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Abstract. Side-channel collision attacks are one of the most investi-
gated techniques allowing the combination of mathematical and physical
cryptanalysis. In this paper, we discuss their relevance in the security
evaluation of leaking devices with two main contributions. On the one
hand, we suggest that the exploitation of linear collisions in block ciphers
can be naturally re-written as a Low Density Parity Check Code decod-
ing problem. By combining this re-writing with a Bayesian extension of
the collision detection techniques, we succeed in improving the efficiency
and error tolerance of previously introduced attacks. On the other hand,
we provide various experiments in order to discuss the practicality of
such attacks compared to standard DPA. Our results exhibit that col-
lision attacks are less efficient in classical implementation contexts, e.g.
8-bit microcontrollers leaking according to a linear power consumption
model. We also observe that the detection of collisions in software devices
may be difficult in the case of optimized implementations, because of less
regular assembly codes. Interestingly, the soft decoding approach is par-
ticularly useful in these more challenging scenarios. Finally, we show that
there exist (theoretical) contexts in which collision attacks succeed in ex-
ploiting leakages whereas all other non-profiled side-channel attacks fail.

1 Introduction

Most side-channel attacks published in the literature and used to evaluate leaking
cryptographic devices are based on a divide-and-conquer strategy. Kocher et al.’s
Differential Power Analysis (DPA) [10], Brier et al.’s Correlation Power Analysis
(CPA) [5] and Chari et al.’s Template Attacks (TA) [6] are notorious examples.
However, alternatives to these standard approaches have also been investigated,
e.g. by trying to combine side-channel information with classical cryptanalysis.
The collision attacks introduced by Schramm et al. at FSE 2003 are among the
most investigated solutions for this purpose [19]. While initially dedicated to
the DES, they have then been applied to the AES [18] and improved in different
directions over the last years, as witnessed by the recent works of Ledig et al. [11],
Bogdanov [2–4], Moradi et al. [13, 14] and Clavier et al. [7].
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From an application point of view, collision attacks differ from standard side-
channel attacks by their underlying assumptions. Informally, divide-and-conquer
distinguishers essentially assume that a cryptographic device leaks information
that depends on its intermediate computations, under a given leakage model.
The leakage model is generally obtained either from engineering intuition, in
the case of non-profiled attacks such as DPA and CPA, or through a prelimi-
nary estimation of the chip measurements probability distribution, in the case
of profiled attacks such as TA. By contrast, collision attacks do not require a
precise knowledge of the leakage distribution. They rather trade this need for a
combination of two other assumptions: (i) the distribution of a couple of mea-
surements corresponding to the intermediate computation of identical values can
be distinguished from the one corresponding to different values; (ii) the adver-
sary is able to divide each measurement trace corresponding to the encryption of
a plaintext into sub-traces corresponding to elementary operations, e.g. the ex-
ecution of block cipher S-boxes. In other words, collision attacks trade the need
of precise leakage models for the need to detect identical intermediate compu-
tations, together with a sufficient knowledge of the operations scheduling in the
target device. Interestingly, the knowledge of precise leakage models has recently
been shown to be problematic in non-profiled attacks [22], e.g. in the case of de-
vices with strongly non-linear leakage functions. Hence, although the existence
of such devices remains an open question [16], they at least create a theoretical
motivation for understanding the strengths and weaknesses of collision attacks.

This paper brings two main contributions related to this state-of-the-art.

First, we observe that many previous collision attacks do not efficiently deal
with errors (i.e. when the correct value of a key-dependent variable is not the like-
liest indicated by the leakages), and rely on add-hoc solutions for this purpose.
In order to handle erroneous situations more systematically, we introduce two
new technical ingredients. On the one hand, we propose to re-write side-channel
collision attacks as a Low Density Parity Check (LDPC) decoding problem. On
the other hand, we describe a (non-profiled) Bayesian extension of collision de-
tection techniques. We show that these tools are generic and allow successful key
recoveries with less measurement data than previous ones, by specializing them
to two exemplary attacks introduced by Bogdanov [2, 3] and Moradi et al. [13].

Second, we question the relevance of side-channel collision attacks and their
underlying assumptions, based on experimental case studies. For this purpose,
we start by showing practical evidence that in “simple” scenarios, the efficiency
of these attacks is lower than the one of more standard attacks, e.g. the non-
profiled extension of Schindler’s stochastic approach [17], described in [8]. We
then observe that in actual software implementations, the detection of collisions
can be difficult due to code optimizations. As a typical example, we observe that
the leakage behavior of different AES S-boxes in an Atmel microcontroller may be
different, which prevents the detection of a collision with high confidence for these
S-boxes. We conclude by exhibiting an (hypothetical) scenario were the leakage
function is highly non-linear (i.e. in the pathological example from [22]), collision
attacks lead to successful key recoveries whereas all non-profiled attacks fail.



