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Questions and comments ...

... are more than welcome, at any time !

Slides will be available on the web :
http://www.core.ucl.ac.be/~glineur/

References

This lecture is mainly based on a single recent reference

� Numerical Optimization, Jorge Nocedal and Stephen
J. Wright, Springer, 1999

http://www.core.ucl.ac.be/~glineur/
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Motivation

Modelling and decision-making

Help to choose the best decision

Decision ↔ vector of variables
Best ↔ objective function

Constraints ↔ feasible domain

 ⇒ Optimization

Use

� Numerous applications in practice

� Resolution methods efficient in practice

� Modelling and solving large-scale problems
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Introduction

Applications

� Planning, management and scheduling

Supply chain, timetables, crew composition, etc.

� Design

Dimensioning, structural optimization, networks

� Economics and finance

Portfolio optimization, computation of equilibrium

� Location analysis and transport

Facility location, circuit boards, vehicle routing

� And lots of others ...
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Two facets of optimization

� Modelling

Translate the problem into mathematical language

(sometimes trickier than you might think)

m

Formulation of an optimization problem

m

� Solving

Develop and implement algorithms that are efficient
in theory and in practice
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Close relationship

� Formulate models that you know how to solve

� Develop methods applicable to real-world problems

Classical formulation

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

(finite dimension) Often, we define

X = {x ∈ Rn | gi(x) ≤ 0 and hj(x) = 0 for i ∈ I, j ∈ J}
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Plan for Lecture I - first part

Introduction to continuous optimization

� An important special case: linear optimization

� Two paradigms: (traditional) nonlinear vs. convex

� Fundamentals of unconstrained optimization

Two strategies for unconstrained optimization

� Line search techniques

– Step length selection and convergence

� Trust-region techniques

– Model definition and convergence
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Linear optimization: three examples

A. Diet problem

Consider a set of different foods for which you know

� Quantities of calories, proteins, glucids, lipids, vita-
mins contained per unit of weight

� Price per unit of weight

Given the nutritional recommendations with respect to
daily supply of proteins, glucids, etc, design an optimal,
i.e. meeting the constraints with the lowest cost
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Formulation

� Index i for the food types (1 ≤ i ≤ n)

� Index j for the nutritional components (1 ≤ j ≤ m)

� Data (per unit of weight) :

ci → price of food type i,

aji → amount of component j in food type i,

bj → daily recommendations for component j

� Unknowns:

Quantity xi of food type i in the optimal diet
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Formulation (continued)

This is a linear problem:

min

n∑
i=1

cixi

such that

xi ≥ 0 ∀i and

n∑
i=1

ajixi = bj ∀j

Using matrix notations

min cTx such that Ax = b and x ≥ 0

This is a one of the most simple problems, and can be
solved for large dimensions (m and n ≈ 107)
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B. Assignment problem

Given

� n workers

� n tasks to accomplish

� the amount of time needed for each worker to execute
each of the tasks

Assign (bijectively) the n tasks to the n workers so that
the total execution time is minimized

This is a discrete problem with an a priori exponential
number of potential solutions (n!)→ explicit enumeration
is impossible in practice
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Formulation

First idea: xi denotes the number of the task assigned to
person i (n integer variables between 1 and n)
Problem : how to force a bijection ?
Better formulation:

� Index i for workers (1 ≤ i ≤ n)

� Index j for tasks (1 ≤ j ≤ n)

� Data :

aij → duration of task j for worker i

� Unknowns:

xij binary variable {0, 1} indicating whether worker i
executes task j
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Formulation (continued)

min

n∑
i=1

n∑
j=1

aijxij

such that
n∑

i=1

xij = 1 ∀j,
n∑

j=1

xij = 1 ∀i, and xij ∈ {0, 1} ∀i ∀j

� Higher number of variables (n2) → more difficult ?

� Linear problem with integer (binary) variables
→ different algorithms

� But bijection constraint is simplified

Although it admits an exponential number of potential
solutions, this problem can be solved very efficiently !
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C. Travelling salesman problem

Given

� a travelling salesman that has to visit n cities going
through each city once and only once

� the distance (or duration of the journey) between each
pair of cities

Find an optimal tour that visits each city once with min-
imal length (or duration)

Also a discrete and exponential problem

Other application : soldering on circuit boards
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Formulation

First idea: xi describes city visited in position i during
the tour (n integer variables between 1 and n)
Problem : how to require that each city is visited ?

