
Proof of the non-commutative Nevo–Zimmer
theorem, Part I

1 A recap

Throughout these notes we work with a connected simple Lie group G with trivial center and
rkR(G) ≥ 2. We fix throughout a maximal compact subgroupK of G and a maximal cocompact
amenable subgroup P ⊆ G such that

G = KP .

For any parabolic subgroup P ⊆ Q ⊆ G we let νQ ∈ Prob(G/Q) denote the unique K-invariant
Borel probability measure on G/Q. For any lcsc group H we let mH denote the Haar measure,
and recall that νQ ◦ π−1 ∼ mG where π : G→ G/Q.

Lemma 1.1. Let µ ∈ Prob(G) be a probability measure that is equivalent to the Haar measure
and K-invariant. Let A be any separable G-C∗-algebra and ϕ ∈ S(A) any µ-stationary state,
i.e. µ ∗ ϕ = ϕ.
Then there exists an essentially unique G-equivariant measurable map βϕ : G/P → S(A) : w 7→
ϕw that satisfies

ϕ =

∫
G/P

ϕw dνP (w) .

Remark 1.2. This result is proved by Boutonnet and Houdayer for general locally compact
second countable Hausdorff (lcsc) groups H, where (G/P, νP ) is replaced by the (H,µ)-Poisson
Boundary. Furstenberg proved (in 1963) that in this setup the (G,µ)-Poisson Boundary is
(G/P, νP ).

Definition 1.3. Let H be a lcsc group and µ ∈ Prob(H) be equivalent to the Haar measure.
Let M be any H-von Neumann algebra and φ ∈ M∗ any normal state. We say (M, φ) is an
ergodic (H,µ)-von Neumann algebra if

� the action σ : H ↷ M is ergodic (i.e. MH = CI), and

� φ is µ-stationary, i.e. µ ∗ ϕ = ϕ.

Lemma 1.4. If (M, φ) is an ergodic (H,µ)-von Neumann algebra then φ is automatically
faithful.

Proof. Let q denote the support projection of φ, then

1 = φ(q) = (µ ∗ φ)(q) =
∫
H
φ(σ−1

h (q)) dµ(h) ,

but 0 ≤ φ(σ−1
h (q)) ≤ 1 for all h ∈ H, and hence we must have φ(σ−1

h (q)) = 1 µ-a.e. Since the
function h → φ(σ−1

h (q)) is continuous and µ has full support (by equivalence with the Haar
measure), we get φ(σ−1

h (q)) = 1 for all h ∈ H, so q ∈ MH = CI. Since q is a projection, q = 1
and hence φ is faithful.

2 Setup for Theorem (E)

Theorem 2.1 (Theorem E). Let µ ∈ Prob(G) be any K-invariant Borel probability measure
which is equivalent to the Haar measure. Let (M, φ) be any ergodic (G,µ)-von Neumann
algebra. Then the following dichotomy holds

1



� Either φ is G-invariant,

� Or there exists a proper parabolic subgroup P ⊆ Q ⊆ G and a G-equivariant normal
∗-embedding Θ : L∞(G/Q, νQ) → M such that φ ◦Θ = νQ.

Standing assumption: We assume throughout the talks that φ is not G-invariant.

Lemma 2.2. For the proof we may assume that M ⊆ B(H) where H is a separable Hilbert
space such that there exists ξ ∈ H with φ(x) = ⟨xξ, ξ⟩ for all x ∈ M.

Proof. Since φ is not G-invariant there exist a x ∈ M with G ∋ g → φ(σ−1
g (x)) not constant.

A connected Lie group is second countable, so we can find a dense set S ⊆ G, and then the
countable set

spanQ+iQ{a1 · · · an | ai ∈ Sx ∪ Sx∗ , n ∈ N}

is a weakly dense subset of the von Neumann algebra Msep generated by Gx. It follows
that the GNS representation (H, ρ, ξ) of the state φ|Msep satisfies that H is separable. Since
φ|Msep is normal and faithful ρ : Msep → ρ(Msep) is a vNA isomorphism, and by choice then
(ρ(Msep), ⟨·ξ, ξ⟩) is still an ergodic (G,µ)-von Neumann algebra with ⟨·ξ, ξ⟩ not G-invariant.
If the Theorem is true for ρ(Msep), the map ρ−1 ◦Θ will give the desired embedding.