2 Background

2.1 Notations

In order to simplify the understanding of the paper, we will suppose that the
targeted block cipher is the AES Rijndael. Hence, the number of S-boxes con-
sidered is 16, and these S-boxes manipulate bytes. Nevertheless, all the following
statements can be adapted to another key alternating cipher, by substituting
the correct size and number of S-boxes. In this context, the first-round subkey
and plaintexts are all 16-byte states. We respectively use letters k and x for the
key and a plaintext, and use subscripts to point to a particular byte:

x
def
= (x1, x2, . . . , x16) , k

def
= (k1, k2, . . . , k16).

Next, the attackers we will consider have access to a certain number of side-
channel traces, corresponding to the encryption of different plaintexts encrypted
using the same key k. We denote with nt the number of different inputs en-
crypted, and with x(1), . . . , x(nt) the corresponding plaintexts. Each trace ob-
tained is composed of 16 sub-traces corresponding to the 16 S-box computations

t(i)
def
= (t

(i)
1 , . . . t

(i)
16 ). Each sub-trace is again composed of a number ` of points (or

samples). Hence, the sub-trace corresponding to the a-th S-box will be denoted

as t
(i)
a

def
= (t

(i)
a,1, . . . , t

(i)
a,`). Furthermore, we will use the corresponding capital let-

ters X, K and T to refer to the corresponding random variables.

2.2 Linear Collision Attacks

Linear collision attacks are based on the fact that if an attacker is able to detect a
collision between two (first-round) S-box executions, then he obtains information
about the key. Indeed, if a collision is detected, e.g. between the computation of
S-box a for plaintext x(ia) and S-box b for plaintext x(ib), this attacker obtains
a linear relation between the two corresponding input bytes:

x(ia)
a ⊕ ka = x

(ib)
b ⊕ kb.

This relation allows him to decrease the dimension of the space of possible keys

by 8, removing keys for which ka⊕kb 6= x
(ia)
a ⊕x(ib)

b . A linear system can then be
built by combining several equations, and solving this system reveals (most of)
the key. Naturally, the success of the attack mainly depends on the possibility to
detect collisions. Two main approaches have been considered for this purpose.

In the first approach, simple statistics such as the Euclidean distance [18] or
Pearson’s correlation coefficient [19], are used as detection metrics. In this case,
the detection of a collision can be viewed as a binary hypothesis test. It implies to
define an acceptance region (i.e. a threshold on the corresponding statistic). As
a result, a collision may not be detected and a false collision may be considered
as a collision. This second point is the most difficult to overcome, as a false-
collision implies adding a false equation in the system, which in turn implies the



attack failure. Heuristic solutions based on binary and ternary vote have then
been proposed in [3] to mitigate this issue. In binary vote, the idea is to observe
the same supposed collision using many traces, and to take a hard decision by
comparing the number of times the collision detection procedure returns true

with some threshold. Ternary vote is based on the fact that if there is a collision
between two values, then the output of the collision-detection procedure should
be the same when comparing both traces with a third one.

An alternative approach is the correlation-enhanced attack introduced by
Moradi et al. [13]. This approach is somehow orthogonal to the first one, since
we are not in the context of binary hypothesis testing anymore. Namely, instead
of only returning true or false, a comparison procedure directly returns the
score obtained using the chosen statistic (e.g. Pearson’s correlation coefficient).

Hence, when comparing two sub-traces t
(i)
a and t

(j)
b , we obtain a score that is

an increasing function of the likelihood of Ka ⊕Kb being equal to x
(i)
a ⊕ x(j)

b .

Besides, the authors of [13] combined their attack with a pre-processing of
the traces, that consists in building “on-the-fly” templates of the form:

t̄(x)
a =

∑
i,x

(i)
a =x

t
(i)
a

#{i, x(i)
a = x}

· (1)

Such a pre-processing is typically useful to extract first-order side-channel infor-
mation (i.e. difference in the mean values of the leakage distributions).

3 General Framework for Linear Collision Attacks

In this section, we propose a general framework for describing the different linear
collision attacks that have been proposed in the literature. One important con-
tribution of this framework is to represent these attacks as a decoding problem.
In particular, we argue that a natural description of collision attacks is obtained
through the theory of LDPC codes, designed by Gallager in 1962 [9].

3.1 Collision Attacks as an LDPC Decoding Problem

We start with the definition of LDPC codes.

Definition 1. LDPC codes (graph representation). Let G be a bipartite graph
with m left nodes and r right nodes. Let us denote by GE the set of edges i.e.
(i, j) ∈ GE if and only if the i-th left node and the j-th right node are ad-
jacent. This graph defines a code C of length m over Fmq , such that for w =
(w1, w2, . . . , wm) ∈ Fmq , we have:

w ∈ C ⇐⇒ ∀1 ≤ j ≤ r,
⊕

i,(i,j)∈GE

wi = 0.

This code is said to be an (m, i, j) LDPC code if the maximum degree for a left
nodes is i and the maximum degree for a right nodes is j.



In general, left nodes are called message nodes while right nodes are named
check nodes, since they correspond to conditions for code membership. This
definition can be directly related to our collision attack setting. First observe
that a collision between S-boxes a and b provides information on the variable:

∆Ka,b
def
= Ka ⊕Kb.

