
François Glineur, Continuous Optimization – IPOLFE - 1 - •First •Prev •Next •Last •Full Screen •Quit

Continous optimization
Lecture I - Traditional nonlinear optimization

François Glineur

Université catholique de Louvain - EPL/INMA & CORE
Francois.Glineur@uclouvain.be

Inverse Problems and Optimization in Low Frequency Electromagnetism
Continuous and Discrete Optimization workshop March 3rd 2008

mailto:Francois.Glineur@uclouvain.be


François Glineur, Continuous Optimization – IPOLFE - 2 - •First •Prev •Next •Last •Full Screen •Quit

Questions and comments ...

... are more than welcome, at any time !

Slides will be available on the web :
http://www.core.ucl.ac.be/~glineur/

References

This lecture is mainly based on a single recent reference

� Numerical Optimization, Jorge Nocedal and Stephen
J. Wright, Springer, 1999

http://www.core.ucl.ac.be/~glineur/


François Glineur, Continuous Optimization – IPOLFE - 3 - •First •Prev •Next •Last •Full Screen •Quit

Motivation

Modelling and decision-making

Help to choose the best decision

Decision ↔ vector of variables
Best ↔ objective function

Constraints ↔ feasible domain

 ⇒ Optimization

Use

� Numerous applications in practice

� Resolution methods efficient in practice

� Modelling and solving large-scale problems



François Glineur, Continuous Optimization – IPOLFE - 4 - •First •Prev •Next •Last •Full Screen •Quit

Introduction

Applications

� Planning, management and scheduling

Supply chain, timetables, crew composition, etc.

� Design

Dimensioning, structural optimization, networks

� Economics and finance

Portfolio optimization, computation of equilibrium

� Location analysis and transport

Facility location, circuit boards, vehicle routing

� And lots of others ...



François Glineur, Continuous Optimization – IPOLFE - 5 - •First •Prev •Next •Last •Full Screen •Quit

Two facets of optimization

� Modelling

Translate the problem into mathematical language

(sometimes trickier than you might think)

m

Formulation of an optimization problem

m

� Solving

Develop and implement algorithms that are efficient
in theory and in practice



François Glineur, Continuous Optimization – IPOLFE - 6 - •First •Prev •Next •Last •Full Screen •Quit

Close relationship

� Formulate models that you know how to solve

� Develop methods applicable to real-world problems

Classical formulation

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

(finite dimension) Often, we define

X = {x ∈ Rn | gi(x) ≤ 0 and hj(x) = 0 for i ∈ I, j ∈ J}



François Glineur, Continuous Optimization – IPOLFE - 7 - •First •Prev •Next •Last •Full Screen •Quit

Plan for Lecture I - first part

Introduction to continuous optimization

� An important special case: linear optimization

� Two paradigms: (traditional) nonlinear vs. convex

� Fundamentals of unconstrained optimization

Two strategies for unconstrained optimization

� Line search techniques

– Step length selection and convergence

� Trust-region techniques

– Model definition and convergence



François Glineur, Continuous Optimization – IPOLFE - 8 - •First •Prev •Next •Last •Full Screen •Quit

Linear optimization: three examples

A. Diet problem

Consider a set of different foods for which you know

� Quantities of calories, proteins, glucids, lipids, vita-
mins contained per unit of weight

� Price per unit of weight

Given the nutritional recommendations with respect to
daily supply of proteins, glucids, etc, design an optimal,
i.e. meeting the constraints with the lowest cost



François Glineur, Continuous Optimization – IPOLFE - 9 - •First •Prev •Next •Last •Full Screen •Quit

Formulation

� Index i for the food types (1 ≤ i ≤ n)

� Index j for the nutritional components (1 ≤ j ≤ m)

� Data (per unit of weight) :

ci → price of food type i,

aji → amount of component j in food type i,

bj → daily recommendations for component j

� Unknowns:

Quantity xi of food type i in the optimal diet



François Glineur, Continuous Optimization – IPOLFE - 10 - •First •Prev •Next •Last •Full Screen •Quit

Formulation (continued)

This is a linear problem:

min

n∑
i=1

cixi

such that

xi ≥ 0 ∀i and

n∑
i=1

ajixi = bj ∀j

Using matrix notations

min cTx such that Ax = b and x ≥ 0

This is a one of the most simple problems, and can be
solved for large dimensions (m and n ≈ 107)



François Glineur, Continuous Optimization – IPOLFE - 11 - •First •Prev •Next •Last •Full Screen •Quit

B. Assignment problem

Given

� n workers

� n tasks to accomplish

� the amount of time needed for each worker to execute
each of the tasks

Assign (bijectively) the n tasks to the n workers so that
the total execution time is minimized

This is a discrete problem with an a priori exponential
number of potential solutions (n!)→ explicit enumeration
is impossible in practice



François Glineur, Continuous Optimization – IPOLFE - 12 - •First •Prev •Next •Last •Full Screen •Quit

Formulation

First idea: xi denotes the number of the task assigned to
person i (n integer variables between 1 and n)
Problem : how to force a bijection ?
Better formulation:

� Index i for workers (1 ≤ i ≤ n)

� Index j for tasks (1 ≤ j ≤ n)

� Data :

aij → duration of task j for worker i

� Unknowns:

xij binary variable {0, 1} indicating whether worker i
executes task j



François Glineur, Continuous Optimization – IPOLFE - 13 - •First •Prev •Next •Last •Full Screen •Quit

Formulation (continued)

min

n∑
i=1

n∑
j=1

aijxij

such that
n∑

i=1

xij = 1 ∀j,
n∑

j=1

xij = 1 ∀i, and xij ∈ {0, 1} ∀i ∀j

� Higher number of variables (n2) → more difficult ?