Lemma 2.3. We can pick a globally G-invariant σ-weakly dense separable unital C∗-algebra
A ⊆ M such that G↷ A is norm-continuous.

Proof. The set {x ∈ M | g 7→ σg(x) is norm continuous} contains for every x ∈ M and
f ∈ Cc(G) the element

∫
G f(g)σg(x)dmg(g), and a well chosen net of such f supported around

e ∈ G would converge σ-weakly to x, proving that the set is σ-weakly dense in M. Since M
has separable predual (H is separable) we can find a countable dense set C in this set. Since G
is second countable A := C∗(

⋃
g σg(C)) is separable.

For simplicity we assume throughout that G = SL3(R), and we define subgroups of G by

P =

∗ ∗ ∗
0 ∗ ∗
0 0 ∗

 , P =

∗ 0 0
∗ ∗ 0
∗ ∗ ∗

 , V =

1 ∗ ∗
0 1 ∗
0 0 1

 , V =

1 0 0
∗ 1 0
∗ ∗ 1

 , S =

∗ 0 0
0 ∗ 0
0 0 ∗

 .

Lemma 2.4. The map V ×P → G : (v, p) 7→ vp is a homeomorphism onto an open mG-conull
subset of G, under which mG|V P is equivalent to mV ×mP .

Proof. If v1p1 = v2p2 then v
−1
2 v1 = p2p

−1
1 ∈ V ∩P = {Id}, proving that the map is injective. By

considering the multiplication of matrices in V and P it is clear this map is a homeomorphism
onto its image. If A = (ai,j)

3
i,j=1 ∈ G has a1,1 = 0 it does not lie in V P . If a1,1 ̸= 0 then 1 0 0

−a1,2
a1,1

1 0
−a1,3
a1,1

0 1

 ·A =

a1,1 ∗ ∗
0 a2,2 − a2,1

a1,2
a1,1

∗
0 ∗ ∗

 := B

and this can not lie in V P if a2,2a1,1 − a2,1a1,2 = 0. If a2,2a1,1 − a2,1a1,2 ̸= 0 there is similarly
a v ∈ V such that vB ∈ P . Hence the A ∈ G \ V P are exactly the ones satisfying a1,1 = 0
and a2,2a1,1 − a2,1a1,2 = 0 which is a closed set of measure 0. The last statement follows
by noticing that for every K ⊆ P , U 7→ mG(UK) defines a left invariant measure on V , so
mG(UK) = cKmV (U), where K 7→ cK will give a right invariant measure on P .
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We now use Lemma 1.1 on the separable C∗-algebra A and the µ-stationary state φ|A, to get
a G-equivariant measurable map β : G/P → S(A) : w 7→ ϕw as in that Lemma. Set ψ = ϕeP ,
by G-equivariance ψ is a P -invariant state on A s.t.

φ|A =

∫
G/P

ψ ◦ σ−1
g dνP (gP ) .

Let (πψ, Hψ, ξψ) be the GNS triple associated with (A, ψ), set N = πψ(A)′′, and denote by ψ
the normal state ⟨·ξψ, ξψ⟩ on N .
Since ψ is P -invariant, standard GNS-representation arguments gives a continuous action σN :
P ↷ N . We assume throughout for simplicity that ψ is a faithful state on N .

2.1 Step 1: G-equivariantly embed M into IndGP (N ).

By Lemma 2.4 the restriction of the quotient map G
π−→ G/P gives a injection V → G/P , and

since νP ∼ mG ◦ π−1 and π−1(V /P ) = V P its image is νP -conull. Since

mV (U) = 0 ⇐⇒ mG(UP ) = 0 ⇐⇒ mG(π
−1(π(U))) = 0 ⇐⇒ νP (π(U)) = 0

we see that νV := νP ◦ π ∼ mV . Now let τ : G/P → G denote a section satisfying τ(vP ) = v
for v ∈ V , which is then measurable up to a null set.

Recall from seminar 6 that we can identify the system G↷ IndGP (N ) with the action σ̃ : G↷
L∞(G/P )⊗N given by

σ̃g(F )(w) = σNcτ (g,g−1w)(F (g
−1w)) for F ∈ L∞(G/P )⊗N , g ∈ G and w ∈ G/P .