It follows that the vector ∆K
def
= (∆K1,2, . . . ,∆K15,16) determines a coset of K

of size 28. Hence, it can be seen as a codeword of an LDPC code of dimension
15 and length 120. This LDPC code corresponding to our problem has a very
particular structure: the set of check nodes only contains right nodes of degree
equal to 3. These nodes correspond to the linear relationships:

∆Ka,b ⊕∆Ka,c = ∆Kb,c, ∀ 1 ≤ a < b < c ≤ 16.

Therefore, finding the key in a linear collision attack consists in finding the like-
liest codeword of the aforementioned LDPC code, and then exhaustively testing
the keys derived from this system by setting K1 to each of its 28 possible values.
This LDPC formulation for the linear collision attack problem allows the use of
a decoding algorithm to recover the likeliest system of equations. In general, it is
well known that the performances of such a decoder can be drastically improved
when soft information is available. Interestingly, soft information is naturally
available in our context, e.g. through the scores obtained for each possible value
of a variable ∆Ka,b. Nevertheless, these scores do not have a direct probabilistic
meaning. This observation suggests that a Bayesian extension of the statistics
used for collision detection, where the scores would be replaced by actual prob-
abilities, could be a valuable addition to collision attacks, in order to boost the
decoder performances. As will be shown in Section 5, this combination of LDPC
decoding and Bayesian statistics can indeed lead to very efficient attacks.

3.2 General Framework

A general description of linear collision attacks is given in Algorithm 1 and holds
in five main steps. First, the traces may be prepared with a PreProcessTraces

procedure. For example, signal processing can be applied to align traces or to
remove noise. Instantiations of this procedure proposed in previous attacks [3,

13] will be discussed in Section 4.1. Next, the scores Sa,b
def
= (Sa,b(δ))δ∈F256

cor-
responding to the possible values δ of the variables ∆Ka,b are extracted (with
the ComputeStatistics procedure). Different techniques have again been pro-
posed for this purpose in the literature. In order to best feed the LDPC decoder,
the scores can be turned into distributions for the variables ∆Ka,b, thanks to
an ExtractDistributions procedure. As will be discussed in Section 4.2, this
can be obtained by normalization, or by applying a Bayesian extension of the
computed statistics. In particular, we will show how meaningful probabilities can
be outputted for two previously introduced similarity metrics (in a non-profiled
setting). Using these distributions, the LDPCDecode procedure then returns a



Algorithm 1: General framework for linear-collision attacks.

Input: nt plaintexts x(1), . . . , x(nt) and the corresponding traces t(1), . . . , t(nt).
Output: The key k used by the targeted device.
(t̄1, . . . , t̄16)← PreProcessTraces(x(1), . . . , x(nt), t(1), . . . , t(nt));
foreach 1 ≤ a < b ≤ 16 do

Sa,b ← ComputeStatistics(t̄a, t̄b);

Pr [∆K]← ExtractDistributions(S1,2, . . . , S15,16);
{S1, . . . ,S`} ←LDPCDecode(Pr [∆K]);
foreach system Si and key candidate k compatible with equations in Si do

if TestKey(k) then
return k;

return failure;

list of the ` most likely codewords that correspond to the most likely consistent
systems {S1, . . . ,S`} of 120 equations (with Si more likely than Si+1). Such a
decoding algorithm is detailed in Section 4.3 for the case ` = 1. Finally, the 28

full keys fulfilling S1 are tested in the TestKey procedure. The correct key is
returned if found otherwise keys fulfilling S2 are tested and so on. If the correct
key does not fulfill any of the Si’s, then failure is returned.

4 Instantiation of the Framework Procedures

Following the previous general description, we now propose a few exemplary
instantiations of its different procedures. Doing so, we show how to integrate
previously introduced collision attacks in our framework.

4.1 Pre-processing

Pre-processing the traces is frequently done in side-channel analysis, and colli-
sion attacks are no exceptions. For example, Bogdanov’s attacks take advantage
of averaging (by measuring the power consumption of the same plaintext several
times), in order to reduce the measurement noise [2–4]. Similarly, Moradi et al.
[13] start by building the “on-the-fly” templates defined in Equation (1). This
latest strategy shows good results in attacks against unprotected implementa-
tions with first-order leakages and our experiments in Section 5 will exploit it1.

4.2 Information Extraction

The use of an LDPC soft-decoding algorithm requires to extract distributions for
the variables ∆Ka,b. As mentioned in Section 3.1, such distributions can be ob-
tained heuristically, by normalizing scores obtained with classical detection tech-
niques. But the optimal performances of a soft-decoder are only reached when

1 By contrast, averaging is detrimental in the case of masked implementations with
only second-order leakages, as detailed in [7]. As an alternative, the authors of this

paper concatenate sub-traces t
(i)
a corresponding to the same plaintext x and form a

vector t̄a by collecting these concatenated sub-traces for different plaintext values.



these distributions correspond to actual probabilities Pr
[
∆Ka,b = δ

∣∣S(a, b, δ)
]
.

