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Abstract. Algebraic attacks are an important class of cryptanalytic techniques. Yet, precisely
estimating the security margins that a block cipher may provide against them is generally
difficult, as sound theoretical tools are missing for this purpose. Therefore, most recent block
cipher proposals combine different heuristic arguments in order to argue about their practical
security against such attacks. In this paper, we discuss the relevance and correlation of these
arguments, with a practical case-study based on the lightweight ciphers LED and Piccolo.

1 Introduction

The design of modern block ciphers usually comes with arguments of security against
several cryptanalysis techniques. These arguments typically include the evaluation of
statistical attacks such as linear and differential cryptanalysis [2, 18], and the investiga-
tion of structural properties leading to integral or slides attack [4, 17]. A number of well
understood heuristic tools are available for this purpose. For example, the wide-trail
strategy can be used to design block ciphers that are practically secure against statis-
tical attacks [12]. One interesting feature of these heuristic tools is that they do not
only provide security, but also allow the evaluation of (informal) bounds against certain
categories of attacks. As a result, they can be used to compare different algorithms.

For other types of attacks though, and in particular for the algebraic cryptanalysis
that we consider in this paper, security analyzes are hardly as systematic. This may
sound counterintuitive, as algebraic complexity is known to be a central criteria for
block cipher security since the seminal work of Shannon [23]. Yet, the discussion of
algebraic attacks usually comes late (if at all) in block cipher specifications.

One possible reason of this situation is that the complexity of algebraic attacks is
hard to evaluate [7, 8, 11, 19]. It is also not simple to interpret successful attacks against
weakened versions of a block cipher. Yet, it remains that instances of (admittedly weak)
block ciphers that are actually broken with algebraic attacks exist in the literature (e.g.
the Keeloq and MiFare ciphers [9, 10]). Besides, it has also been shown that the alge-
braic complexity of a block cipher has a significant impact in the context of algebraic
side-channel attacks [21, 22]. Hence, in view of the recent design of numerous lightweight
block ciphers for constrained applications [14], it becomes increasingly interesting to
understand the extent to which these new proposals with simplified structure and low
implementation cost remain sufficiently robust against algebraic attacks.
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The security of a block cipher against such cryptanalyses can be argued with dif-
ferent types of metrics. For example, the complexities of the systems of equations
representing different block ciphers have been compared in [3]. Another solution is
to estimate the number of block cipher rounds needed to reach maximum algebraic
degree [5]. More recently, cube testers have been proposed as another systematic alter-
native to construct algebraic distinguishers [1]. Eventually, the most direct approach is
to investigate the complexity of solving a block cipher system of equations, e.g. with a
SAT solver or Groebner basis tools [15]. However in this last case, directly solving the
system of equations of a cipher should always be impossible (or would be the sign of a
very weak design). This raises the question of which reduced versions of a cipher can
be used to meaningfully argue about security margins against algebraic cryptanalysis.

In this paper, we consider the lack of comprehensive tools for the evaluation of
algebraic attacks and discuss the relevance and limitations of a combined approach.
Namely, we mix the estimation of informal criteria such as the system of equations
size or the algebraic degree of a block cipher, with heuristic criteria such as the solv-
ing time of attacks against different versions of the target cipher. For this purpose,
we consider attacks against full ciphers with variable guessing strategies, and attacks
against reduced ciphers with fixed guessing strategy. Next, and taking the example of
the block ciphers LED and Piccolo [16, 24], we discuss the extent to which these criteria
lead to similar intuitions and can be used to estimate security margins against alge-
braic cryptanalysis. Doing so, we introduce a metric of “Equivalent Encryption Time”
(EET) which essentially corresponds to the encryption speed that has to be reached for
an exhaustive key search to be more efficient than an algebraic cryptanalysis. Let t be
the median time needed for an algebraic attack to succeed, and n be the number of key
bits to find, EET is defined as t/2n. One interesting feature of this metric is that it al-
lows comparing the security of different algorithms against algebraic attacks (i.e. their
advantage over exhaustive search), independent of their encryption time. We use it to
comment on the larger security margins of LED compared to Piccolo, and highlight
observations regarding the impact of using a SAT solver in security evaluations.

