y2 +y2 +y3 +y3 ≤ 2+2+3⇔ 2y1 +3y2 +2y3 ≤ 7

→ upper bound on the optimal value f ∗ ≤ 7
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The best upper bound

Let us find the best upper bound using this procedure

max

m∑
i=1

biyi such that
( m∑

i=1

aijyi

)
1≤j≤n

�K

(
cj

)
1≤j≤n

Introducing again n (multiplying) variables xi

we get
n∑

j=1

xj

m∑
i=1

aijyi ≤
n∑

j=1

xjcj ⇔
m∑

i=1

yi(

n∑
j=1

aijxj) ≤
n∑

j=1

cjxj

under the assumption that x ∈ K∗
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The best upper bound (continued)

This provides an upper bound on the objective equal to∑n
j=1 cjxj, assuming that x satisfies

n∑
j=1

aijxj = bi ∀1 ≤ i ≤ m

Minimizing now this upper bound

min

n∑
j=1

cjxj s.t.

n∑
j=1

aijxj = bi ∀1 ≤ i ≤ m and x ∈ K∗

or
min cTx such that Ax = b and x �K∗ 0

We find another conic optimization problem which is dual
to our first problem!
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Duality for conic optimization

We have completely mimicked the dualizing procedure
used for linear optimization
The problem of finding the best upper bound

min cTx such that Ax = b and x ≥ 0

becomes thus

min cTx such that Ax = b and x �K∗ 0

The correct primal-dual pair is thus

max bTy such that ATy �K c

min cTx such that Ax = b and x �K∗ 0
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Primal-dual pair

Again, for historical reasons, the min problem is called
the primal. Since our cones are closed, (K∗)∗ = K∗,
which means we can write the primal conic problem

min cTx such that Ax = b and x �K 0

and the dual conic problem

max bTy such that ATy �K∗ c

� Very symmetrical formulation

� Computing the dual essentially amounts to finding K∗

� All nonlinearities are confined to the cones K and K∗
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Duality properties

�Weak duality: any feasible solution for the primal
(resp. dual) provides an upper (resp. lower) bound
for the dual (resp. primal)

(immediate consequence of our dualizing procedure)

� Inequality bTy ≤ cTx holds for any x, y such that
Ax = b, x �K 0 and ATy �K∗ c (corollary)

� If the primal (resp. dual) is unbounded, the dual (resp.
primal) must be infeasible

(but the converse is not true!)

Completely similar to the situation for linear optimization
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Duality properties (continued)

What about strong duality ?
If y∗ is an optimal solution for the dual, does there exist an
optimal solution x∗ for the primal such that cTx∗ = bTy∗

(in other words: p∗ = d∗) ?

Consider K = L2 with

A =

(
−1 0 −1
0 −1 0

)
, b =

(
0 −1

)T
and c =

(
0 0 0

)T

We can easily check that

� the primal is infeasible

� the dual is bounded and solvable
⇒ strong duality does not hold for conic optimization ...
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Other troublesome situations

Let λ ∈ R+: consider

min λx3−2x4 s.t.

x1 x4 x5

x4 x2 x6

x5 x6 x3

 �S3
+

0,

(
x3 + x4

x2

)
=

(
1
0

)
In this case, p∗ = λ but d∗ = 2: duality gap!

min x1 such that x3 = 1 and

(
x1 x3

x3 x2

)
�S2

+
0

In this case, p∗ = 0 but the problem is unsolvable!

In all cases, one can identify the cause for our troubles:
the affine subspace defined by the linear constraints is
tangent to the cone (it does not intersect its interior)
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Rescuing strong duality

A feasible solution to a conic (primal or dual) problem is
strictly feasible iff it belongs to the interior of the cone
In other words, we must have Ax = b and x �K 0 for
the primal and ATy ≺K∗ c for the dual

Strong duality: If the dual problem admits a strictly fea-
sible solution, we have either

� an unbounded dual, in which case d∗ = +∞ = p∗

and the primal is infeasible

� a bounded dual, in which case the primal is solvable
with p∗ = d∗ (hence there exists at least one feasible
primal solution x∗ such that cTx∗ = p∗ = d∗)
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Strong duality (continued)

� If the primal problem admits a strictly feasible solu-
tion, we have either

– an unbounded primal, in which case p∗ = −∞ =
d∗ and the dual is infeasible

– a bounded primal, in which case the dual is solv-
able with d∗ = p∗ (hence there exists at least one
feasible dual solution y∗ such that bTy∗ = d∗ = p∗)

� The first case is a mere consequence of weak duality

� Finally, when both problems admit a strictly feasible
solution, both problems are solvable and we have

cTx∗ = p∗ = d∗ = bTy∗
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Conic modelling with three cones