� Linear problem with integer (binary) variables
→ different algorithms

� But bijection constraint is simplified

Although it admits an exponential number of potential
solutions, this problem can be solved very efficiently !



François Glineur, Continuous Optimization – IPOLFE - 14 - •First •Prev •Next •Last •Full Screen •Quit

C. Travelling salesman problem

Given

� a travelling salesman that has to visit n cities going
through each city once and only once

� the distance (or duration of the journey) between each
pair of cities

Find an optimal tour that visits each city once with min-
imal length (or duration)

Also a discrete and exponential problem

Other application : soldering on circuit boards



François Glineur, Continuous Optimization – IPOLFE - 15 - •First •Prev •Next •Last •Full Screen •Quit

Formulation

First idea: xi describes city visited in position i during
the tour (n integer variables between 1 and n)
Problem : how to require that each city is visited ?

Better formulation:

� Indices i and j for the cities (1 ≤ i, j ≤ n)

� Data :

aij → distance (or journey duration) between i and j

� Unknowns:

xij binary variable {0, 1} indicating whether the trip
from city i to city j is part of the trip



François Glineur, Continuous Optimization – IPOLFE - 16 - •First •Prev •Next •Last •Full Screen •Quit

Formulation (continued)

min

n∑
i=1

n∑
j=1

aijxij

such that
n∑

i=1

xij = 1 ∀j,
n∑

j=1

xij = 1 ∀i, xij ∈ {0, 1} ∀i ∀j

and
∑

i∈S,j /∈S

xij ≥ 1 ∀S with S ⊆ {1, . . . , n}, 1 < |S| < n

� High (exponential) number of constraints

� Problem is a lot harder to solve (n ≈ 104)



François Glineur, Continuous Optimization – IPOLFE - 17 - •First •Prev •Next •Last •Full Screen •Quit

Algorithms and complexity

Why are these three problems different ?

Three linear problems: a priori among the simplest ... ?

� A. Diet: continuous variables → linear optimization

� B. Assignment: discrete variables, exponential num-
ber of solutions

→ linear integer optimization (but ...)

� C. Salesman: discrete variables, exponential number
of constraints and solutions

→ linear integer optimization

However, B is not more difficult than A while C is a lot
harder than A and B !



François Glineur, Continuous Optimization – IPOLFE - 18 - •First •Prev •Next •Last •Full Screen •Quit

Algorithmic complexity

Difficulty of a problem depends on the efficiency of meth-
ods that can be applied to solve it
⇒ what is a good algorithm ?

� Solves the problem (approximately)

� Until the middle of the 20th century: in finite time
(number of elementary operations)

� Now (computers): in bounded time (depending on the
problem size)

→ algorithmic complexity (worst / average case)

Crucial distinction:
polynomial ↔ exponential complexity



François Glineur, Continuous Optimization – IPOLFE - 19 - •First •Prev •Next •Last •Full Screen •Quit

Algorithms for linear optimization

For linear optimization with continuous variables:
very efficient algorithms (n ≈ 107)

� Simplex algorithm (Dantzig, 1947)

Exponential complexity but ...

Very efficient in practice

� Ellipsoid method (Khachiyan, 1978)

Polynomial complexity but ...

Poor practical performance

� Interior-point methods (Karmarkar, 1985)

Polynomial complexity and ...

Very efficient in practice (large-scale problems)



François Glineur, Continuous Optimization – IPOLFE - 20 - •First •Prev •Next •Last •Full Screen •Quit

Algorithms for linear optimization (continued)

For linear optimization with discrete variables: algorithms
are a lot less efficient, because the problem is intrinsically
exponential
(cf. class of NP-complete problems)

� Linear relaxation (approximation)

� Branch and bound

Exponential complexity

→ Middle-scale or even small-scale problems (n ≈ 102)
can already be intractable

→ C is a lot harder to solve than A.



François Glineur, Continuous Optimization – IPOLFE - 21 - •First •Prev •Next •Last •Full Screen •Quit

What about the assignment problem B. ?

Why can it be solved efficiently ?
It can be simplified: one can replace variables xij ∈ {0, 1}
by 0 ≤ xij ≤ 1 without changing the optimal value and
solutions !
We obtain linear optimization with continuous variables
→ Reformulation is sometimes crucial

In general, if one can replace the binary variables by con-
tinuous variables with an additional polynomial number
of linear constraints, the resulting problem can be solved
in polynomial time

Combinatorial/integer/discrete problems are not always
difficult !



François Glineur, Continuous Optimization – IPOLFE - 22 - •First •Prev •Next •Last •Full Screen •Quit

Nonlinear vs. convex optimization

Why is this course divided in two lectures ?

Linear optimization does not permit satisfactory mod-
elling of all situations → let us look again at

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

where X is defined most of the time by

X = {x ∈ Rn | gi(x) ≤ 0 and hj(x) = 0 for i ∈ I, j ∈ J}
and f , gi and hj might be nonlinear



François Glineur, Continuous Optimization – IPOLFE - 23 - •First •Prev •Next •Last •Full Screen •Quit

A taxonomy

� Deterministic or stochastic∗ problem

� Accurate data or inaccurate/fuzzy∗ (robustness)

� Single or multiple∗ objectives

� Constrained or unconstrained problem

� Functions described analytically or using a black box∗

� Continuous functions or not∗, differentiable or not

� General, polynomial, quadratic, linear functions

� Continuous or discrete∗ variables

Switch categories: sometimes with reformulations



François Glineur, Continuous Optimization – IPOLFE - 24 - •First •Prev •Next •Last •Full Screen •Quit

Back to complexity

Discrete sets X can make the problem difficult
(with exponential complexity)
but even continuous problems can be difficult!