Better formulation:

� Indices i and j for the cities (1 ≤ i, j ≤ n)

� Data :

aij → distance (or journey duration) between i and j

� Unknowns:

xij binary variable {0, 1} indicating whether the trip
from city i to city j is part of the trip
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Formulation (continued)

min

n∑
i=1

n∑
j=1

aijxij

such that
n∑

i=1

xij = 1 ∀j,
n∑

j=1

xij = 1 ∀i, xij ∈ {0, 1} ∀i ∀j

and
∑

i∈S,j /∈S

xij ≥ 1 ∀S with S ⊆ {1, . . . , n}, 1 < |S| < n

� High (exponential) number of constraints

� Problem is a lot harder to solve (n ≈ 104)



François Glineur, Continuous Optimization – IPOLFE - 17 - •First •Prev •Next •Last •Full Screen •Quit

Algorithms and complexity

Why are these three problems different ?

Three linear problems: a priori among the simplest ... ?

� A. Diet: continuous variables → linear optimization

� B. Assignment: discrete variables, exponential num-
ber of solutions

→ linear integer optimization (but ...)

� C. Salesman: discrete variables, exponential number
of constraints and solutions

→ linear integer optimization

However, B is not more difficult than A while C is a lot
harder than A and B !
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Algorithmic complexity

Difficulty of a problem depends on the efficiency of meth-
ods that can be applied to solve it
⇒ what is a good algorithm ?

� Solves the problem (approximately)

� Until the middle of the 20th century: in finite time
(number of elementary operations)

� Now (computers): in bounded time (depending on the
problem size)

→ algorithmic complexity (worst / average case)

Crucial distinction:
polynomial ↔ exponential complexity
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Algorithms for linear optimization

For linear optimization with continuous variables:
very efficient algorithms (n ≈ 107)

� Simplex algorithm (Dantzig, 1947)

Exponential complexity but ...

Very efficient in practice

� Ellipsoid method (Khachiyan, 1978)

Polynomial complexity but ...

Poor practical performance

� Interior-point methods (Karmarkar, 1985)

Polynomial complexity and ...

Very efficient in practice (large-scale problems)
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Algorithms for linear optimization (continued)

For linear optimization with discrete variables: algorithms
are a lot less efficient, because the problem is intrinsically
exponential
(cf. class of NP-complete problems)

� Linear relaxation (approximation)

� Branch and bound

Exponential complexity

→ Middle-scale or even small-scale problems (n ≈ 102)
can already be intractable

→ C is a lot harder to solve than A.



François Glineur, Continuous Optimization – IPOLFE - 21 - •First •Prev •Next •Last •Full Screen •Quit

What about the assignment problem B. ?

Why can it be solved efficiently ?
It can be simplified: one can replace variables xij ∈ {0, 1}
by 0 ≤ xij ≤ 1 without changing the optimal value and
solutions !
We obtain linear optimization with continuous variables
→ Reformulation is sometimes crucial

In general, if one can replace the binary variables by con-
tinuous variables with an additional polynomial number
of linear constraints, the resulting problem can be solved
in polynomial time

Combinatorial/integer/discrete problems are not always
difficult !
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Nonlinear vs. convex optimization

Why is this course divided in two lectures ?

Linear optimization does not permit satisfactory mod-
elling of all situations → let us look again at

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

where X is defined most of the time by

X = {x ∈ Rn | gi(x) ≤ 0 and hj(x) = 0 for i ∈ I, j ∈ J}
and f , gi and hj might be nonlinear
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A taxonomy

� Deterministic or stochastic∗ problem

� Accurate data or inaccurate/fuzzy∗ (robustness)

� Single or multiple∗ objectives

� Constrained or unconstrained problem

� Functions described analytically or using a black box∗

� Continuous functions or not∗, differentiable or not

� General, polynomial, quadratic, linear functions

� Continuous or discrete∗ variables

Switch categories: sometimes with reformulations
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Back to complexity

Discrete sets X can make the problem difficult
(with exponential complexity)
but even continuous problems can be difficult!