Using our measure space isomorphism we get a von Neumann algebra isomorphism

B : L∞(G/P )⊗N ∼−→ L∞(V )⊗N : B(f)(v) = f(vP ) .

Since

cτ (p, p
−1vP ) = τ(vP )−1pτ(p−1vP ) =

{
v−1pp−1v if p ∈ V

τ(vP )−1pτ(p−1vpP ) if p ∈ S

=

{
e if p ∈ V

p if p ∈ S ,

we can then transport the G-action on L∞(G/P )⊗N to an action on L∞(V )⊗N , and get a
very concrete formula for the action of P = SV :

B(σ̃p(f))(v) = σNcτ (p,p−1vP )(f(p
−1vP )) =

{
f(p−1vP ) if p ∈ V

σNp (f(p−1vpP )) if p ∈ S

=

{
B(f)(p−1v) if p ∈ V

σNp (B(f)(p−1vp)) if p ∈ S
(2.1)

Lemma 2.5 (Lemma 3.1). The map ι : A → L∞(G/P )⊗N given by ι(a)(w) = πψ(σ
−1
τ(w)(a))

for a ∈ A and w ∈ G/P extends to a well defined G-embedding1 ι : M → L∞(G/P )⊗N such
that (νp ⊗ ψ) ◦ ι = φ.

1This is Sam’s shorthand terminology for a G-equivaraint unital normal injective ∗-homomorphism
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Proof. Since ψ ∈ N∗ is P -invariant we get for a ∈ A that

(νp ⊗ ψ)(ι(a)) =

∫
G/P

ψ(σ−1
τ(w)(a)) dνP (w) =

∫
G/P

ψ(σ−1
g (a)) dνP (gP ) = φ(a) .

A straightforward computation which can be found int he notes reveals ι(σg(a)) = σ̃g(ι(a)) for
a ∈ A, hence by continuity it suffices to prove that ι extends to a normal unital ∗-embedding.
Since 1G/P implements νP on L2(G/P, νP ) and ξψ implements ψ on Hψ, then 1G/P ⊗ ξψ

implements νp ⊗ ψ on H ′ = L2(G/P, νP ) ⊗Hψ. Let p be the projection onto ι(A)1G/P ⊗ ξψ,
then (ι, PH ′, 1G/P ⊗ ξψ) is a GNS-representation for φ|A. By Lemma 2.2, Lemma 2.3 and
uniqueness of the GNS triple this implies that A ∋ a → ι(a)p ∈ B(H ′) is unitarily equivalent
to the inclusion map A ↪→ M, and hence we get a normal unital ∗-isomorphism M → ι(A)′′p.
If f ∈ L∞(G/P,N ) satisfies fι(a)1G/P ⊗ ξψ = 0 for all a ∈ A, then

f(w)πψ(σ
−1
τ(w)(a))ξψ = 0

for almost all w ∈ G/P . By continuity and separability of A, we get f(w)πψ(σ
−1
τ(w)(a))ξψ = 0

for all a ∈ A and a.e. w ∈ G/P . Since ξψ is cyclic this proves that the map ι(A)′′ → ι(A)′′p :
f 7→ fp is a normal unital ∗-isomorphism.

2.2 Step 2: Claim 3.2

Recall that

ϕ|A =

∫
G/P

ψ ◦ σ−1
g dνP (gP ) .

with ψ P -invariant. Since ϕ is not G-invariant, and A is dense in M, this implies that ψ is not
G-invariant. Since G can not contain a dense open subgroup, then G = ⟨V , P ⟩, and it follows
that ψ can not be V -invariant. Write

E21 =

1 0 0
∗ 1 0
0 0 1

 , E31 =

1 0 0
0 1 0
∗ 0 1

 , E32 =

1 0 0
0 1 0
0 ∗ 1


then V = ⟨E21, E31, E32⟩, and hence we can assume WLG that ψ is not E32-invariant. Set

V0 =

1 ∗ ∗
0 1 0
0 0 1

 , V 0 =

1 0 0
∗ 1 0
∗ 0 1

 , U0 = E32, s =

1/4 0 0
0 2 0
0 0 2

 ,

then the map V 0 × U0 → V : (v, u) 7→ vu is a homeomorphism. Now

s

1 a b
0 1 0
0 0 1

 s−1 =

1 a/8 b/8
0 1 0
0 0 1

 , s−1

1 0 0
a 1 0
b 0 1

 s =

 1 0 0
a/8 1 0
b/8 0 1


and s commutes with U0. The isomorphism L2(V 0)⊗ L2(U0) ≃ L2(V 0 × U0) ≃ L2(V ) imple-
ments an isomorphism L∞(V ) = L∞(V0)⊗L∞(U0).