Consider a simple unconstrained minimization

min f (x1, x2, . . . , x10)

with smooth f (Lipschitz continuous with L = 2):

One can show that for any algorithm there exists some
functions where at least 1020 iterations (function evalua-
tions) are needed to find a solution with accuracy 1% !



François Glineur, Continuous Optimization – IPOLFE - 25 - •First •Prev •Next •Last •Full Screen •Quit

Two paradigms

� Tackle all problems without any efficiency guarantee

– Traditional nonlinear optimization (this lecture)

– (Meta)-Heuristic methods

� Limit the scope to some classes of problems and get
in return an efficiency guarantee

– Linear optimization

∗ very fast specialized algorithms

∗ but sometimes too limited in practice

– Convex optimization (next lecture)

Compromise: generality ↔ efficiency



François Glineur, Continuous Optimization – IPOLFE - 26 - •First •Prev •Next •Last •Full Screen •Quit

Unconstrained optimization

Fundamentals

min
x∈Rn

f (x)

(Usually) assume f is smooth, bounded below
No other assumption is made on f

Reminder: universal algorithm does not exist!



François Glineur, Continuous Optimization – IPOLFE - 27 - •First •Prev •Next •Last •Full Screen •Quit

What is a solution?

� Global minimizer x∗ iff f (x∗) ≤ f (x) ∀x
(but no hope of finding them)

� Local minimizer x∗ iff f (x∗) ≤ f (x) ∀x ∈ N
with N some open neighborhood of x∗

� Strict local minimizer iff f (x∗) < f (x) ∀x 6= x∗ ∈ N
� Isolated local minimizer iff x∗ is the only strict mini-

mizer in some neighborhood of x∗

We have strict inclusions

Isolated ⇒ Strict ⇒ Local ⇒ Global

(x4 cos(1/x)+2x4 has a strict min. in 0 but not isolated)



François Glineur, Continuous Optimization – IPOLFE - 28 - •First •Prev •Next •Last •Full Screen •Quit

Recognizing a local minimum

Main tools (assuming enough smoothness where neces-
sary):
First order:

f (x+∆x) = f (x)+∇f (x+α∆x)T∆x for some 0 < α < 1

and thus

f (x + ∆x) ≈ f (x) +∇f (x)T∆x

Second order:

f (x+∆x) = f (x)+∇f (x)T∆x+
1

2
(∆x)T∇2f (x+α∆x)∆x

for some 0 < α < 1 and thus

f (x + ∆x) ≈ f (x) +∇f (x)T∆x +
1

2
(∆x)T∇2f (x)∆x



François Glineur, Continuous Optimization – IPOLFE - 29 - •First •Prev •Next •Last •Full Screen •Quit

Necessary and sufficient conditions

� x∗ local minimizer ⇒ ∇f (x∗) = 0 (stationary point)

(∇f (x) continuous on neighborhood of x∗)

� x∗ local minimizer ⇒ ∇2f (x∗) � 0 (p.s.d.)

(∇2f (x) continuous on neighborhood of x∗)

� ∇f (x∗) = 0 and ∇2f (x∗) � 0 (p.d.)

⇒ x∗ strict local minimizer

(∇2f (x) continuous on neighborhood of x∗)

But no sufficient condition for non-strict minimizer!

� We only focus on local minimizers ; finding global
minimizer is in general very difficult (not covered here)



François Glineur, Continuous Optimization – IPOLFE - 30 - •First •Prev •Next •Last •Full Screen •Quit

Two strategies

� Line search

– Choose direction pk

– Choose step length αk solving (approximately)

min
α>0

φ(α) = f (xk + αpk)

� Trust region

– Choose model mk such that

mk(xk + pk) ≈ f (xk + pk) around xk

– Choose trust region defined by ‖pk‖ ≤ ∆k

– Minimize model (approximately) over trust region

Somehow opposite strategies!



François Glineur, Continuous Optimization – IPOLFE - 31 - •First •Prev •Next •Last •Full Screen •Quit

Line search
Which line search direction?

� Descent direction when ∇f (x)Tp < 0

� What is the best descent direction ?

min
p
∇f (x)Tp such that ‖p‖ = 1

has solution
pS = − ∇f (x)

‖∇f (x)‖
⇒ steepest descent direction

� Newton direction considering

f (x + p) ≈ f (x) +∇f (x)Tp +
1

2
pT∇2f (x)p = 0

⇒ pN = −∇2f (x)−1∇f (x) (assuming∇2f (x) p.s.d.)