Consider a simple unconstrained minimization

min f (x1, x2, . . . , x10)

with smooth f (Lipschitz continuous with L = 2):

One can show that for any algorithm there exists some
functions where at least 1020 iterations (function evalua-
tions) are needed to find a solution with accuracy 1% !
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Two paradigms

� Tackle all problems without any efficiency guarantee

– Traditional nonlinear optimization (this lecture)

– (Meta)-Heuristic methods

� Limit the scope to some classes of problems and get
in return an efficiency guarantee

– Linear optimization

∗ very fast specialized algorithms

∗ but sometimes too limited in practice

– Convex optimization (next lecture)

Compromise: generality ↔ efficiency
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Unconstrained optimization

Fundamentals

min
x∈Rn

f (x)

(Usually) assume f is smooth, bounded below
No other assumption is made on f

Reminder: universal algorithm does not exist!



François Glineur, Continuous Optimization – IPOLFE - 27 - •First •Prev •Next •Last •Full Screen •Quit

What is a solution?

� Global minimizer x∗ iff f (x∗) ≤ f (x) ∀x
(but no hope of finding them)

� Local minimizer x∗ iff f (x∗) ≤ f (x) ∀x ∈ N
with N some open neighborhood of x∗

� Strict local minimizer iff f (x∗) < f (x) ∀x 6= x∗ ∈ N
� Isolated local minimizer iff x∗ is the only strict mini-

mizer in some neighborhood of x∗

We have strict inclusions

Isolated ⇒ Strict ⇒ Local ⇒ Global

(x4 cos(1/x)+2x4 has a strict min. in 0 but not isolated)
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Recognizing a local minimum

Main tools (assuming enough smoothness where neces-
sary):
First order:

f (x+∆x) = f (x)+∇f (x+α∆x)T∆x for some 0 < α < 1

and thus

f (x + ∆x) ≈ f (x) +∇f (x)T∆x

Second order:

f (x+∆x) = f (x)+∇f (x)T∆x+
1

2
(∆x)T∇2f (x+α∆x)∆x

for some 0 < α < 1 and thus

f (x + ∆x) ≈ f (x) +∇f (x)T∆x +
1

2
(∆x)T∇2f (x)∆x
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Necessary and sufficient conditions

� x∗ local minimizer ⇒ ∇f (x∗) = 0 (stationary point)

(∇f (x) continuous on neighborhood of x∗)

� x∗ local minimizer ⇒ ∇2f (x∗) � 0 (p.s.d.)

(∇2f (x) continuous on neighborhood of x∗)

� ∇f (x∗) = 0 and ∇2f (x∗) � 0 (p.d.)

⇒ x∗ strict local minimizer

(∇2f (x) continuous on neighborhood of x∗)

But no sufficient condition for non-strict minimizer!

� We only focus on local minimizers ; finding global
minimizer is in general very difficult (not covered here)
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Two strategies

� Line search

– Choose direction pk

– Choose step length αk solving (approximately)

min
α>0

φ(α) = f (xk + αpk)

� Trust region

– Choose model mk such that

mk(xk + pk) ≈ f (xk + pk) around xk

– Choose trust region defined by ‖pk‖ ≤ ∆k

– Minimize model (approximately) over trust region

Somehow opposite strategies!
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Line search
Which line search direction?

� Descent direction when ∇f (x)Tp < 0

� What is the best descent direction ?

min
p
∇f (x)Tp such that ‖p‖ = 1

has solution
pS = − ∇f (x)

‖∇f (x)‖
⇒ steepest descent direction

� Newton direction considering

f (x + p) ≈ f (x) +∇f (x)Tp +
1

2
pT∇2f (x)p = 0

⇒ pN = −∇2f (x)−1∇f (x) (assuming∇2f (x) p.s.d.)
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More about Newton direction

� ∇2f (x) p.s.d. ⇒ pN is a descent direction

� Computing second derivatives is potentially

expensive or error prone

⇒ replace ∇2f (x) by approximation Bk

A sound requirement:

∇f (xk+1) ≈ ∇f (xk)+∇2f (xk+1)(xk+1−xk)+o(‖xk+1 − xk‖)
⇒ ∇2f (xk+1)(xk+1 − xk) ≈ ∇f (xk+1)−∇f (xk)

⇒ Bk+1(xk+1 − xk) = ∇f (xk+1)−∇f (xk)

⇒ Bk+1sk = yk

These are called quasi-Newton directions −B−1
k ∇f (xk)
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Quasi-Newton directions

� Typically, impose symmetry on Bk (mimic Hessian)

� Update Bk with low-rank perturbation

– Symmetric rank one (SR1)

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

(yk −Bksk)Tsk

– BFGS (Broyden-Fletcher-Goldfarb-Shanno)