While such probabilities are easily computed in profiled attacks, obtaining them
in a non-profiled setting requires more efforts and some assumptions. In this sec-
tion, we first introduce general tools that may be applied to any given detection
technique for this purpose. For illustration, we then apply them to both the Eu-
clidean distance (ED) and the correlation-enhanced (CE) detection techniques.

Bayesian Extensions: General Principle. The naive approach for extracting
distributions from scores S(a, b, δ), obtained for a candidate ∆Ka,b = δ, is to
apply normalization:

Norm(S(a, b, δ))
def
=

S(a, b, δ)∑
δ′ S(a, b, δ′)

·

As already mentioned, such normalized scores are not directly meaningful since
they do not correspond to actual probabilities Pr

[
∆Ka,b = δ

∣∣S(a, b, δ)
]
. There-

fore, and as an alternative, we now propose a Bayesian technique for computing
scores that corresponds to these probabilities and is denoted as:

BayExt(S(a, b, δ)) ≈ Pr
[
∆Ka,b = δ

∣∣S(a, b, δ)
]
,

where the ≈ symbol recalls that the distributions are estimated under certain
(practically relevant) assumptions. For this purpose, we introduce the next model.

Model 1 Let T (resp. T ′) be the sub-trace corresponding to the execution of an
S-box with input X (resp. X ′). Let S(T, T ′) be a statistic extracted from the pair
of traces (T, T ′) (typically the Euclidean distance or a correlation coefficient).
Then, there exists two different distributions Dc and Dnc such that:

Pr [S(T, T ′) = s] =

{
PrDc [S = s] if X = X ′,
PrDnc [S = s] otherwise.

We note that in theory, the distribution of the statistic in the non-collision case
should be a mixture of different distributions, corresponding to each pair of non-
colliding values. However, in the context of non-profiled attacks, estimating the
parameters of these distributions (mean and variance, typically) for each compo-
nent of the mixture would require a large amount of measurement traces (more
than required to successfully recover the key). Hence, we model this mixture as
a global distribution. As will be clear from our experimental results, this heuris-
tic allows us to perform successful attacks with small amounts of measurement
traces. Model 1 directly implies that the distribution of ∆Ka,b can be expressed
using PrDc [·] and PrDnc [·], as stated in the following Lemma.

Lemma 1. Let Σ
def
= (si, ∆xi)1≤i≤n be the set of observed statistics si and the

corresponding suggested value ∆xi for a given XOR of key bytes ∆Ka,b. Then:

Pr
[
∆Ka,b = δ

∣∣Σ] ∝ n∏
i=1

Pr
[
S = si

∣∣∆xi, ∆Ka,b = δ
]
,

∝
∏

i,∆xi=δ

PrDc [S = si]
∏

i,∆xi 6=δ

PrDnc [S = si] ,



where PrDc [S = si] (resp. PrDnc [S = si]) denotes the distribution of the statis-
tic S when resulting from the comparison between to identical (resp. different)
inputs. Moreover, if for any i, PrDnc [S = si] is non-zero, then:

Pr
[
∆Ka,b = δ

∣∣Σ] ∝ ∏
i,∆xi=δ

PrDc [S = si]

PrDnc [S = si]
·

Proof. The first line is a direct application of Bayes’ relation, the second results
from Model 1, and the final formula is obtained dividing by

∏
i PrDnc [S = si].�

In order to solve our estimation problem, we have no other a priori informa-
tion on Dc and Dnc than their non-equality. This problem is a typical instance
of data clustering. That is, the set of observations si is drawn from a mixture
of two distributions Dc and Dnc, with respective weights 2−8 and (1− 2−8). For
both detection metrics in this paper, we show next that it is easy to theoretically
predict one out of the two distributions. We will then estimate the parameters
of the other distribution based on this prediction and some additional measure-
ments. Lemma 2 (proven in Appendix A) provides formulas to estimate the
non-collision distribution parameters based on the collision ones. Moving from
the collision to the non-collision distribution can be done similarly.

Lemma 2. Let D be a mixture of two distributions Dc and Dnc with respective
weights 2−8 and 1 − 2−8. Let us denote by µ̄ and σ̄2 estimates for the expected
value and variance of D obtained from observed values. Similarly, we denote
(µ̄c, σ̄2

c) estimates obtained for Dc. Then, we can derive the following estimates
for expected value and variance of Dnc:

µ̄nc =
µ̄− 2−8µ̄c

1− 2−8
, and σ̄2

nc =
σ̄2 − 2−16σ̄2

c

(1− 2−8)2
·

Specialization to the Euclidean Distance Detection. The Euclidean dis-
tance (ED) has been proposed as a detection tool in [18] and investigated in a pro-
filed setting in [4]. The Euclidean distance between two traces T and T ′ equals:

ED(T, T ′)
def
=
∑̀
j=1

(Tj − T ′j)2.