François Glineur, Continuous Optimization – IPOLFE - 32 - •First •Prev •Next •Last •Full Screen •Quit

More about Newton direction

� ∇2f (x) p.s.d. ⇒ pN is a descent direction

� Computing second derivatives is potentially

expensive or error prone

⇒ replace ∇2f (x) by approximation Bk

A sound requirement:

∇f (xk+1) ≈ ∇f (xk)+∇2f (xk+1)(xk+1−xk)+o(‖xk+1 − xk‖)
⇒ ∇2f (xk+1)(xk+1 − xk) ≈ ∇f (xk+1)−∇f (xk)

⇒ Bk+1(xk+1 − xk) = ∇f (xk+1)−∇f (xk)

⇒ Bk+1sk = yk

These are called quasi-Newton directions −B−1
k ∇f (xk)



François Glineur, Continuous Optimization – IPOLFE - 33 - •First •Prev •Next •Last •Full Screen •Quit

Quasi-Newton directions

� Typically, impose symmetry on Bk (mimic Hessian)

� Update Bk with low-rank perturbation

– Symmetric rank one (SR1)

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

(yk −Bksk)Tsk

– BFGS (Broyden-Fletcher-Goldfarb-Shanno)

Bk+1 = Bk +
yky

T
k

yT
k sk

− Bksks
T
k Bk

sT
k Bksk

(rank two, Bk p.d. if B0 p.d. and sT
k yk > 0)

� Equivalent formulae for Hk = B−1
k ⇒ pk = −Hk∇f (xk)



François Glineur, Continuous Optimization – IPOLFE - 34 - •First •Prev •Next •Last •Full Screen •Quit

Scaling issues

� Poor scaling can arise from model

f (x1, x2) = 10−4x3
1 − 105x2

2

� Choice of units

� Diagonal rescaling

x̂ = Dx with D = diag di > 0

� Some methods are sensitive to poor scaling

(e.g. steepest descent)

some others are not (e.g. Newton’s method)

⇒ scale-invariance is a desirable property
(usually more difficult for TR than for LS)



François Glineur, Continuous Optimization – IPOLFE - 35 - •First •Prev •Next •Last •Full Screen •Quit

Choosing the step length: Wolfe conditions

� Sufficient decrease condition (Armijo):

f (xk + αpk) ≤ f (xk) + c1α∇f (xk)
Tpk

with 0 < c1 < 1 (typically 10−4)

Always possible to satisfy when α → 0

⇒ we also need ...

� Curvature condition

∇f (xk + αpk)
Tpk ≥ c2∇f (xk)

Tpk

with c1 < c2 < 1 (typically 0.9 for a (quasi)-Newton)



François Glineur, Continuous Optimization – IPOLFE - 36 - •First •Prev •Next •Last •Full Screen •Quit

Strong Wolfe condition

Replace curvature condition by∣∣∇f (xk + αpk)
Tpk

∣∣ ≤ c2

∣∣∇f (xk)
Tpk

∣∣
Meaning

Recall that

φ(α) = f (xk + αpk) ⇒ φ′(α) = ∇f (x + αpk)
Tpk

� Sufficient decrease condition forces rate of decrease

to be at least c1φ
′(0)

φ(α) ≤ φ(0)− αc1φ
′(0)

� Curvature condition bounds φ′(α) (strong: |φ′(α)|)
φ′(α) ≥ c2φ

′(0) (strong: |φ′(α)| ≤ c2 |φ′(0)| )



François Glineur, Continuous Optimization – IPOLFE - 37 - •First •Prev •Next •Last •Full Screen •Quit

Existence

Assume

� p is a descent direction

� φ(α) = f (xk + αpk) is bounded below for α > 0

� 0 < c1 < c2 < 1

Then there are intervals of step lengths satisfying the
Wolfe conditions and the strong Wolfe conditions

There exists a (one-dimensional) search procedure guar-
anteed to compute a point on this interval

These conditions are scale-invariant



François Glineur, Continuous Optimization – IPOLFE - 38 - •First •Prev •Next •Last •Full Screen •Quit

Backtracking

As an alternative to the second curvature condition:
Choose starting α > 0 and 0 < ρ < 1
(e.g. α = 1 for (quasi-)Newton)

� While f (xk + αpk) > f (xk) + c1α∇f (xk)
Tpk

� Update α with ρα

In practice

Good αs can be found by interpolation techniques using

� function values and

� derivatives previously computed

e.g. minimize cubic interpolant based on φ(0), φ′(0), φ(α(i))
and φ(α(i−1)) or on φ(α(i)), φ(α(i−1)), φ′(α(i)) and φ′(α(i−1))



François Glineur, Continuous Optimization – IPOLFE - 39 - •First •Prev •Next •Last •Full Screen •Quit

Convergence

Define angle θk between pk and ∇f (xk) by

cos θk = − ∇f (xk)
Tpk

‖∇f (xk)‖ ‖pk‖
Assuming f bounded below, continuously differentiable,
pk descent directions satisfying Wolfe conditions, ∇f is
Lipschitz continuous, we have∑

k≥0

cos2 θk ‖∇f (xk)‖2 < +∞ (Zoutendijk condition)

� Implies cos2 θk ‖∇f (xk)‖2 → 0

� If angle bounded away from π
2 i.e. cos θk ≥ δ > 0 then

‖∇f (xk)‖2 → 0 stationary pt (e.g. steepest descent)



François Glineur, Continuous Optimization – IPOLFE - 40 - •First •Prev •Next •Last •Full Screen •Quit

Convergence (continued)

� We only get stationary points

since no second-order information is used

� (Quasi-)Newton:

assuming

‖Bk‖ ≤ M and
∥∥B−1

k

∥∥ ≤ M

we have

cos θk ≥
1

M
⇒ convergence when Bk

– are p.d. (to ensure descent property) and

– have bounded condition numbers



François Glineur, Continuous Optimization – IPOLFE - 41 - •First •Prev •Next •Last •Full Screen •Quit

Rate of convergence: steepest descent

� For a convex quadratic f (x) = 1
2x

TQx− bTx

with exact line searches (and λi eigenvalues of Q � 0)