Lemma 2.6 (Claim 3.2). Let a ∈ A ⊆ M. For every n ∈ N define an = 1
n+1

∑n
k=0 σ

k
s (a) ∈ A.

Then

◦ ∃! ψ-preserving faithful conditional expectation Es : N → N s.
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□ For every (v0, u0) ∈ V , ι(an)(v0, u0) → Es(ι(a)(e, u0)) strongly in N .

△ Defining the bounded measurable f : V → N s by f((v0, u0)) = Es(ι(a)(e, u0)), then
f ∈ ι(M). Thus there exists a unique a∞ ∈ M with ι(a∞) = f and an → a∞ strongly in
M.

Proof. ◦: Since σ : P ↷ N is ψ-preserving, we get that ψ = ψ ◦ σs. If α is the modular
automorphism group for ψ, this implies ψ satisfies the KMS condition for σ−1

s ◦ α ◦ σs, so by
faithfulness of ψ, σ−1

s ◦α◦σs = α. Hence α leaves N s invariant, and the existence of Es follows
from Tomita-Takesaki Theory. It can be checked that Es(a) = PaP where P is the orthogonal
projection onto {ξ ∈ Hψ | Uξ = ξ} where σs = AdU .

□: Fix (v0, u0) ∈ V and ε > 0. Since G↷ A is norm-continuous and s−kv−1
0 sk → 0 for k → ∞,

there exists a k0 such that

∥ι(σks (a))(v0, u0)− ι(σks (a))(e, u0)∥ = ∥πψ(σ−1
u0

(σ−1
v0

(σks (a))))− πψ(σ
−1
u0

(σks (a)))∥
≤ ∥σs−kv−1

0 sk(a)− a∥ ≤ ε

for all k ≥ k0. Since ε > 0 was arbitrary, we conclude

∥ι(an)(v0, u0)− ι(an)(e, u0)∥ =

∥∥∥∥∥ 1

n+ 1

n∑
k=1

(ι(σks (a))(v0, u0)− ι(σks (a))(e, u0))

∥∥∥∥∥ → 0 (2.2)

as n→ ∞. Since s commutes with u0 we get

σks (ι(a)(e, u0)) = σks (πψ(σ
−1
u0

(a))) = πψ(σ
−1
u0

(σks (a))) = ι(σks (a))(e, u0) .

Let U be the unitary implementing σs, i.e. UaU∗ = σs(a), then Uξψ = ξψ since the action
σ : sZ ↷ N is ψ-preserving. Hence von Neumann’s ergodic theorem implies that∥∥∥∥∥ 1

n+ 1

n∑
k=0

σks (ι(a)(e, u0))− Es(ι(a)(e, u0))

∥∥∥∥∥
ψ

=

∥∥∥∥∥ 1

n+ 1

n∑
k=0

Ukι(a)(e, u0)ξψ − Pι(a)(e, u0)ξψ

∥∥∥∥∥
2

→ 0 for n→ ∞.

Combining this with (2.2) we obtain that

lim
n
∥ι(an)(v0, u0)− Es(ι(a)(e0, u0))∥ψ = 0 ,

and since ψ is a faithful state, we get strong convergence.

△: Set f : V → N s : (v0, u0)) 7→ Es(ι(a)((e, u0))). By Lebesgue’s dominated convergence we
get

∥ι(an)− f∥2νP⊗ψ =

∫
V
∥ι(an)((v0, u0))− f((v0, u0))∥2ψ dνV ((v0, u0)) → 0 for n→ ∞.

This implies that ι(an) → f strongly in L∞(V )⊗N . This implies that f ∈ ι(M), and since ι is
an embedding we get a unique a∞ = ι−1(f) ∈ M such that an → a∞.
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