
Stationary induction, reduction to the
non-commutative Nevo–Zimmer theorem for G

Abstract

These are the notes for a presentation of about 1 hour in the joint seminar with Louvain-
la-Neuve. This is the fifth lecture in the series.

1 Recap

The setting is as in the previous lectures. G is a connected simple Lie group with trivial center
and rank rkR(G) ≥ 2. Then we can choose a maximal compact subgroup K ⊂ G and a maximal
cocompact amenable subgroup P ⊂ G (minimal parabolic subgroup) such that G = KP . In
this case, we denote νP ∈ Prob(G/P ) the unique K-invariant (Borel) probability measure.
When µ is a K-invariant measure on G, then the Poisson boundary of (G,µ) is given by
(G/P, νP ). We can use uniqueness to see that νP is µ-stationary. Indeed, the measure µ ∗ νP
is K-invariant and therefore it must equal νP .
We recall a few concepts from the previous lecture in the following definition.

Definition 1.1. Let Λ be a countable discrete group. Then PD1(Λ) denotes the convex
compact space of all the positive definite functions ϕ : Λ → C such that ϕ(e) = 1. Λ acts on
PD1(Λ) by conjugation, and we write Char(Λ) = PD1(Λ)

Λ, so ϕ ∈ Char(Λ) if ϕ(λxλ−1) = ϕ(x)
for all x, λ ∈ Λ.
If H is an lcsc group and µ is a probability measure on H, then a bounded function f ∈
L∞(H,µ) is called harmonic if

(µ ∗ f)(g) =
∫
H
f(gh)dµ(h) = f(g)

for every g ∈ H. We denote by Har∞(H,µ) the space of bounded harmonic functions.
If H y M is an action on a von Neumann algebra, a state ψ on M is called µ-stationary
if (µ ∗ ψ)(x) =

∫
H(h · ψ)(x)dµ(h) = ψ(x) for every x ∈ M . In that case we call (M,ψ) an

(H,µ)-von Neumann algebra. When M is abelian, this corresponds precisely to an (H,µ)-space
(B, ν).

Lemma 1.2. Suppose that (M,ψ) is an (H,µ)-von Neumann algebra. Then we get a well-
defined (normal ucp) H-equivariant map

θ : M → Har∞(H,µ) : θx(h) = (h · ψ)(x). (1.1)

In particular Lemma 1.2 above applies to abelian von Neumann algebras, i.e. measure spaces
(B, ν) such that ν is µ-stationary. Recall that the Poisson boundary (B, ν) is the (H,µ) space
such that the map (1.1) is a bijection.

Proof. It is straightforward to check that θ is H-equivariant. Given x ∈ M we check that
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θx ∈ L∞(H,µ) is harmonic. Indeed, using that µ ∗ ψ = ψ, we get that

(µ ∗ θx)(g) =
∫
H
θx(gh)dµ(h)

=

∫
H
(gh · ψ)(x)dµh

=

∫
H
(h · ψ)(g−1 · x)dµ(h)

= (µ ∗ ψ)(g−1 · x) = ψ(g−1 · x)
= (g · ψ)(x) = θx(g).

Definition 1.3. A probability measure µ0 on Γ is called a Furstenberg measure if the following
three conditions hold.

1. µ0(γ) > 0 for every γ ∈ Γ.

2. The Poisson boundary of (Γ, µ0) equals (G/P, νP ).

In particular we have that µ0 ∗ νP = νP .

Let Λ be a countable discrete group. If µ is a probability measure on Λ we say that ϕ ∈ PD1(Λ)
is a µ-character if (µ ∗ ϕ) = ϕ, i.e.∑

λ∈Λ
µ(λ)ϕ(λ−1xλ) = ϕ(x),

for every x ∈ Λ. Clearly, and character on Λ is a µ-character on Λ.

Theorem 1.4 (Theorem C). Let Γ ⊂ G be a lattice and let µ0 be a Furstenberg measure on Γ.
Then the following hold.

1. Any µ0-character on Γ is a genuine character.

2. Any extreme point ϕ ∈ Char(Γ) either gives rise to a finite dimensional representation
or ϕ = δe.

Theorem 1.5 (Theorem D). Let Γ ⊂ G be a lattice and let µ0 be a Furstenberg measure on
Γ. Let (M,ψ) be an ergodic (Γ, µ0)-von Neumann algebra. Then precisely one of the following
holds.