Note. Because of space constraints, some details and parts of the background of this
extended abstract have been deferred to a full version available online.

2 Background

The description of the block cipher LED and Piccolo is given in the full version, together
with a brief description of an links towards references on algebraic cryptanalysis.

2.1 Algebraic degree of a Boolean function

From a mathematical point of view, a cipher E is a vectorial Boolean function of
dimension n having m variables:

E : (X,K) 7→ Y = E(X,K),
Fm
2 → Fn

2 .

That is, each of the n coordinates is a Boolean function with m variables that should
not be distinguishable from a randomly generated Boolean function. In general, any



non-random behavior of any combination of coordinates can be the sign of a weakness
and may be exploited in an attack (e.g. linear cryptanalysis [18], etc.). In the case
of algebraic attacks, the degree of its Boolean functions is a good indicator for the
strength of a block cipher. It is defined as follows.

Definition 1. Algebraic degree. Let g be a Boolean function from Fm
2 into F2. Such a

Boolean function can be represented using its algebraic normal form (ANF):

g(x1, . . . , xm) =
∑

(u1,...,um)∈Fm
2

a(u1,...,um)

m∏
i=1

xui
i .

Such representation is unique and allows a simple definition of the degree of g:

deg(g) , max
(u1,...,um)∈Fm

2

{
u =

m∑
i=1

ui, a(u1,...,um) 6= 0

}
.

In the case of a vector Boolean function G = (g1, . . . , gn), the degree is defined as the
maximum degree of its coordinates:

deg(G) , max
1≤i≤n

deg(gi).

In general, the state size of recent ciphers makes the explicit computation of the ANF
for any coordinate of the cipher an intractable problem (a similar comment holds for
hash functions). This situation motivated the derivation of bounds to estimate the
algebraic degree as part of the security evaluation of a cryptographic primitive.

Taking the example of LED and Piccolo, a natural question is to determine how
the degree of these ciphers evolves with the number of round iterations1. The most
obvious way to do this, is to use what is generally called the trivial bound. It consists in
bounding the degree of a round permutation of degree d after r iterations by dr. This
trivial bound usually gives good results when the number of rounds is relatively small,
but fails as this number increases. For this purpose, a better estimation is needed.

Let us now denote the round functions of LED and Piccolo as F = L′◦S ◦L, with S
the non-linear S-box layer and L a linear (over Fn

2 ) diffusion layer (i.e. two consecutive
S-box layers will be separated by the linear function L ◦ L′). Due to the mixing effect
of the linear layer, the following quantity will be of interest for “chaining” rounds.

Definition 2. Let G = (g1, . . . , gn) be a vector Boolean function of dimension n. Then
we denote by δk(G) the maximal degree of the product of at most k coordinates of G:

δk(G) , max
I⊂{1,...,n}

#I≤k

deg

(∏
i∈I

gi

)
.

We now present a former result from [6]: it aims to provides a better approximation
for the algebraic degree of a block cipher than the trivial bound.

1 Since for both ciphers, the key addition corresponds to a bitwise XOR with a constant, the algebraic degree
of the cipher can be computed independent of the key scheduling part.



Theorem 1. If a vector Boolean function S from Fn
2 to Fn

2 consists in the concatena-
tion of smaller permutations from Fn′

2 to Fn′
2 , then for any vector Boolean function G,

the degree of G ◦ S is upper-bounded by:

deg(G ◦ S) ≤ n− n− deg(G)

γ(S)
, where γ(S) , max

1≤i≤n′−1

n′ − i
n′ − δi(S)

.

3 Estimating the algebraic degree of LED and Piccolo

In this section, we estimate the algebraic degree of LED and Piccolo. The goal of
this estimation is to investigate possible links between the algebraic degree and the
resistance of these block ciphers against the SAT-based algebraic attacks in Section 4.