‖xk+1 − x∗‖Q ≤
λn − λ1

λn + λ1
‖xk − x∗‖Q

� In general with exact line searches and ∇2f (x∗) � 0

f (xk+1)− f (x∗) ≤
(λn − λ1

λn + λ1

)2

(f (xk)− f (x∗))

with λi eigenvalues of ∇2f (x∗)

→ linear rate → slow (and inexact is worse)

κ(Q) = 800, f(x0) = 1, f (x∗) = 0 ⇒ f (x1000) ≈ 0.08



François Glineur, Continuous Optimization – IPOLFE - 42 - •First •Prev •Next •Last •Full Screen •Quit

Rate of convergence: general descent

For a general descent direction pk: if

� ∇3f continuous

� x → x∗ such that

� x∗ minimizer with ∇f (x) = 0 and ∇2f (x∗) � 0

� αk satisfies Wolfe with c1 ≤ 1
2

� limk→∞
∥∥∇f (xk) +∇2f (xk)pk

∥∥ /‖pk‖ = 0

Then

� αk = 1 becomes admissible for all k ≥ k0

� xk → x∗ superlinearly if αk = 1 is chosen ∀ k ≥ k0

⇒ full step α
(0)
k = 1 must be tried first



François Glineur, Continuous Optimization – IPOLFE - 43 - •First •Prev •Next •Last •Full Screen •Quit

Rate of convergence: quasi-Newton

For pk = B−1
k ∇f (xk): if

� ∇3f continuous

� x → x∗ such that

� x∗ minimizer with ∇f (x) = 0 and ∇2f (x∗) � 0

� αk = 1 ∀k
Then

� xk → x∗ superlinearly if and only if

lim
k→∞

∥∥(Bk −∇2f (x∗))pk

∥∥
‖pk‖

= 0

� Bk → ∇2f (x∗) not needed ! (only along pk)



François Glineur, Continuous Optimization – IPOLFE - 44 - •First •Prev •Next •Last •Full Screen •Quit

Rate of convergence: Newton

For pk = ∇2f (xk)
−1∇f (xk): if

� ∇2f Lipschitz continuous

� x∗ minimizer with ∇f (x) = 0 and ∇2f (x∗) � 0

� x0 sufficiently close to x∗

� αk = 1 ∀k
Then

� xk → x∗

� quadratic rate of convergence (cf. previous slide)

� gradient norms ‖∇f (xk)‖ quadratically tend to 0



François Glineur, Continuous Optimization – IPOLFE - 45 - •First •Prev •Next •Last •Full Screen •Quit

Trust region

Idea 1: a model

� Choose model mk such that

mk(xk + pk) ≈ f (xk + pk) around xk

� Choose trust region defined by ‖pk‖ ≤ ∆k

� Minimize model (approximately) over trust region

Which model for trust-region?

� Quadratic to ease minimization

mk(xk + p) = f (xk) +∇f (xk)
Tp +

1

2
pTBkp



François Glineur, Continuous Optimization – IPOLFE - 46 - •First •Prev •Next •Last •Full Screen •Quit

mk(xk + p) = f (xk) +∇f (xk)
Tp +

1

2
pTBkp

Impose model to be exact up to first order

� Case Bk = 0 ... (not useful)

⇒ steepest descent with step length depending on ∆k

� Case Bk = ∇2f (xk)

⇒ second-order model

� Case Bk ≈ ∇2f (xk) (e.g. SR1 or BFGS)

⇒ quasi-Newton trust region

Advantage: ∆k ⇒ minimum exists (even when Bk 6� 0)



François Glineur, Continuous Optimization – IPOLFE - 47 - •First •Prev •Next •Last •Full Screen •Quit

Idea 2: update the trust region

� Model (to be trusted on region {‖x− xk‖ ≤ ∆k})

mk(xk + pk) = f (xk) +∇f (xk)
Tpk +

1

2
pT

k Bkpk

exact up to first or second order

� Trust region radius ∆k:

– decrease when model is a bad approximation of f

– increase when model is a good approximation of f

� Actual criteria depends on pk according to

ρk =
f (xk)− f (xk + pk)

mk(xk)−mk(xk + pk)
=

actual reduction

predicted reduction



François Glineur, Continuous Optimization – IPOLFE - 48 - •First •Prev •Next •Last •Full Screen •Quit

Complete algorithm

Given ∆M , 0 < ∆0 ≤ ∆M , 0 ≤ η < 1
4

For k = 0, 1, 2, . . .

� Obtain pk by solving (approximately)

min mk(xk + pk) such that ‖pk‖ ≤ ∆k

� Compute ρk

� If ρk < 1
4 set ∆k+1 = 1

4 ‖pk‖
If 1

4 ≤ ρk ≤ 3
4 set ∆k+1 = ∆k

If 3
4 < ρk set ∆k+1 = min{2∆k, ∆M}

� If ρk > η set xk+1 = xk + pk

If ρk ≤ η set xk+1 = xk



François Glineur, Continuous Optimization – IPOLFE - 49 - •First •Prev •Next •Last •Full Screen •Quit

Cauchy point

The Cauchy point is the model minimizer on the steepest
descent direction

pC
k = −τk∆k

∇f (xk)

‖∇f (xk)‖
with

τk = 1

when ∇f (xk)
TBk∇f (xk) ≤ 0 or

τk = min{1, ‖∇f (xk)‖3 /(∆k∇f (xk)
TBk∇f (xk))

when ∇f (xk)
TBk∇f (xk) > 0

� Can be inside (τk < 1) or on the boundary (τk = 1)