Bk+1 = Bk +
yky

T
k

yT
k sk

− Bksks
T
k Bk

sT
k Bksk

(rank two, Bk p.d. if B0 p.d. and sT
k yk > 0)

� Equivalent formulae for Hk = B−1
k ⇒ pk = −Hk∇f (xk)
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Scaling issues

� Poor scaling can arise from model

f (x1, x2) = 10−4x3
1 − 105x2

2

� Choice of units

� Diagonal rescaling

x̂ = Dx with D = diag di > 0

� Some methods are sensitive to poor scaling

(e.g. steepest descent)

some others are not (e.g. Newton’s method)

⇒ scale-invariance is a desirable property
(usually more difficult for TR than for LS)
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Choosing the step length: Wolfe conditions

� Sufficient decrease condition (Armijo):

f (xk + αpk) ≤ f (xk) + c1α∇f (xk)
Tpk

with 0 < c1 < 1 (typically 10−4)

Always possible to satisfy when α → 0

⇒ we also need ...

� Curvature condition

∇f (xk + αpk)
Tpk ≥ c2∇f (xk)

Tpk

with c1 < c2 < 1 (typically 0.9 for a (quasi)-Newton)
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Strong Wolfe condition

Replace curvature condition by∣∣∇f (xk + αpk)
Tpk

∣∣ ≤ c2

∣∣∇f (xk)
Tpk

∣∣
Meaning

Recall that

φ(α) = f (xk + αpk) ⇒ φ′(α) = ∇f (x + αpk)
Tpk

� Sufficient decrease condition forces rate of decrease

to be at least c1φ
′(0)

φ(α) ≤ φ(0)− αc1φ
′(0)

� Curvature condition bounds φ′(α) (strong: |φ′(α)|)
φ′(α) ≥ c2φ

′(0) (strong: |φ′(α)| ≤ c2 |φ′(0)| )
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Existence

Assume

� p is a descent direction

� φ(α) = f (xk + αpk) is bounded below for α > 0

� 0 < c1 < c2 < 1

Then there are intervals of step lengths satisfying the
Wolfe conditions and the strong Wolfe conditions

There exists a (one-dimensional) search procedure guar-
anteed to compute a point on this interval

These conditions are scale-invariant
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Backtracking

As an alternative to the second curvature condition:
Choose starting α > 0 and 0 < ρ < 1
(e.g. α = 1 for (quasi-)Newton)

� While f (xk + αpk) > f (xk) + c1α∇f (xk)
Tpk

� Update α with ρα

In practice

Good αs can be found by interpolation techniques using

� function values and

� derivatives previously computed

e.g. minimize cubic interpolant based on φ(0), φ′(0), φ(α(i))
and φ(α(i−1)) or on φ(α(i)), φ(α(i−1)), φ′(α(i)) and φ′(α(i−1))
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Convergence

Define angle θk between pk and ∇f (xk) by

cos θk = − ∇f (xk)
Tpk

‖∇f (xk)‖ ‖pk‖
Assuming f bounded below, continuously differentiable,
pk descent directions satisfying Wolfe conditions, ∇f is
Lipschitz continuous, we have∑

k≥0

cos2 θk ‖∇f (xk)‖2 < +∞ (Zoutendijk condition)

� Implies cos2 θk ‖∇f (xk)‖2 → 0

� If angle bounded away from π
2 i.e. cos θk ≥ δ > 0 then

‖∇f (xk)‖2 → 0 stationary pt (e.g. steepest descent)
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Convergence (continued)

� We only get stationary points

since no second-order information is used

� (Quasi-)Newton:

assuming

‖Bk‖ ≤ M and
∥∥B−1

k

∥∥ ≤ M

we have

cos θk ≥
1

M
⇒ convergence when Bk

– are p.d. (to ensure descent property) and

– have bounded condition numbers
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Rate of convergence: steepest descent

� For a convex quadratic f (x) = 1
2x

TQx− bTx

with exact line searches (and λi eigenvalues of Q � 0)

‖xk+1 − x∗‖Q ≤
λn − λ1

λn + λ1
‖xk − x∗‖Q

� In general with exact line searches and ∇2f (x∗) � 0

f (xk+1)− f (x∗) ≤
(λn − λ1

λn + λ1

)2

(f (xk)− f (x∗))

with λi eigenvalues of ∇2f (x∗)