3.1 On the algebraic degree of LED

The non-linear layer of LED consists in the parallel application of the PRESENT S-
box. This S-box is a 4-bit permutation with algebraic degree 3. Thus, the degree of one
round is also 3. We use Theorem 1 to derive bounds on the degrees for more rounds.
Let us recall this bound for this particular instance where γ(S) = 3:

deg(Fr) ≤ 64− 64− deg(Fr−1)

3
.

It directly gives the results in Table 1. As expected, it is not tight for small degrees.

Table 1. Bounds on the algebraic degree of r-round LED.

Numbers of rounds Trivial bound Theorem 1

1 3 -
2 9 45
3 27 47
4 63 51
5 63 59
6 63 62
7 63 63

3.2 On the algebraic degree of Piccolo

The only source of non-linearity of Piccolo is the 16-bit-to-16-bit function F that is
composed of two identical S-box layers separated by a matrix multiplication. As for
LED, the algebraic degree of this function can be estimated and extended to the full
cipher using Theorem 1. Yet, contrary to LED, this estimation for Piccolo is made
more difficult because of non-uniformities in the degrees of the F function output bits.
In the following, we only provide the final results of our investigations, in Table 2. It
contains the trivial bound, a straightforward application of Theorem 1 and a refined
application of Theorem 1, based on an analysis of the degree for 2 rounds of Piccolo.
Let us notice that the first non-trivial bound is far from being tight according to the
gap we can observe with entries in the last column. This suggests that the algebraic
degree of Piccolo may be harder to estimate than the one of LED. It is likely that even
the last column does not reflect the actual behavior of this algebraic degree. Details
about this degree investigation are given in the full version of the paper.



Table 2. Bounds on the algebraic degree of r-round Piccolo.

Numbers of rounds Trivial bound Theorem 1 Theorem 1 + 2-round degree analysis

1 9 - -
2 63 47 29
3 63 60 52
4 63 63 62
5 63 63 63

4 Experimenting SAT-based algebraic attacks

Our algebraic cryptanalysis experiments are based on a SAT solver. We used the Min-
iSat v1.14 SAT solver [13] that is an open-source tool rewarded in different SAT compe-
titions. Exploiting it requires describing the target cipher as a CNF, i.e. a conjunction
of disjunction of variables. For this purpose, the straightforward strategy would be to
express every ciphertext bit directly in function of the plaintext variables. However,
this implies the apparition of numerous high degree monomials that are hardly man-
aged by the solver. To overcome this limitation, the usual approach is to introduce
intermediate literals in the cipher description (details are given next).

Since recovering the full cipher keys without additional information than a plain-
text/ciphertext pair is (hopefully) difficult, our experiments were performed giving
some key bit values as extra information to the solver. Depending on the experiments,
this number of bits provided may differ. We will refer as number of unknown key bits
the remaining number of key bit variables in the system after providing the extra
information. Note that we chose to fix the first key bits of the master keys.

4.1 On the size of the CNF representation

In this section we focus on the complexity of the representation of both ciphers. Since
the representation may strongly influence the resolution time, we tried to build systems
having similar structures. Hence, we used the same construction method for LED and
Piccolo. For the 64-bit key full-version of LED, the CNF representation has been ob-
tained by adding intermediate literals before and after both the key additions and the
AddConstants operations, and after the SubCells operations. As a result, we obtained a
system of approximately 70.000 equations in 12.000 variables with at most 12 literals
per clause. For the 80-bit key full-version of Piccolo, the CNF representation has been
obtained by adding intermediate literals before and after each S-box in the F-function,
and after the bit-wise addition between the state and the round keys. Concerning the
key scheduling, we added literals for all the sub-keys. As a result, we obtained a rep-
resentation of the Piccolo cryptosystem with 6.000 variables used in 50.000 equations.
There are at most 8 variables per clause. For both ciphers, the representation of the S-
box has been obtained with the same method, and gives 64 equations of 5 literals each
and has 8 literals. We can see that the LED representation requires more equations
than Piccolo (respectively 70.000 and 50.000), while the number of variables in the
LED representation is twice the number of variables in Piccolo. Moreover, we notice
that the literals are more connected in the LED representation than in the Piccolo rep-
resentation. This may suggest that LED is more robust than Piccolo against algebraic
attacks, at least when deriving representations in such a straightforward fashion.