François Glineur, Continuous Optimization – IPOLFE - 50 - •First •Prev •Next •Last •Full Screen •Quit

Convergence result

The Cauchy point achieves the following decrease

mk(xk)−mk(xk+pC
k ) ≥ 1

2
‖∇f (xk)‖min{∆k,

‖∇f (xk)‖
‖Bk‖

}

If one can guarantee a reduction of the same order ∀k

mk(xk)−mk(xk+pk) ≥ c1 ‖∇f (xk)‖min{∆k,
‖∇f (xk)‖
‖Bk‖

}

assuming ∇f is continuous, f is bounded below and a
uniform bound ‖Bk‖ ≤ β ∀k we have

� When η = 0: lim infk→∞ ‖∇f (xk)‖ = 0

� When 0 < η < 1
4: limk→∞∇f (xk) = 0

Only stationarity is guaranteed



François Glineur, Continuous Optimization – IPOLFE - 51 - •First •Prev •Next •Last •Full Screen •Quit

Strategies for computing a valid pk

� Stick to pC
k (but second-order information not used)

� Dogleg: minimize on path xk → xk + pU
k → xk + pB

k

pU
k = − ∇f (xk)

T∇f (xk)

∇f (xk)TBk∇f (xk)
∇f (xk)

(this is the minimum along −∇f (xk))

pB = −B−1
k ∇f (xk)

(this is actual model minimizer)

– path intersects trust region boundary at most once

– intersection can be computed easily (scalar quadratic)

but this approach requires that Bk is pos. definite



François Glineur, Continuous Optimization – IPOLFE - 52 - •First •Prev •Next •Last •Full Screen •Quit

� 2D subspace minimization: minimize on xk+span{pC
k , pU

k }
(can be adapted when Bk is not p.d.)

In all three cases (Cauchy, dogleg, 2D subspace):
Cauchy decrease condition satisfied⇒ global convergence



François Glineur, Continuous Optimization – IPOLFE - 53 - •First •Prev •Next •Last •Full Screen •Quit

Plan for Lecture I - second part

Towards constrained optimization

� More on unconstrained optimization techniques

– Linear conjugate gradients (very large-scale)

– Nonlinear conjugate gradients (large-scale)

– More on trust-region methods (medium-scale)

� Brief overview of constrained optimization techniques

– Optimality conditions

– Penalty methods, barrier methods and sequential
quadratic programming (SQP)

– Nonsmooth optimization



François Glineur, Continuous Optimization – IPOLFE - 54 - •First •Prev •Next •Last •Full Screen •Quit

Linear conjugate gradients

Motivation

Strictly convex quadratic optimization: when A � 0

Minimize Φ(x) =
1

2
xTAx− bTx ⇔ Solve Ax = b

optimal x∗ unique ; observe r(x) = Ax− b = ∇Φ(x)
First naive approach: coordinate descent:
minimize successively along axes ⇒ not efficient
Better approach: define a set of conjugate directions

{p0, p1, . . . , pl} such that pT
i Apj = 0 for all i 6= j

Main result: Φ(x) can be minimized in exactly n steps
using a sequence of n conjugate directions



François Glineur, Continuous Optimization – IPOLFE - 55 - •First •Prev •Next •Last •Full Screen •Quit

Principle

Start with x0 and define xk+1 = xk + αkpk

where αk defines the exact (one-dimensional) minimizer
of Φ(xk + αpk)

αk = − rT
k pk

pT
k Apk

{xk} converges to x∗ in at most n steps for any x0

x∗ = x0 + σ0p0 + σ1p1 + · · · + σn−1pn−1

� Conjugate directions ⇒ independent directions
�

σk =
pT

k A(x∗ − x0)

pT
k Apk

� σk = αk for all k



François Glineur, Continuous Optimization – IPOLFE - 56 - •First •Prev •Next •Last •Full Screen •Quit

Geometric interpretation

When A is diagonal, we get coordinate descent
Define S = [p0 p1 . . . pn−1] and consider x = Sx̃ to get

Φ̃(x̃) = Φ(Sx̃) =
1

2
x̃TSTASx̃− bTSx̃

⇒ same problem with b̃ = STb
and Ã = STAS which is diagonal
We have

rT
k pi = 0 for all 0 ≤ i < k

and

xk minimizes Φ(xk) over x0 + span{p0, p1, . . . , pk−1}



François Glineur, Continuous Optimization – IPOLFE - 57 - •First •Prev •Next •Last •Full Screen •Quit

Conjugate gradient

This was about conjugate directions:
what about conjugate gradients?

� p0 = −∇f (x0) = −r0

� pk = −rk + βkpk−1

chosen such that conjugacy holds, i.e.

βk =
rT
k Apk−1

pT
k−1Apk−1

In practice: αk =
rT
k rk

pT
k Apk

and βk+1 =
rT
k+1rk+1

rT
k rk

(cheap!)

(we also have rk+1 = rk + αkApl)



François Glineur, Continuous Optimization – IPOLFE - 58 - •First •Prev •Next •Last •Full Screen •Quit

Properties

Assume xk is not the optimal solution x∗:

� rT
k ri = 0 for all 0 ≤ i < k

� span {r0, r1, . . . , rk} = span {p0, p1, . . . , pk}
� span {r0, r1, . . . , rk} = span {r0, Ar0, . . . , A

kr0}
� pT

k Api = 0 for all 0 ≤ i < k

⇒ convergence in (at most) n steps
Gradients are orthogonal, not conjugate (misnomer )

Rate of convergence

For large n, we have to stop before n iterations ...