Let us first detail a natural non-Bayesian use of this similarity metric. Then,
we will specialize the aforementioned framework in order to provide formulas
to compute actual probabilities Pr

[
∆Ka,b

∣∣t̄a, t̄b] from observed Euclidean dis-

tances. In general, the smaller is the Euclidean distance between traces T̄
(ia)
a and

T̄
(ib)
b , the more probable is the value x

(ia)
a ⊕x(ib)

b for the variable ∆Ka,b is. Hence,

we will consider the opposite of ED
(
T̄

(ia)
a , T̄

(ib)
b

)
as the score to normalize:

SED(a, b, δ)
def
= Norm

(
d0 − max

x
(ia)
a ⊕x(ib)

b =δ

ED
(
T̄ (ia)
a , T̄

(ib)
b

))
, (2)



where d0 is chosen such that all values d0 − max
x
(ia)
a ⊕x(ib)

b =δ
ED

(
T̄

(ia)
a , T̄

(ib)
b

)
are strictly positive. Note that if a single trace is given, only a single Euclidean
distance can be computed between each pair of S-boxes a and b. By contrast,
many Euclidean distances can be computed per pair of S-boxes when the number
of traces increases. This justifies the use of a (heuristic) max function to select
which Euclidean distance will be retained to compute the scores. Let us now
consider the application of the Bayesian framework to the use of ED. We will use
ED B to refer to this Bayesian extension of ED. As mentioned earlier, efficiently
deriving probabilities from scores in a non-profiled setting requires to make some
assumptions. In the following, we consider the frequent case where the leakage is
the sum of a deterministic part (that depends on an intermediate computation
result) and a white Gaussian noise, as proposed in [17] and stated in Model 2.

Model 2 For any input byte Xi
a and for any point j in the corresponding sub-

trace T ia, the power consumption T ia,j is the sum of a deterministic value Lj(X
i
a)

and some additive white Gaussian noise N i
a,j of variance σ2

j :

T ia,j = Lj(X
i
a) +N i

a,j .

To lighten notation, we will omit superscripts and subscripts when a statement
applies for all inputs and sub-traces. This model admittedly deviates from the
distribution of actual leakage traces, since the noise in different samples can be
correlated. We note again that in non-profiled attacks, it is not possible to obtain
any information on the covariances of this Gaussian noise. Nevertheless, taking
points in the trace that are far enough ensures that these covariances are small
enough for this approximation to be respected in practice, as will be confirmed
experimentally in Section 5. In such a context, the variables (Tj −T ′j) are drawn

according to the Gaussian distribution N (Lj(X)−Lj(X ′), 2σ2
j ). As a result, the

normalized Euclidean distance becomes:

EDB(T, T ′)
def
=
∑̀
j=1

(Tj − T ′j)2

2σ2
j

, (3)

and can be modeled using χ2 distribution family (i.e. sums of squared Gaussian
random variables ). Indeed, each term of the sum is distributed according to a
non-central χ2 distribution with non central parameter (Tj−T ′j)2. In the case of
a collision, this parameter vanishes and all the terms are drawn according to a
central χ2 distribution. Hence Dc is a χ2 distribution with ` degrees of freedom.
In the case of Dnc, the attacker has no knowledge of (Lj(X)− Lj(X ′))2 and is
unable to directly estimate the distribution. Yet, as previously mentioned it is
possible to obtain a good approximation of this distribution from the param-
eters of Dc using Lemma 2. Experiments show that the shape of Dnc quickly
tends towards a Gaussian distribution when increasing the number of points `.
Combining these observations, we obtain the following score:



BayExt(SED(a, b, δ))
def
=

Norm
(

exp
[

1
2

∑
x
(ia)
a ⊕x(ib)

b =δ

(
EDB

(
T̄ (ia)
a ,T̄

(ib)

b

)
−µnc

)2

σ2
nc

− EDB(T̄
(ia)
a , T̄

(ib)
b )

])
. (4)

Remark. If averages are performed during the PreProcessTraces procedure, the

number of traces used to compute values T̄
(ia)
a may be different. Hence, the nor-

malized Euclidean distance EDB has to take this into account when comparing

sub-traces T̄
(ia)
a and T̄

(ib)
b . This is done by replacing 2σ2

j by σ2
j

(
1

#(a,ia) + 1
#(b,ib)

)
in (3), where #(a, ia) is the number of traces averaged to obtain T̄

(ia)
a .

Specialization to the Correlation-Enhanced Detection. We now consider
the use of Pearson’s correlation coefficient as detection tool. Let us recall that
for two vectors U and V having the same length and mean values Ū and V̄ , the
correlation coefficient is defined as:

ρ(U, V )
def
=

∑
i(Ui − Ū)(Vi − V̄ )√∑

i(Ui − Ū)2

√∑
i(Vi − V̄ )2

·

Many papers take advantage of this comparison metric in the side-channel liter-
ature. In the following, we focus on the correlation-enhanced solution proposed
in [13], as it generally provides the best results. This attack applies to “on-the-

fly” templates t̄ such that T̄
(x)
a contains the sub-traces obtained by averaging

the computations of an S-box a with plaintext byte x. The detection is based on

the fact that if ∆Ka,b = δ, then traces T̄
(x)
a should correspond to (i.e. be similar

with) traces T̄
(x⊕δ)
b . We denote the permutation of the vector T̄b that contains

the T̄
(x⊕δ)
b ’s for increasing x values as T̄⊕δb . Then, the normalized score for a

given δ is obtained with SCE(a, b, δ)
def
= Norm

(
ρ
(
T̄a, T̄

⊕δ
b

))
. In practice, some

values of T
(x)
a or T

(x⊕δ)
b may not be defined if few traces are used. In the case

where at least one of the two traces is undefined, the coordinate will be ignored in
the computation of the correlation coefficient. As for the Euclidean distance, we
propose to apply the Bayesian extension to the use of the correlation-enhanced
detection. The distribution of the correlation coefficient is not easy to handle,
but we can approximate it with a Gaussian one using the Fisher transform of

this coefficient, as proposed in [12]: CEB(a, b, δ)
def
= arctanh SCE(a, b, δ). Asymp-

totically, the random variables CEB(a, b, δ) are normally distributed with mean
equal to the expected value of ρ

(
T̄a, T̄

⊕δ
b

)
, and variance (N − 3)−1, where N

is the number of coordinates used to compute the correlation coefficient. Given
these modified statistics, we now derive the corresponding Bayesian extension.
For non-collisions, the correlation coefficient has an expected value of 0. Let us
denote the expected value of the correlation when a collision occurs as µc. Since
both distributions have the same variance (say σ2), Lemma 1 translates into:



Pr
[
∆K = δ

∣∣CEB(a, b, δ) = s
]
∝ e−

(s−µc)2

σ2

e−
s2

σ2

∝ exp

[
s2 − (s− µc)2

σ2

]
∝ exp

[
2s

σ2

]
.

In practice, it turned out that distributions are really close to Gaussian, even
for a small number of traces used, but their variance did not tend towards the
expected value (N − 3)−1. Hence, in our following experiments, we rather used:

SCE B(a, b, δ)
def
= Norm

(
e2 CEB(a,b,δ)

)
. (5)

Again, results in Section 5 show that even if based on slightly incorrect models,
the impact of these Bayesian extensions on the attack efficiency is positive.

4.3 LDPC Decoding

A soft-decoding algorithm for non-binary LDPC codes can be found in [1] and
is presented in Algorithm 2. It consists in iterating a belief propagation stage a
certain number of times. Let us recall that a code can be represented using a
bipartite graph: left nodes are message nodes and correspond to positions of the
codeword; right nodes are check nodes that represent redundancy constraints.
The attacker receives distributions for the message nodes. The belief propagation
step boils down to updating these message node distributions according to the
adjacent message nodes (that is, message nodes sharing a common check node).
Such a decoding algorithm actually works for any linear code, but quickly be-
comes intractable as the degree of check nodes increases. In the case of LDPC
codes, this degree is small (by definition) which makes the algorithm run effi-
ciently. In our particular context where check nodes have degree 3, information
from adjacent nodes can further be exploited through the convolution:

Pa,c ∗ Pb,c(δ)
def
=

∑
α∈F256

Pa,c(δ)Pb,c(δ ⊕ α).

In addition, the corresponding graph has small cycles and the propagation is
very fast (after only two iterations, a position has been influenced by all oth-
ers). Hence, the number of iterations of the while loop can be considered as a
constant. Note that the convolution of two probability tables can be computed
using a fast Walsh transform. Indeed, for a field of q elements, the q convolutions
can be computed in Θ(q ln q). Hence, Algorithm 2 has a complexity of Θ(q ln q).

5 Experiments

We now present experiments obtained in three different settings. The first set of
attacks targets a reference implementation of the AES and confirms the relevance
of the tools we introduced. Following, a second set of attacks targeting an op-
timized implementation of AES (namely, the furious implementation from [15])



Algorithm 2: Proposition for LDPCSoftDecoding procedure.

Input: The distributions Pr [∆Ka,b = δ].
Output: The likeliest consistent system S.
foreach 1 ≤ a < b ≤ 16, δ ∈ F256 do

Pa,b(δ)← Pr [∆Ka,b = δ];

while
(

argmax
δ

P1,2(δ), . . . , argmax
δ

P15,16(δ)
)
is not a codeword do

foreach 1 ≤ a < b ≤ 16 do
foreach δ ∈ F256 do

Pa,b(δ)← Pa,b(δ) ·
∏
c6∈{a,b} Pa,c ∗ Pb,c(δ);

Pa,b ←
Pa,b

‖Pa,b‖1
;

return
(

argmax
δ

P1,2(δ), . . . , argmax
δ

P15,16(δ)
)
;

is presented. The main observation is that small code optimizations may lead
to variations in S-boxes leakage functions, which in turn results in less efficient
attacks. For these two first sets of attacks, we measured the power consumption
of an Atmel microcontroller running the target AES implementations at 20MHz,
by monitoring the voltage variations over a small resistor inserted in the supply
circuit. We then conclude this paper by investigating a theoretical setting where
leakage functions are not linear. This final experiment motivates the potential
interest of collision attacks compared to other non-profiled distinguishers.