→ linear rate → slow (and inexact is worse)

κ(Q) = 800, f(x0) = 1, f (x∗) = 0 ⇒ f (x1000) ≈ 0.08
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Rate of convergence: general descent

For a general descent direction pk: if

� ∇3f continuous

� x → x∗ such that

� x∗ minimizer with ∇f (x) = 0 and ∇2f (x∗) � 0

� αk satisfies Wolfe with c1 ≤ 1
2

� limk→∞
∥∥∇f (xk) +∇2f (xk)pk

∥∥ /‖pk‖ = 0

Then

� αk = 1 becomes admissible for all k ≥ k0

� xk → x∗ superlinearly if αk = 1 is chosen ∀ k ≥ k0

⇒ full step α
(0)
k = 1 must be tried first
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Rate of convergence: quasi-Newton

For pk = B−1
k ∇f (xk): if

� ∇3f continuous

� x → x∗ such that

� x∗ minimizer with ∇f (x) = 0 and ∇2f (x∗) � 0

� αk = 1 ∀k
Then

� xk → x∗ superlinearly if and only if

lim
k→∞

∥∥(Bk −∇2f (x∗))pk

∥∥
‖pk‖

= 0

� Bk → ∇2f (x∗) not needed ! (only along pk)
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Rate of convergence: Newton

For pk = ∇2f (xk)
−1∇f (xk): if

� ∇2f Lipschitz continuous

� x∗ minimizer with ∇f (x) = 0 and ∇2f (x∗) � 0

� x0 sufficiently close to x∗

� αk = 1 ∀k
Then

� xk → x∗

� quadratic rate of convergence (cf. previous slide)

� gradient norms ‖∇f (xk)‖ quadratically tend to 0
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Trust region

Idea 1: a model

� Choose model mk such that

mk(xk + pk) ≈ f (xk + pk) around xk

� Choose trust region defined by ‖pk‖ ≤ ∆k

� Minimize model (approximately) over trust region

Which model for trust-region?

� Quadratic to ease minimization

mk(xk + p) = f (xk) +∇f (xk)
Tp +

1

2
pTBkp
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mk(xk + p) = f (xk) +∇f (xk)
Tp +

1

2
pTBkp

Impose model to be exact up to first order

� Case Bk = 0 ... (not useful)

⇒ steepest descent with step length depending on ∆k

� Case Bk = ∇2f (xk)

⇒ second-order model

� Case Bk ≈ ∇2f (xk) (e.g. SR1 or BFGS)

⇒ quasi-Newton trust region

Advantage: ∆k ⇒ minimum exists (even when Bk 6� 0)
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Idea 2: update the trust region

� Model (to be trusted on region {‖x− xk‖ ≤ ∆k})

mk(xk + pk) = f (xk) +∇f (xk)
Tpk +

1

2
pT

k Bkpk

exact up to first or second order

� Trust region radius ∆k:

– decrease when model is a bad approximation of f

– increase when model is a good approximation of f

� Actual criteria depends on pk according to

ρk =
f (xk)− f (xk + pk)

mk(xk)−mk(xk + pk)
=

actual reduction

predicted reduction
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Complete algorithm

Given ∆M , 0 < ∆0 ≤ ∆M , 0 ≤ η < 1
4

For k = 0, 1, 2, . . .

� Obtain pk by solving (approximately)

min mk(xk + pk) such that ‖pk‖ ≤ ∆k

� Compute ρk

� If ρk < 1
4 set ∆k+1 = 1

4 ‖pk‖
If 1

4 ≤ ρk ≤ 3
4 set ∆k+1 = ∆k

If 3
4 < ρk set ∆k+1 = min{2∆k, ∆M}

� If ρk > η set xk+1 = xk + pk

If ρk ≤ η set xk+1 = xk
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Cauchy point

The Cauchy point is the model minimizer on the steepest
descent direction

pC
k = −τk∆k

∇f (xk)

‖∇f (xk)‖
with

τk = 1

when ∇f (xk)
TBk∇f (xk) ≤ 0 or

τk = min{1, ‖∇f (xk)‖3 /(∆k∇f (xk)
TBk∇f (xk))

when ∇f (xk)
TBk∇f (xk) > 0

� Can be inside (τk < 1) or on the boundary (τk = 1)
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Convergence result