François Glineur, Continuous Optimization – IPOLFE - 59 - •First •Prev •Next •Last •Full Screen •Quit

Rate of convergence (continued)

� If A has only r distinct eigenvalues, xr = x∗

� If A has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn

‖xk+1 − x∗‖A ≤
λn−k − λ1

λn−k + λ1
‖x0 − x∗‖A

→ nice behavior for clustered eigenvalues

� One also has

‖xk − x∗‖A ≤
(√

λ1/λn − 1√
λ1/λn + 1

)2k

‖x0 − x∗‖A

Preconditioning x → Cx ⇔ A → C−TAC−1

(ideally C = LT such that A = LLT)



François Glineur, Continuous Optimization – IPOLFE - 60 - •First •Prev •Next •Last •Full Screen •Quit

Nonlinear conjugate gradient

Introduction

min
x∈Rn

f (x)

where f is no longer a strictly convex quadratic
Principle: slightly modify linear conjugate gradient

� Compute αk with a line search

(instead of exact formula)

� Use actual gradient ∇f (xk) instead of rk

→ this is the Fletcher-Reeves method



François Glineur, Continuous Optimization – IPOLFE - 61 - •First •Prev •Next •Last •Full Screen •Quit

Fletcher-Reeves (continued)

Descent direction?

∇f (xk)
Tpk = −‖∇f (xk)‖2 + βFR

k ∇f (xk)
Tpk−1

� If exact line search, second term is 0 ⇒ descent

� Strong Wolfe conditions with c2 < 1
2 ensure first term

dominates ⇒ descent



François Glineur, Continuous Optimization – IPOLFE - 62 - •First •Prev •Next •Last •Full Screen •Quit

Polak-Ribière method

Simple modification (among many others)

βPR
k+1 =

∇f (xk+1)
T(∇f (xk+1)−∇f (xk))

‖∇f (xk)‖2

� Not always descent direction

(even with strong Wolfe)

� But with β+
k+1 = max{βPR

k+1, 0} → descent property

(assuming slightly modified strong Wolfe)



François Glineur, Continuous Optimization – IPOLFE - 63 - •First •Prev •Next •Last •Full Screen •Quit

More on trust-region algorithms

Exact minimization

Dogleg and subspace minimization: approximate mini-
mizer by solving one linear system involving Bk

Goal: try to find an exact model minimizer with a little
more work (i.e. solving a few more linear systems)
Hope: convergence to a better solution
(true minimizer instead of stationary point)

min m(x+p) = f (x)+∇f (x)Tp+
1

2
pTBp s.t. ‖p‖ ≤ ∆

admits optimal solution p∗ iff there exists λ ≥ 0 such that

(B+λI)p∗ = −∇f (x), λ(∆−‖p∗‖) = 0 and B+λI � 0



François Glineur, Continuous Optimization – IPOLFE - 64 - •First •Prev •Next •Last •Full Screen •Quit

Exact minimization (continued)

Solving for λ ≥ 0: define

p(λ) = −(B + λI)−1∇f (x) for λ sufficiently large

� Either λ = 0 with ‖p‖ ≤ ∆

� Or one looks for λ > 0 such that p(λ) = ∆

⇒ one-dimensional root finding in λ

Assuming (for analysis only) that B = QΛQT one gets

p =

n∑
i=1

qT
i ∇f (x)

λi + λ
qi and ‖p(λ)‖2 =

n∑
i=1

(qT
i ∇f (x))2

(λi + λ)2

One has ‖p(−λ1)‖ → +∞ decreasing to ‖p(+∞)‖ → 0



François Glineur, Continuous Optimization – IPOLFE - 65 - •First •Prev •Next •Last •Full Screen •Quit

Exact minimization (continued)

One can apply Newton’s method, usually replacing

‖p(λ)‖ −∆ = 0

by
1

‖p(λ)‖
− 1

∆
= 0

High accuracy not needed→ two or three iterations enough

Hard case

Problem when qT
1∇f (x) = 0: one has then

‖p(λ)‖ < ∆ for all λ > −λ1



François Glineur, Continuous Optimization – IPOLFE - 66 - •First •Prev •Next •Last •Full Screen •Quit

Hard case (continued): solution

� Choose λ = −λ1

� Find z such that (B − λ1I)z = 0 and ‖z‖ = 1

(eigenvector of B associated to λ1)

� Choose p according to

p =
∑

i:λi 6=λ1

qT
i ∇f (x)

λi + λ
qi + τz

such that

‖p‖2 =
∑

i:λi 6=λ1

(qT
i ∇f (x))2

(λi + λ)2
+ τ 2 = ∆2

(one-dimensional problem in τ )



François Glineur, Continuous Optimization – IPOLFE - 67 - •First •Prev •Next •Last •Full Screen •Quit

Global convergence results

� Using exact Hessians: Bk = ∇2f (xk)

� Assuming at each iteration ‖pk‖ ≤ γ∆k and

m(xk)−m(xk + pk) ≥ c1(m(xk)−m(xk + p∗k))

for some 0 < c1 ≤ 1 and γ > 0

� With constant 0 < η < 1
4

one has
lim inf
k→∞

‖∇f (xk)‖ = 0



François Glineur, Continuous Optimization – IPOLFE - 68 - •First •Prev •Next •Last •Full Screen •Quit

Global convergence results (continued)

But it can get better:
if in addition level set {x | f (x) ≤ f (x0)} is compact

� Either algorithm terminates at a point satisfying second-
order necessary conditions

∇f (xk) = 0 and ∇2f (xk) � 0

� Or {xk} has a limit point x∗ in the level set satisfying
second-order necessary conditions

∇f (x∗) = 0 and ∇2f (x∗) � 0

Convergence to (some) saddle-points cannot happen!