1. Either ψ is Γ-invariant.

2. Or there exists a proper parabolic subgroup P ⊂ Q ⊂ G with Q 6= G and a state preserving
Γ-equivariant normal unital ∗-embedding

L∞(G/Q, νQ) → (M,ψ),

where νQ denotes the unique K-invariant Borel probability measure on G/Q.

Our first goal is prove Theorem C using Theorem D!

Remark 1.6. We will apply Theorem D to the more specific situation where π : Γ → U(M) is
a unitary representation and σ : Γ yM is given by σγ(x) = Ad(π(γ))(x). Then, if we happen
to be in situation 2 of Theorem D, it follows from Lemma 2.2 that ψ ◦ π = δe. If time permits,
I will try to give an idea of why this is true.
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2 Deduce Theorem D from Theorem C

Proof. 1. The space Charµ0(Γ) of all µ0-characters on Γ is a nonempty compact convex,
so by the Krein–Milman theorem, it suffices to prove the statement for an extreme point
ϕ ∈ Charµ0(Γ).
So let ϕ ∈ Charµ0(Γ) be an extreme point and let (π,H, ξ) denote the corresponding GNS
triple. Set M = π(Γ)′′ ⊂ B(H) and let ψ be the state on M given by ψ(x) = 〈xξ, ξ〉. Recall
that using this notation we get that

ϕ = ψ ◦ π. (2.1)

Let σ : Γ yM be the action given by conjugation, i.e. σγ(x) = π(γ)xπ(γ−1) for x ∈M . Then
we make the following observations that follow directly from (2.1).

1. The normal state ψ on M is µ0-stationary.

2. Our choses state ϕ is conjugation invariant iff ψ is Γ-invariant.

Basically, since ϕ ∈ Charµ0(Γ) is an extreme point, we get that the action Γ y M is ergodic.
And so we are in the setting of Theorem D. If ϕ is not conjugation invariant, then ψ is not
Γ-invariant and therefore we are in the second situation of Theorem D. By Remark 1.6 we get
that ϕ = ψ ◦ π = δe is conjugation invariant anyway.
2. Suppose that ϕ ∈ Char(Γ) is an extreme point. Denote by (π,H, ξ) the GNS representation
associated to ϕ. Again define M = π(Γ)′′ ⊂ B(H) together with the faithful normal state (!)
ψ(x) = 〈xξ, ξ〉. Then M is a factor, because ϕ is an extreme point. Let J : H → H be the
conjugate unitary given by J(xξ) = x∗ξ so that JMJ =M ′. Define actions

α : Γ y L∞(G/P )⊗B(H) : αγ = σγ ⊗Ad(Jπ(γ)J)

β : Γ y L∞(G/P )⊗B(H) : βγ = Ad(1⊗ π(γ)).

The actions α and β commute, and thus we obtain a well-defined action

β : Γ y N = (L∞(G/P )⊗B(H))α. (2.2)

We can think ofN as bounded measurable function f : G/P → B(H) satisfying the equivariance
property f(γ ·w) = Ad(Jπ(γ)J)f(w) for every γ ∈ Γ and a.e. w ∈ G/P . Thus we can identify
N ∼= (L∞(G/Γ) ⊗ B(H))P . Since P is amenable, we conclude that N is an amenable von
Neumann algebra. Also note that 1⊗M ⊂ N . Consider the normal state Ψ ∈ N∗ given by

Ψ: N → C : f 7→
∫
G/P

〈f(w)ξ, ξ〉dνP (w).