4.2 Attacking the full-version with variable key-guess sizes

We now consider the evolution of the resolution time of the system as a function of the
number of the key bits unknown to the solver. The target ciphers are the full-version
of the algorithms proposed at CHES. The representation used are the one described in
Section 4.1 and, as mentioned earlier, we have fixed the first key bit values. We aimed
at comparing resolution times for a number of unknown key bits ranging from 4 to 18,
which translates in providing 46 to 60-bit values (resp. 62 to 76 bits) to the solver for
recovering the full key of LED (resp. Piccolo). The experimental results obtained are
provided in Figure 1, where the curves represent the evolution of the median solving
time as a function of the number of key bits unknown to the solver. As expected, we
can observe that the resolution time grows as an exponential function of the number
of unknown bits for both ciphers. We also notice that the Piccolo curve is shifted by 2
bits on the x-axis compared to the LED curve. Hence, this metric again suggests that
Piccolo could be slightly weaker than LED against algebraic cryptanalysis.
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Fig. 1. Solving time vs number of unknown key bits for LED and Piccolo.

Next, we translated these median solving times into EET. Intuitively, the EET
represents the encryption speed that should be reached by an implementation of the
block ciphers, for the exhaustive search to be more efficient than the SAT solver based
cryptanalysis. Results are plotted in Figure 2 and lead to the following additional
observations. First, and in both plots, two different parts can be observed: the EET
initially decreases up to a certain point, where it then becomes stable. While having the
same shape, both curves differ in the point where the EET becomes stable. The EET
for LED stops decreasing when more than 10 key bits are unknown (stabilizing around
an EET equal to 0.5 · 10−2), while for Piccolo, it stops decreasing when more than 8
key bits are unknown (stabilizing around an EET equal to 1 · 10−3). This decreasing
behavior is mainly due to the construction phase performed by the SAT solver prior
to the resolution: as the number of unknown key bits increases, this construction step
becomes negligible compared to the resolution time. Since the LED system is bigger
than the one of Piccolo, it is natural that the stabilization happens later for LED.
Second, the values of EET obtained when enough key bits are unknown are significantly
larger than the actual encryption time, even on a standard PC. This suggests that both
ciphers have satisfying security margins against this type of attack. Nevertheless, the
EET is larger for LED than for Piccolo (by an approximate factor 5).
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Fig. 2. EET vs number of unknown key bits for LED and Piccolo.

4.3 Attacking reduced-round versions.

As a complement to the previous experiments, we investigate the security of reduced-
round versions of our target ciphers, for different number of unknown key bits. We
performed experiments for a number of unknown key bits ranging from 12 to 16 for
LED, and from 16 to 20 for Piccolo. This choice has been made in order to obtain
equivalent ranges of resolution times for both reduced-round ciphers. Figure 3 depicts
the evolution of the solving time depending on the number of rounds we have fixed. We

Fig. 3. Solving time for different numbers of unknown key bits and rounds (y-axis scale logarithmic).

observe that for both ciphers, the curves obtained have a similar shape, namely a highly
increasing part first, and a stabilized/slowly increasing second part. This means that
increasing the number of rounds beyond some limit does not provide significantly more
security anymore regarding the solving time of the system. One possible interpretation
of this fact is the following. The solving time of an algebraic attack primarily depends
on the size of the system and the “complexity” of the equations it aims at solving
(partially captured by the algebraic degree). As equations are getting more complex
with the number of rounds, they reach their maximum “complexity” (and algebraic
degree) at some point. From this point on, only the size of the system goes on increasing,
hence explaining a slower increase of the solving time. The full version of this work
further discusses the links between the algebraic degree for the reduced-round versions
of the ciphers and the bends observed in Figure 3. It also illustrates the impact of the
heuristics used in SAT solvers in our experimental approach for the LED cipher.
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