A first cone: Rn
+

Standard meaning for inequalities:

�Rn
+
⇔ ≥

⇒ linear optimization
But we can also model some nonlinearities!

|x1 − x2| ≤ 1 ⇔ −1 ≤ x1 − x2 ≤ 1

|x1 − x2| ≤ t ⇔
(

x1 − x2 − t
x2 − x1 − t

)
≤

(
0
0

)
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Terminology: conic representability

� Set S is K-representable if can be expressed as

feasible region of conic problem using cone K

� Closed under intersection and Cartesian product

� Function f is K-representable iff

its epigraph is K-representable

� Closed under sum, positive multiplication and max

�What we can do in practice: minimize a K-representable
function over a K-representable set

where K is a product of cones Rn
+, Ln, Sn

+ and Rn
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A simple example

Consider set
S = {x2

1 + x2
2 ≤ 1}

→ can be modelled as

(x0, x1, x2) ∈ L2 and x0 = 1

⇒ S is L2-representable
but an additional variable x0 was needed
⇒ formally, S ⊆ Rn is K-representable
iff there exists a set T ⊆ Rn+m such that

a. T is K-representable

b. x ∈ S iff there exists t ∈ Rm such that (x, t) ∈ T

(i.e. S is the projection of T on Rn)
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Back to Rn
+

� Polyhedrons and polytopes are Rn
+-representable

� Hyperplanes and half-planes are Rn
+-representable

� Affine functions x 7→ aTx + b are Rn
+-representable

� Absolute values x 7→
∣∣aTx + b

∣∣ are Rn
+-representable

� Convex piecewise linear function are Rn
+-representable

Two potential issues with Rn
+ :

a. free variables in the primal → x = x+ − x−

b. equalities in the dual → aTx ≤ c and aTx ≥ c

But these are wrong solutions !
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What use is K = Rn ?

� K = Rn and K∗ = {0}
� Can be used to introduce free variables in the primal

Ax = b, x �K 0

x �Rn 0 ⇔ x is free

� or equalities in the dual ATy �K∗ c

ATy �{0} c ⇔ ATy = c

in combination with other cones

� Rn in dual or {0} is primal is useless!
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What use is Ln ?

� f : x 7→ ‖x‖, f : x 7→ ‖x‖2 and f : (x, z) 7→ ‖x‖2
z

� Br = {x ∈ Rn | ‖x‖ ≤ r}
� {(x, y) ∈ R2

+ | xy ≥ 1}
� {(x, y, z) ∈ R2

+ × R | xy ≥ z2}
� {(a, b, c, d) ∈ R4

+ | abcd ≥ 1}
� {(x, t) ∈ Rn × R× | xTQx ≤ t} with Q ∈ Sn

+

⇒ second-order cone optimization

Very useful trick: xy ≥ z2 ⇔ (x + y, x− y, 2z) ∈ L2

Unfortunately, (x, y) 7→ x
y is not convex!
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What use is Sn
+ ?

Preliminary remark: for the purpose of conic optimiza-
tion, members of Sn are viewed as vectors in Rn×n

What about constraint Ax = b ?

Ax = b⇔ aT
i x = bi ∀i

aT
i x can be views as the inner product between ai and x

Let X,Y ∈ Sn: their inner product is

X • Y =
∑

1≤i,j≤n

Xi,jYi,j = trace(XY )

→ replace aT
i x by Ai •X with Ai, X ∈ Sn
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Standard format for semidefinite optimization

The primal becomes

min C•X such that Ai•X = bi ∀1 ≤ i ≤ m and X � 0

In the conic dual, we have

ATy =
∑

aiyi, an application from Rm 7→ Rn

⇒ with the Sn
+ cone, we have

A(y) =
∑

Aiyi, an application from Rm 7→ Sn

which gives for the dual

max bTy such that

m∑
i=1

Aiyi � C
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What use is Sn
+ (continued) ?

� Sn
+ generalizes both Rn

+ and Ln (arrow matrices)

(however, using Rn
+ and Ln is more efficient)

� f : X 7→ λmax(X) and f : X 7→ −λmin(X)

� f : X 7→ maxi |λi| (X) (spectral norm)

� Describing ellipsoids {x ∈ Rn | (x−c)TE(x−c) ≤ 1}
with E � 0

� Matrix constraint XXT � Y

using the Schur Complement lemma

When A � 0 :

(
A B
BT C

)
� 0⇔ C−BTA−1B � 0

� And more ...
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Interior-point methods

Back to convex optimization

Let f : Rn 7→ R be a convex function, C ⊆ Rn be a
convex set : optimize a vector x ∈ Rn

inf
x∈Rn

f (x) s.t. x ∈ C (P)