François Glineur, Continuous Optimization – IPOLFE - 69 - •First •Prev •Next •Last •Full Screen •Quit

Constrained optimization

Optimality conditions

min
x∈Rn

f (x) s.t. ci(x) = 0, i ∈ E and ci(x) ≥ 0, i ∈ I}
or

min
x∈Ω

f (x)

with

Ω = {x ∈ Rn | ci(x) = 0, i ∈ E and ci(x) ≥ 0, i ∈ I}
x∗ is a local minimizer iff x∗ ∈ Ω and there exists some
neighborhood N of x∗ such that

f (x∗) ≤ f (x) ∀x ∈ N∩Ω



François Glineur, Continuous Optimization – IPOLFE - 70 - •First •Prev •Next •Last •Full Screen •Quit

Lagrangian, active set and constraint qualification

Lagrangian L(x, λ) is

L(x, λ) = f (x)−
∑

i∈E∪I

λici(x)

Active set A(x) is

A(x) = E ∪ {i ∈ I | ci(x) = 0}

Linear independence constraint qualification:
LICQ condition holds at x iff the set of active gradients

{∇ci(x), i ∈ A(x)}
is linearly independent (⇒ ∇ci 6= 0 ∀i ∈ A(x))



François Glineur, Continuous Optimization – IPOLFE - 71 - •First •Prev •Next •Last •Full Screen •Quit

First-order necessary condition

Also called Karush-Kuhn-Tucker conditions (KKT)
Suppose x∗ is a local minimizer and LICQ holds at x∗:
then there exists a Lagrange multiplier vector λ with com-
ponents λi, i ∈ E ∪ I such that

∇f (x∗) =
∑

i∈A(x∗)

λ∗i∇ci(x
∗),

ci(x
∗) = 0 ∀i ∈ E , ci(x

∗) ≥ 0 ∀i ∈ I,

λ∗i ≥ 0 ∀i ∈ I and λ∗i ci(x
∗) = 0 ∀i ∈ I

� First condition is equivalent to ∇xL(x, λ) = 0 or

∇f (x∗) =
∑

i∈E∪I

λ∗i∇ci(x
∗)



François Glineur, Continuous Optimization – IPOLFE - 72 - •First •Prev •Next •Last •Full Screen •Quit

since λ∗i must be zero for each i 6∈ A(x∗)

Intuitively: ∇f (x∗) can be nonzero but must be a
linear combination of the active constraints gradients

� Last condition is called complementarity condition:

at least one of λ∗i and ci(x
∗) must be zero ∀i ∈ I

→ nonconvex condition (≈ combinatorial type)

� There are more practical conditions to replace (LICQ)

(constraint qualification → broad literature)

� There are also second-order necessary or sufficient con-
ditions (not both at the same time)

� Applied to linear optimization, one finds the standard
primal-dual optimality conditions



François Glineur, Continuous Optimization – IPOLFE - 73 - •First •Prev •Next •Last •Full Screen •Quit

Constrained optimization techniques

A brief overview

� Penalty methods: solve a sequence of unconstrained
problems

min f (x) +
1

2µ

∑
i∈E

c2
i (x)

until solution to original problem is obtained

� Exact penalty: solve a single problem with suitable µ

min f (x) +
1

2µ

∑
i∈E

|ci(x)|



François Glineur, Continuous Optimization – IPOLFE - 74 - •First •Prev •Next •Last •Full Screen •Quit

� Barrier methods: solve a sequence of unconstrained
problems

min f (x)− µ
∑
i∈I

log ci(x)

� Augmented Lagrangian methods: combine Lagrangian
with quadratic penalty

minLA(x, λ, µ) = f (x)−
∑
i∈E

λici(x) +
1

2µ

∑
i∈E

c2
i (x)

Better numerical properties



François Glineur, Continuous Optimization – IPOLFE - 75 - •First •Prev •Next •Last •Full Screen •Quit

� Quadratic programming: very special case

→ tailored algorithms

– active-set methods

– interior-point methods

� Sequential quadratic programming techniques: ap-
proximate problem (locally) with a quadratic model

Search direction pk is solution to

min
p

1

2
pTWkp +∇f (xk)

Tp s.t. Akp + ck = 0

Use merit function to determine step length



François Glineur, Continuous Optimization – IPOLFE - 76 - •First •Prev •Next •Last •Full Screen •Quit

And when gradient is not available ?

Two situations

� Differentiable function with unknown gradient

or too difficult to compute :

– automatic differentiation

– numerical estimation of derivatives

– derivative free methods

(e.g. based on interpolation techniques)



François Glineur, Continuous Optimization – IPOLFE - 77 - •First •Prev •Next •Last •Full Screen •Quit

� Truly non-differentiable function :

– Dedicated methods for specific problems (nonsmooth
optimization), e.g. eigenvalue optimization

– Reformulating the problem can make it differen-
tiable (e.g. minimization of absolute values)

– One can sometimes trade non-differentiability for
discrete variables

– In the general case (little or no information about
the function), one can try the simplex method of
Nelder-Mead (direct search method)

( 6= Dantzig’s simplex algorithm for linear optimiza-
tion)



François Glineur, Continuous Optimization – IPOLFE - 78 - •First •Prev •Next •Last •Full Screen •Quit

Thanks for you attention