In the following, we compare collision attacks (Coll) using the Euclidean dis-
tance (ED) and the correlation-enhanced (CE) detection techniques, with the
non-profiled variant of Schindler et al.’s stochastic approach [17], described in [8]
and using a 9-element basis including the target S-boxes output bits. Collision
attacks have been performed using the instantitation of PreProcessTraces pro-
cedure from [13], defined by (1). As mentioned in the introduction, and for all
our experiments, we assumed that we were able to divide each leakage traces in
16 sub-traces corresponding to the 16 AES S-boxes. For the real measurements,
the detection metrics were directly applied to these sub-traces, following the de-
scriptions in the previous sections. As for the simulated ones in Section 5.3, we
generated univariate leakages for each S-box execution, according to the hypo-
thetical (linear and non-linear) leakage functions and a Gaussian noise.

5.1 Attacking the Reference Implementation

In this first experiment, we consider a favorable setting where each table look-up
is performed with the same register (our asm code provided in Appendix B). The
goal is to emphasize the gain obtained from the LDPC formulation of the prob-
lem and the Bayesian extension. The 28-th order success rates (defined in [20])
obtained in this case are given in Figure 1. Original collision attacks directly
extract the key from scores obtained with the ED or CE metrics. Attacks taking
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Fig. 1. Order 28 success rates of attacks using the homemade implementation.

advantage of the LDPC decoder are marked with an (L), and the use of the
Bayesian extension is denoted by (B)2. As expected, using the LDPC decod-
ing algorithm greatly improves the attacks performances. Moreover, using the
Bayesian extension also provides a non-negligible gain. Interestingly, when both
tools are combined, ED and CE detection metrics seem to be equivalent in terms
of data complexity. This may be a good empirical indication that the error cor-
recting codes approach we propose really extracts all the available information.

5.2 Attacking the Optimized Implementation

In this next experiment, we targeted the AES furious implementation. This op-
timized implementation is a more challenging target, since the S-box layer and
the ShiftRows operation are interleaved. Moreover, the table looks-up are per-
formed from different registers. Due to these optimizations, the leakage functions
of the different S-boxes are not so similar anymore (see Appendix B). Hence, the
correct key is unlikely to correspond to the most likely codeword. A direct con-
sequence of this more challenging context is that the success rate of order 28

is not suited to evaluate the attack performances (i.e. the correct key may be
rated beyond the 28 first ones by the attack). As an alternative, we estimated
the median rank of the correct key among the 2128 possible values.

In that case, one should use a decoding algorithm with ` > 1 and test the
28 · ` corresponding keys afterwards. Unfortunately, the efficiency of such a list-
decoding algorithm depends on the shape of distributions Pr [∆K], themselves
being highly dependent on the similarity metrics used to compare traces, and
the device running the cipher. Therefore, we left the design of such an algorithm
as a scope for further research. Yet, and in order to be able to analyze the at-
tack performances, we used an ad-hoc list-decoding algorithm that consists in
enumerating key classes from a subset of 15 positions of dimension 15 (using
the algorithm in [21]), for which the corresponding distributions have a small

2 Since the Bayesian extension does not modify the ordering of the scores, using it
only makes sense when applying the LDPC decoding algorithm.
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Fig. 2. Estimates of the median key rank when attacking the furious implementation.

entropy. Note that the belief propagation part of the decoder in Algorithm 2
can be used (or not) before performing the enumeration. To avoid confusion, we
will denote by (L’) the use of this belief propagation step before enumerating.
Computing the median rank of the key also becomes intensive as this rank be-
comes large. Hence, we decided to enumerate keys up to the 220-th first ones,
and in the cases where the correct key was not found, estimated the key rank
by multiplying correct subkey ranks. These heuristics naturally have to be taken
into consideration when analyzing the results in Figure 2. However, we believe
that they provide a fair understanding of the different attacks we investigated.
Namely, as in Figure 1, the soft-decoding algorithm allows great performance im-
provements in the furious implementation case-study. By contrast, the Bayesian
extensions were less directly useful. This observation again relates to the differ-
ent leakage models observed for different S-boxes. As the parameter estimation
in the Bayesian extensions requires a sufficient precision to be exploitable, they
were only useful after approximately 150 traces in this more challenging scenario.
Note finally that most collision attacks are stuck around rank 215. This can be
explained by one of the S-boxes leaking in a drastically different way than the
others in our implementation. As a result, we were only able to recover 14 bytes
out of the 15 ones from this optimized implementation (even with large number
of measurements). This leads to a median rank of roughly 27 for the correct
system, an a median rank 215=7+8 for the correct master key.