Properties

� All local optima are global, optimal set is convex

� Lagrange duality → strongly related dual problem

� Objective can be taken linear w.l.o.g. (f (x) = cTx)
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Principle

Approximate a constrained problem by

a family of unconstrained problems

Use a barrier function F to replace the inclusion x ∈ C

� F is smooth

� F is strictly convex on int C

� F (x)→ +∞ when x→ ∂C

→ C = cl dom F = cl {x ∈ Rn | F (x) < +∞}
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Central path

Let µ ∈ R++ be a parameter and consider

inf
x∈Rn

cTx

µ
+ F (x) (Pµ)

x∗µ → x∗ when µ↘ 0

where

� x∗µ is the (unique) solution of (Pµ) (→ central path)
� x∗ is a solution of the original problem (P)
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Ingredients

� A method for unconstrained optimization

� A barrier function

Interior-point methods rely on

� Newton’s method to compute x∗µ
�When C is defined with convex constraints gi(x) ≤ 0,

one can introduce the logarithmic barrier function

F (x) = −
∑n

i=1 log(−gi(x))

Question: What is a good barrier, i.e. a barrier for
which Newton’s method is efficient ?

Answer: A self-concordant barrier
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Self-concordant barriers

Definition [Nesterov & Nemirovski, 1988]

F : int C 7→ R is called (κ, ν)-self-concordant on C iff

� F is convex

� F is three times differentiable

� F (x)→ +∞ when x→ ∂C

� the following two conditions hold

∇3F (x)[h, h, h] ≤ 2κ
(
∇2F (x)[h, h]

)3
2

∇F (x)T(∇2F (x))−1∇F (x) ≤ ν

for all x ∈ int C and h ∈ Rn
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A (simple?) example

For linear optimization, C = Rn
+: take F (x) = −

∑n
i=1 log xi

When n = 1, we can choose (κ, ν) = (1, 1)

� ∇F (x) = −1
x and ∇F (x)Th = −h

x

� ∇2F (x) = 1
x2 and ∇2F (x)[h, h] = h2

x2

� ∇3F (x) = −2 1
x3 and ∇3F (x)[h, h, h] = −2h3

x3

When n > 1, we have

� ∇F (x) = (−x−1
i ) and ∇F (x)Th = −

∑
hix
−1
i

� ∇2F (x) = diag(x−2
i ) and ∇2F (x)[h, h] =

∑
h2

ix
−2
i

� ∇3F (x) = diag3(−2x−3
i ),∇3F (x)[h, h, h] = −2

∑
h3

ix
−3
i

and one can show that (κ, ν) = (1, n) is valid
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Barrier calculus

Two elementary results:

� Scaling:

F is a (κ, ν)-s.-c. barrier for C ⊆ Rn and λ ∈ R++

⇒ (λF ) is a ( κ√
λ
, λν)-s.-c. barrier for C

� Sum:

F is a (κ1, ν1)-s.-c. barrier for C1 ⊆ Rn

G is a (κ2, ν2)-s.-c. barrier for C2 ⊆ Rn

⇒ (F + G) is a (max{κ1, κ2}, ν1 + ν2)-s.-c. barrier

for the set C1 ∩ C2 (if nonempty)
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Complexity result

Summary

Self-concordant barrier ⇒ polynomial number of
iterations to solve (P) within a given accuracy

Short-step method: follow the central path

� Measure distance to the central path with δ(x, µ)

� Choose a starting iterate with a small δ(x0, µ0) < τ

�While accuracy is not attained

a. Decrease µ geometrically (δ increases above τ )

b. Take a Newton step to minimize barrier
(δ decreases below τ )
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Geometric interpretation

Two self-concordancy conditions: each has its role

� Second condition bounds the size of the Newton step
⇒ controls the increase of the distance to the central
path when µ is updated

� First condition bounds the variation of the Hessian
⇒ guarantees that the Newton step restores the initial
distance to the central path

Summarized complexity result

O
(

κ
√

ν log
1

ε

)
iterations lead a solution with ε accuracy on the objective
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Complexity result

� Let F be a (κ, ν)-self-concordant barrier for C and
let x0 ∈ int C be a starting point,

a short-step interior-point algorithm can solve prob-
lem (P) up to ε accuracy within

O
(

κ
√

ν log
cTx0 − p∗

ε

)
iterations,

such that at each iteration the self-concordant barrier
and its first and second derivatives have to be evalu-
ated and a linear system has to be solved in Rn

� Complexity invariant w.r.t. to scaling of F

� Universal bound on complexity parameter: κ
√

ν ≥ 1
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Corollary

Assume F , ∇F and ∇2F are polynomially computable
⇒ problem (P) can be solved in polynomial time

Existence

There exists a universal SC barrier with parameters

κ = 1 and ν = O (n)

(but not necessarily efficiently computable)