The Cauchy point achieves the following decrease

mk(xk)−mk(xk+pC
k ) ≥ 1

2
‖∇f (xk)‖min{∆k,

‖∇f (xk)‖
‖Bk‖

}

If one can guarantee a reduction of the same order ∀k

mk(xk)−mk(xk+pk) ≥ c1 ‖∇f (xk)‖min{∆k,
‖∇f (xk)‖
‖Bk‖

}

assuming ∇f is continuous, f is bounded below and a
uniform bound ‖Bk‖ ≤ β ∀k we have

� When η = 0: lim infk→∞ ‖∇f (xk)‖ = 0

� When 0 < η < 1
4: limk→∞∇f (xk) = 0

Only stationarity is guaranteed
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Strategies for computing a valid pk

� Stick to pC
k (but second-order information not used)

� Dogleg: minimize on path xk → xk + pU
k → xk + pB

k

pU
k = − ∇f (xk)

T∇f (xk)

∇f (xk)TBk∇f (xk)
∇f (xk)

(this is the minimum along −∇f (xk))

pB = −B−1
k ∇f (xk)

(this is actual model minimizer)

– path intersects trust region boundary at most once

– intersection can be computed easily (scalar quadratic)

but this approach requires that Bk is pos. definite
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� 2D subspace minimization: minimize on xk+span{pC
k , pU

k }
(can be adapted when Bk is not p.d.)

In all three cases (Cauchy, dogleg, 2D subspace):
Cauchy decrease condition satisfied⇒ global convergence
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Plan for Lecture I - second part

Towards constrained optimization

� More on unconstrained optimization techniques

– Linear conjugate gradients (very large-scale)

– Nonlinear conjugate gradients (large-scale)

– More on trust-region methods (medium-scale)

� Brief overview of constrained optimization techniques

– Optimality conditions

– Penalty methods, barrier methods and sequential
quadratic programming (SQP)

– Nonsmooth optimization
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Linear conjugate gradients

Motivation

Strictly convex quadratic optimization: when A � 0

Minimize Φ(x) =
1

2
xTAx− bTx ⇔ Solve Ax = b

optimal x∗ unique ; observe r(x) = Ax− b = ∇Φ(x)
First naive approach: coordinate descent:
minimize successively along axes ⇒ not efficient
Better approach: define a set of conjugate directions

{p0, p1, . . . , pl} such that pT
i Apj = 0 for all i 6= j

Main result: Φ(x) can be minimized in exactly n steps
using a sequence of n conjugate directions
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Principle

Start with x0 and define xk+1 = xk + αkpk

where αk defines the exact (one-dimensional) minimizer
of Φ(xk + αpk)

αk = − rT
k pk

pT
k Apk

{xk} converges to x∗ in at most n steps for any x0

x∗ = x0 + σ0p0 + σ1p1 + · · · + σn−1pn−1

� Conjugate directions ⇒ independent directions
�

σk =
pT

k A(x∗ − x0)

pT
k Apk

� σk = αk for all k
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Geometric interpretation

When A is diagonal, we get coordinate descent
Define S = [p0 p1 . . . pn−1] and consider x = Sx̃ to get

Φ̃(x̃) = Φ(Sx̃) =
1

2
x̃TSTASx̃− bTSx̃

⇒ same problem with b̃ = STb
and Ã = STAS which is diagonal
We have

rT
k pi = 0 for all 0 ≤ i < k

and

xk minimizes Φ(xk) over x0 + span{p0, p1, . . . , pk−1}
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Conjugate gradient

This was about conjugate directions:
what about conjugate gradients?

� p0 = −∇f (x0) = −r0

� pk = −rk + βkpk−1

chosen such that conjugacy holds, i.e.

βk =
rT
k Apk−1

pT
k−1Apk−1

In practice: αk =
rT
k rk

pT
k Apk

and βk+1 =
rT
k+1rk+1

rT
k rk

(cheap!)