Then Ψ is µ0-stationary, which follows from the stationarity of νP . Furthermore, the action
β : Γ y N is ergodic. Indeed, we may view an element f ∈ Nβ as a Γ-equivariant function
G/P → M ′ = JMJ . Then we need to show that f is essentially constant to a scalar multiple
of the identity. Define the measurable function

F : G/P ×G/P → R : F (w1, w2) = ‖Jf(w1)J − Jf(w2)J‖2,

where ‖ · ‖2 denotes the norm induced by the trace ψ. By Γ-equivariance of f we get that F is
Γ-invariant. Since the Poisson boundary is doubly ergodic, we get that F is essentially constant.
Then we conclude that f is essentially constant, say f(w) = x ∈ M ′ for a.e. w ∈ G/P . Again
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by equivariance we get that x commutes with Jπ(Γ)J , so that x ∈ M ∩M ′ = C1, which is
what we needed to show.
Now we are again in the setting of Theorem D. If Ψ is not β-invariant, we get that Ψ◦(1⊗π) = δe
by Remark 1.6. Note that Ψ restricts to 1⊗ ψ on 1⊗M . Then it follows that ψ ◦ π = δe, i.e.
ψ is ϕ = δe.
If Ψ is Γ-invariant, then we show that 1 ⊗M = N , so that M is amenable and has property
(T ). Then it follows that M is finite dimensional. Take f ∈ N , then one can show that

Ψ(β−1
γ (f))

∫
G/P

〈f(γ · w)ξ, ξ〉dνP (ω).

Thus writing θ for the isometric bijection

θ : L∞(G/P, νP ) → Har∞(Γ, µ0) : θh(g) =

∫
G/P

h(g · w)dνP (w).

we get that Ψ(β−1
γ (f)) = θh(γ), where h ∈ L∞(G/P ) is given by h(w) = 〈f(w)ξ, ξ〉. By

invariance of Ψ we conclude that h is essentially constant. Since 1 ⊗ M ⊂ N , we deduce
that for every f ∈ N and every a, b ∈ M we get that (1 ⊗ b∗)f(1 ⊗ a) ∈ N and so the map
w 7→ 〈f(w)aξ, bξ〉 is essentially constant. By density of Mξ ⊂ H we get that w 7→ f(w) is
essentially constant, and equal to some element x ∈ B(H) say. By the equivariance of f we get
again that x ∈M , and so we get the desired conclusion f ∈ 1⊗M .

3 On Lemma 2.2

Suppose that Γ → U(M) is a unitary representation, so that the action σ : Γ y M given by
σγ = Ad(π(γ)) makes (M,ψ) into an ergodic (Γ, µ0)-von Neumann algebra. Assume moreover
there exists a proper parabolic subgroup P ⊂ Q ⊂ P and a state preserving unital ∗-embedding
L∞(G/Q, νQ) →M .
Let A ⊂ M be the separable unital C∗-algebra generated by π(Γ) and θ(C(G/Q)). Then A is
globally Γ-invariant and the state ψ

∣∣
A

is µ0-stationary. Then we saw in the previous lecture
that there exists an essentially unique map G/P → S(A) : w 7→ ψw such that

ψ =

∫
G/P

ψwdνP (w). (3.1)

Denote pQ : G/P → G/Q the measure preserving factor map. The state ψ : θ is µ0-stationary,
and thus it must equal νQ. Then we get that∫

G/P
ψw ◦ θdνP (w) = ψ ◦ θ = δQ =

∫
G/P

δpQ(w)dνP (w).

By uniqueness of boundary maps we get that ψw ◦ θ = δpQ(w) for a.e. w ∈ G/P . As δpQ(w) is
multiplicative, we get that θ(C(G/Q)) lies in the multiplicative domain of ψw for a.e. w ∈ G/P .
Pick γ 6= e. Since the action Γ y G/Q is essentially free and since pQ : G/P → G/Q is pmp we
get that γ · pQ(w) 6= pQ(w) for a.e. G/P . Pick w ∈ G/P such that γ · pQ(w) 6= pQ(w) and such
that θ(C(G/Q)) is in the multiplicative domain of ψw and write y = πQ(w). Take f ∈ C(G/Q)
such that f(y) = 1 and f(γ · y) = 0. Then we get that

ψw(π(γ)) = f(y)ψw(π(γ) = ψw(θ(f)π(γ)) = ψw(π(γ)π(γ
−1)θ(f)π(γ))

= ψw(π(γ)θ(γ
−1 · (f))) = ψw(π(γ))f(γ · y) = 0.

Since this holds for a.e. w ∈ G/P we conclude from (3.1) that ψ ◦ π = δe.
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