Examples

� linear optimization: (κ, ν) = (1, n)⇒ O
(√

n log 1
ε

)
� entropy optimization: κ = 1 and ν = 2n⇒ O

(√
n log 1

ε

)
(inf cTx +

∑
i xi log xi such that Ax = b and x ≥ 0)
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Sketch of the proof

Define nµ(x) the Newton step taken from x to x∗µ

nµ(x) = 0 if and only if x = x∗µ

We take

δ(x, µ) = ‖nµ(x)‖x (size of the Newton step)

with a well-chosen (coordinate invariant) norm ‖·‖x
Set k ← 0, perform the following main loop:

a. µk+1 ← µk(1− θ) (decrease barrier param)

b. xk+1 ← xk + nµk+1
(xk) (take Newton step)

c. k ← k + 1
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Sketch of the proof (continued)

Key choice: parameters τ and θ such that

δ(xk, µk) < τ ⇒ δ(xk+1, µk+1) < τ

To relate δ(xk, µk) and δ(xk+1, µk+1),
introduce an intermediate quantity

δ(xk, µk+1)

We will also denote for simplicity

xk ↔ x

µk ↔ µ
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Sketch of the proof (end)

Given a (κ, ν)-self-concordant barrier:

� x ∈ dom F and µ+ = (1− θ)µ ⇒

δ(x, µ+) ≤ δ(x, µ) + θ
√

ν

1− θ

� x ∈ dom F and δ(x, µ) < 1
κ ⇒ define x+ = x+nµ(x)

x+ ∈ dom F and δ(x+, µ) ≤ κ
( δ(x, µ)

1− κδ(x, µ)

)2

with e.g. possible choice for parameters

τ =
1

4κ
and θ =

1

16κ
√

ν

(hence the name short-step)
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Primal-dual algorithms

Advantage of conic optimization over standard convex
optimization is (symmetric) duality
However previous approach does not seem to use it !
⇒ a better approach that uses duality is needed

The linear case (again)

Introduce additional vector of variables s ∈ Rn

min cTx such that Ax = b and x ≥ 0

and

max bTy such that ATy + s = c and s ≥ 0
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Primal-dual optimality conditions

min cTx such that Ax = b and x ≥ 0

and

max bTy such that ATy + s = c and s ≥ 0

Duality tells us x∗ and y∗ are optimal iff they satisfy

Ax = , x ≥ 0, ATy + s = c, s ≥ 0 and cTx = bTy

or

Ax = b, x ≥ 0, ATy + s = c, s ≥ 0 and xisi = 0 ∀i
Both problems are handled simultaneously
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Perturbed optimality conditions

Introducing a logarithmic barrier term in both problems

min cTx− µ
∑

i

log xi such that Ax = b and x > 0

max bTy + µ
∑

i

log si such that ATy + s = c and s > 0

one can derive new perturbed optimality conditions

Ax = b, x ≥ 0, ATy + s = c, s ≥ 0 and xisi = µ ∀i

Again, both problems are handled simultaneously
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Primal-dual path following algorithm

Same principle as in the general case:

� Follow the central path

� Not wandering too far from it

� Until (primal-dual) optimality

� Using a polynomial number of iterations

Complexity is also the same:

O
(√

n log
1

ε

)
iterations to get ε accuracy

But this scheme is very efficient in practice (long steps)
(all practical implementations use it nowadays)
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What about other convex/conic problems ?

This primal-dual scheme is only generalizable
to cones that are

a. self-dual (K = K∗)

b. homogeneous

(linear automorphism group acts transitively on int K)

([Nesterov & Todd 97])

There exists a complete classification of these cones :
in the real case, they are ...

Rn
+ , Ln and Sn

+

and their Cartesian products!
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Complexity

Complexity for a product of Rn
+, Ln, Sn

+

O
(√

ν log
1

ε

)
iterations to get ε accuracy

where ν is the sum of

� n for Rn
+ (see above) (barrier term is −

∑
log xi)

� n for Sn
+ (although there are n(n + 1)/2 variables)

(barrier term is − log det X = −
∑

log λi)

� 2 for Ln (independently of n !)

(barrier term is − log(x2
0−

∑
x2

i ) ; no − log x0 term!)

→ these problems are solved very efficiently in practice
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More applications

Using semidefinite optimization:

Positive polynomials

� Single variable case: exact formulation

� Test positivity and minimize on an interval

� Multiple variable case: relaxation only

The MAX-CUT relaxation

� Relaxation of a difficult discrete problem

�With a quality guarantee (0.878)
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Semidefinite optimization applications
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Software: two choices among many others

� Linear & second-order cone: MOSEK (commercial)

� Linear, sec.-ord. & semidefinite: SeDuMi (free)
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Thanks for you attention