(we also have rk+1 = rk + αkApl)
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Properties

Assume xk is not the optimal solution x∗:

� rT
k ri = 0 for all 0 ≤ i < k

� span {r0, r1, . . . , rk} = span {p0, p1, . . . , pk}
� span {r0, r1, . . . , rk} = span {r0, Ar0, . . . , A

kr0}
� pT

k Api = 0 for all 0 ≤ i < k

⇒ convergence in (at most) n steps
Gradients are orthogonal, not conjugate (misnomer )

Rate of convergence

For large n, we have to stop before n iterations ...
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Rate of convergence (continued)

� If A has only r distinct eigenvalues, xr = x∗

� If A has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn

‖xk+1 − x∗‖A ≤
λn−k − λ1

λn−k + λ1
‖x0 − x∗‖A

→ nice behavior for clustered eigenvalues

� One also has

‖xk − x∗‖A ≤
(√

λ1/λn − 1√
λ1/λn + 1

)2k

‖x0 − x∗‖A

Preconditioning x → Cx ⇔ A → C−TAC−1

(ideally C = LT such that A = LLT)
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Nonlinear conjugate gradient

Introduction

min
x∈Rn

f (x)

where f is no longer a strictly convex quadratic
Principle: slightly modify linear conjugate gradient

� Compute αk with a line search

(instead of exact formula)

� Use actual gradient ∇f (xk) instead of rk

→ this is the Fletcher-Reeves method
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Fletcher-Reeves (continued)

Descent direction?

∇f (xk)
Tpk = −‖∇f (xk)‖2 + βFR

k ∇f (xk)
Tpk−1

� If exact line search, second term is 0 ⇒ descent

� Strong Wolfe conditions with c2 < 1
2 ensure first term

dominates ⇒ descent
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Polak-Ribière method

Simple modification (among many others)

βPR
k+1 =

∇f (xk+1)
T(∇f (xk+1)−∇f (xk))

‖∇f (xk)‖2

� Not always descent direction

(even with strong Wolfe)

� But with β+
k+1 = max{βPR

k+1, 0} → descent property

(assuming slightly modified strong Wolfe)
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More on trust-region algorithms

Exact minimization

Dogleg and subspace minimization: approximate mini-
mizer by solving one linear system involving Bk

Goal: try to find an exact model minimizer with a little
more work (i.e. solving a few more linear systems)
Hope: convergence to a better solution
(true minimizer instead of stationary point)

min m(x+p) = f (x)+∇f (x)Tp+
1

2
pTBp s.t. ‖p‖ ≤ ∆

admits optimal solution p∗ iff there exists λ ≥ 0 such that

(B+λI)p∗ = −∇f (x), λ(∆−‖p∗‖) = 0 and B+λI � 0
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Exact minimization (continued)

Solving for λ ≥ 0: define

p(λ) = −(B + λI)−1∇f (x) for λ sufficiently large

� Either λ = 0 with ‖p‖ ≤ ∆

� Or one looks for λ > 0 such that p(λ) = ∆

⇒ one-dimensional root finding in λ

Assuming (for analysis only) that B = QΛQT one gets

p =

n∑
i=1

qT
i ∇f (x)

λi + λ
qi and ‖p(λ)‖2 =

n∑
i=1

(qT
i ∇f (x))2

(λi + λ)2

One has ‖p(−λ1)‖ → +∞ decreasing to ‖p(+∞)‖ → 0
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Exact minimization (continued)

One can apply Newton’s method, usually replacing

‖p(λ)‖ −∆ = 0

by
1

‖p(λ)‖
− 1

∆
= 0

High accuracy not needed→ two or three iterations enough

Hard case

Problem when qT
1∇f (x) = 0: one has then

‖p(λ)‖ < ∆ for all λ > −λ1
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Hard case (continued): solution

� Choose λ = −λ1

� Find z such that (B − λ1I)z = 0 and ‖z‖ = 1

(eigenvector of B associated to λ1)

� Choose p according to

p =
∑

i:λi 6=λ1

qT
i ∇f (x)

λi + λ
qi + τz

such that

‖p‖2 =
∑

i:λi 6=λ1

(qT
i ∇f (x))2

(λi + λ)2
+ τ 2 = ∆2

(one-dimensional problem in τ )
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Global convergence results

� Using exact Hessians: Bk = ∇2f (xk)

� Assuming at each iteration ‖pk‖ ≤ γ∆k and

m(xk)−m(xk + pk) ≥ c1(m(xk)−m(xk + p∗k))

for some 0 < c1 ≤ 1 and γ > 0

� With constant 0 < η < 1
4

one has
lim inf
k→∞

‖∇f (xk)‖ = 0
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Global convergence results (continued)

But it can get better:
if in addition level set {x | f (x) ≤ f (x0)} is compact

� Either algorithm terminates at a point satisfying second-
order necessary conditions

∇f (xk) = 0 and ∇2f (xk) � 0

� Or {xk} has a limit point x∗ in the level set satisfying
second-order necessary conditions