5.3 Simulated Experiments with Non-Linear Leakages

In the previous experiments, the non-profiled variant of Schindler et al.’s stochas-
tic approach consistently gave better results than the (improved) collision attacks
investigated. As a result, one can naturally question the interest of such attacks
in a security evaluation context. In order to discuss this issue, this final section
analyzes the relevance of collision attacks in a purely theoretical setting. We
used two different sets of simulated traces for this purpose: the first ones were
generated using a leakage function of which the output is a linear function of the
S-boxes output bits; the second ones were generated with a leakage function of
which the output is a highly non-linear function of the S-boxes output bits (i.e. a
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Fig. 3. 28-th order success rate for linear (left) and non-linear (right) leakage functions.

situation emulating the worst case scenario from [22]). The results corresponding
to these alternative scenarios are in Figure 3. As expected, the linear leakages in
the left part of the figure are efficiently exploited by all attacks, with an improved
data complexity for the stochastic approach. By contrast, in the right part of
the figure, the stochastic approach is unable to exploit the non-linear leakages,
and only collision attacks lead to successful key recoveries3. This confirms that
there exist situations in which non-profiled collision attacks are able to exploit
information leakage that no other non-profiled attack can. We leave the quest
for such leakage functions (or protected circuits) as a scope for further research.
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A Proof of Lemma 2

We want to express the mean and the variance of a mixture of two distributions
as a function of the means and variances of these distributions. Let us recall that
D is a mixture of two distributions Dc and Dnc with respective weights 2−8 and
1−2−8. We denote by µ and σ2 the expected value and variance of D, by (µc, σ

2
c )

the expected value and variance of Dc, and by (µnc, σ
2
nc) the expected value and

variance of Dnc. Let Xc and Xnc be respectively drawn according to Dc and Dnc
and X be the mixture 2−8Xc + (1− 2−8)Xnc. Then, due to the linearity of the
operator, E (X) = E

(
2−8Xc + (1− 2−8)Xnc

)
= 2−8µc + (1− 2−8)µnc. Thus, it

follows that µnc = µ−2−8µc
1−2−8 . Concerning the variance, a slightly more difficult

calculus leads to the claimed result. First, we use the relationship V (X) =

E
(
X2
)
− E (X)

2
and we develop its first term in:

E
(
X2
)

= E
(
2−16X2

c + 22−8(1− 2−8)XcXnc + (1− 2−8)2X2
nc

)
.

Since Xc and Xnc are independent variables, we have:

E
(
X2
)

= 2−16E
(
X2
c

)
+ 2−7(1− 2−8)E (Xc)E (Xnc) + (1− 2−8)2E

(
X2
nc

)
.

We then notice that E
(
X2
c

)
= σ2

c + µ2
c (the same holds for E

(
X2
nc

)
). Hence:

E
(
X2
)

= 2−16(σ2
c + µ2

c) + 2−7(1− 2−8)µcµnc + (1− 2−8)2(σ2
nc + µ2

nc).

Now returning to V (X) = E
(
X2
)
−E (X)

2
, we finally observe that many terms

in µ vanish to yield V (X) = 2−16σ2
c + (1− 2−8)2σ2

nc.

B Additional Details About the Target Implementations

Our experiments are based on two different implementations of the AES: a refer-
ence one that has been designed such that S-boxes looks-ups have similar leakage
functions, and the furious implementation. They respectively execute the AES
S-box in four instructions (mov SR,ST22; mov ZL,SR; lpm SR,Z; mov ST22,SR)
and three instructions (mov H1,ST21; mov ZL,ST22; lpm ST21,Z). We observed
that the most leaking operation in the S-box computation was the mov operation,
that stores the input of the S-box in the ZL register. Hence, in the reference im-
plementation, we first copy intermediate values in a register SR, that is the same
for all 16 S-boxes computations. Then, SR is updated and the output is copied
back to the initial state register. On the contrary, we can see that in the furi-
ous implementation, the ZL register is directly updated from the state register
(here ST22), and the answer directly goes back to the state register. In addi-
tion, the furious implementation combines the S-box layer with the ShiftRows

operation. It explains why the output is stored in ST21 and not ST22. The opti-
mizations in the furious implementation are the main reason of the poor results
of the attacks performed. As a simple illustration, we plotted the templates of
the leakage points used in the attacks for different S-boxes in Figure 4 (for the
reference implementation) and Figure 5 (for the furious one).
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Fig. 4. Leakage functions for the reference implementation.
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Fig. 5. Leakage functions for the furious implementation.

C About Time Complexity.

Metrics used in Section 5 for analyzing experiments only consider the success
rate of the attacks as a function of their data complexity. We consider the time
complexity of the proposed collision attack in this section. When attacking ns S-
boxes processing nb-bit words, these complexities for our different procedures are:

ComputeStatistics O
(
n2
sn

2
t `
)

ExtractDistributions O
(
n2
s(n

2
t + 2nb)

)
LDPCDecode O

(
n2
snb2

nb
)

When using the pre-processing technique that has a cost Θ (nsnt`), the complex-
ity of the procedure ComputeStatistics is decreased to O

(
n2
s2

2nb`
)
. Hence, it

turns out that, in realistic contexts, collision attacks can be performed in a negli-
gible time compared to the on-line acquisition and the final key search phases (a
similar comment applies to stochastic attacks). Furthermore, by carefully profil-
ing the number of cycles needed to perform the different steps of the attacks, we
observed that the slight time overhead induced by the use of a Bayesian exten-
sion and/or an LDPC decoding algorithm is positively balanced by the reduction
of the data complexity, hence leading to globally more efficient attacks.