∇f (x∗) = 0 and ∇2f (x∗) � 0

Convergence to (some) saddle-points cannot happen!
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Constrained optimization

Optimality conditions

min
x∈Rn

f (x) s.t. ci(x) = 0, i ∈ E and ci(x) ≥ 0, i ∈ I}
or

min
x∈Ω

f (x)

with

Ω = {x ∈ Rn | ci(x) = 0, i ∈ E and ci(x) ≥ 0, i ∈ I}
x∗ is a local minimizer iff x∗ ∈ Ω and there exists some
neighborhood N of x∗ such that

f (x∗) ≤ f (x) ∀x ∈ N∩Ω
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Lagrangian, active set and constraint qualification

Lagrangian L(x, λ) is

L(x, λ) = f (x)−
∑

i∈E∪I

λici(x)

Active set A(x) is

A(x) = E ∪ {i ∈ I | ci(x) = 0}

Linear independence constraint qualification:
LICQ condition holds at x iff the set of active gradients

{∇ci(x), i ∈ A(x)}
is linearly independent (⇒ ∇ci 6= 0 ∀i ∈ A(x))
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First-order necessary condition

Also called Karush-Kuhn-Tucker conditions (KKT)
Suppose x∗ is a local minimizer and LICQ holds at x∗:
then there exists a Lagrange multiplier vector λ with com-
ponents λi, i ∈ E ∪ I such that

∇f (x∗) =
∑

i∈A(x∗)

λ∗i∇ci(x
∗),

ci(x
∗) = 0 ∀i ∈ E , ci(x

∗) ≥ 0 ∀i ∈ I,

λ∗i ≥ 0 ∀i ∈ I and λ∗i ci(x
∗) = 0 ∀i ∈ I

� First condition is equivalent to ∇xL(x, λ) = 0 or

∇f (x∗) =
∑

i∈E∪I

λ∗i∇ci(x
∗)
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since λ∗i must be zero for each i 6∈ A(x∗)

Intuitively: ∇f (x∗) can be nonzero but must be a
linear combination of the active constraints gradients

� Last condition is called complementarity condition:

at least one of λ∗i and ci(x
∗) must be zero ∀i ∈ I

→ nonconvex condition (≈ combinatorial type)

� There are more practical conditions to replace (LICQ)

(constraint qualification → broad literature)

� There are also second-order necessary or sufficient con-
ditions (not both at the same time)

� Applied to linear optimization, one finds the standard
primal-dual optimality conditions
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Constrained optimization techniques

A brief overview

� Penalty methods: solve a sequence of unconstrained
problems

min f (x) +
1

2µ

∑
i∈E

c2
i (x)

until solution to original problem is obtained

� Exact penalty: solve a single problem with suitable µ

min f (x) +
1

2µ

∑
i∈E

|ci(x)|



François Glineur, Continuous Optimization – IPOLFE - 74 - •First •Prev •Next •Last •Full Screen •Quit

� Barrier methods: solve a sequence of unconstrained
problems

min f (x)− µ
∑
i∈I

log ci(x)

� Augmented Lagrangian methods: combine Lagrangian
with quadratic penalty

minLA(x, λ, µ) = f (x)−
∑
i∈E

λici(x) +
1

2µ

∑
i∈E

c2
i (x)

Better numerical properties
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� Quadratic programming: very special case

→ tailored algorithms

– active-set methods

– interior-point methods

� Sequential quadratic programming techniques: ap-
proximate problem (locally) with a quadratic model

Search direction pk is solution to

min
p

1

2
pTWkp +∇f (xk)

Tp s.t. Akp + ck = 0

Use merit function to determine step length
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And when gradient is not available ?

Two situations

� Differentiable function with unknown gradient

or too difficult to compute :

– automatic differentiation

– numerical estimation of derivatives

– derivative free methods

(e.g. based on interpolation techniques)
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� Truly non-differentiable function :

– Dedicated methods for specific problems (nonsmooth
optimization), e.g. eigenvalue optimization

– Reformulating the problem can make it differen-
tiable (e.g. minimization of absolute values)

– One can sometimes trade non-differentiability for
discrete variables

– In the general case (little or no information about
the function), one can try the simplex method of
Nelder-Mead (direct search method)

( 6= Dantzig’s simplex algorithm for linear optimiza-
tion)
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Thanks for you attention


