
J Cryptogr Eng (2013) 3:45–58
DOI 10.1007/s13389-013-0051-9

CHES 2012

Unified and optimized linear collision attacks and their
application in a non-profiled setting: extended version

Benoît Gérard · François-Xavier Standaert

Received: 15 November 2012 / Accepted: 15 January 2013 / Published online: 20 February 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Side-channel collision attacks are one of the most
investigated techniques allowing the combination of math-
ematical and physical cryptanalysis. In this paper, we dis-
cuss their relevance in the security evaluation of leaking
devices with two main contributions. On one hand, we sug-
gest that the exploitation of linear collisions in block ciphers
can be naturally re-written as a Low Density Parity Check
Code decoding problem. By combining this re-writing with
a Bayesian extension of the collision detection techniques,
we improve the efficiency and error tolerance of previously
introduced attacks. On the other hand, we provide various
experiments in order to discuss the practicality of such attacks
compared to standard differential power analysis (DPA). Our
results exhibit that collision attacks are less efficient in classi-
cal implementation contexts, e.g. 8-bit microcontrollers leak-
ing according to a linear power consumption model. We also
observe that the detection of collisions in software devices
may be difficult in the case of optimized implementations,
because of less regular assembly codes. Interestingly, the soft
decoding approach is particularly useful in these more chal-
lenging scenarios. Finally, we show that there exist (theoret-
ical) contexts in which collision attacks succeed in exploit-
ing leakages, whereas all other non-profiled side-channel
attacks fail.

Part of this work has been done as a postdoctoral researcher supported
by Walloon region MIPSs project. Associate researcher of the Belgian
Fund for Scientific Research (FNRS-F.R.S.). This work has been
funded in part by the ERC project 280141 (acronym CRASH).

B. Gérard (B) · F.-X. Standaert
UCL Crypto Group, Université catholique de Louvain,
Place du Levant 3, 1348, Louvain-la-Neuve, Belgium
e-mail: a-b.gerard@orange.fr

B. Gérard
DGA-MI, Bruz, France

1 Introduction

Most side-channel attacks published in the literature and
used to evaluate leaking cryptographic devices are based on
a divide-and-conquer strategy. Kocher et al. [11] differen-
tial power analysis (DPA), Brier et al. (CPA) [5] correlation
power analysis and Chari et al. [6] template attacks (TA)
are notorious examples. However, alternatives to these stan-
dard approaches have also been investigated, e.g. by trying to
combine side-channel information with classical cryptanaly-
sis. The collision attacks introduced by Schramm et al. [21] at
FSE 2003 are among the most investigated solutions for this
purpose. While initially dedicated to the DES, they have then
been applied to the AES [20] and improved in different direc-
tions over the last years, as witnessed by the recent works of
Ledig et al. [12], Bogdanov [2–4], Moradi et al. [15,16] and
Clavier et al. [7].

From an application point of view, collision attacks dif-
fer from standard side-channel attacks by their underlying
assumptions. Informally, divide-and-conquer distinguishers
essentially assume that a cryptographic device leaks infor-
mation that depends on its intermediate computations, under
a given leakage model. The leakage model is generally
obtained either from engineering intuition, in the case of
non-profiled attacks such as DPA and CPA, or through a
preliminary estimation of the chip measurements probability
distribution, in the case of profiled attacks such as TA. By
contrast, collision attacks do not require a precise knowledge
of the leakage distribution. They rather trade this need for a
combination of two other assumptions: (i) the distribution of
a couple of measurements corresponding to the intermediate
computation of identical values can be distinguished from
the one corresponding to different values; (ii) the adversary
is able to divide each measurement trace corresponding to
the encryption of a plaintext into sub-traces corresponding

123

46 J Cryptogr Eng (2013) 3:45–58

to elementary operations, e.g. the execution of block cipher
S-boxes. In other words, collision attacks trade the need of
precise leakage models for the need to detect identical inter-
mediate computations, together with a sufficient knowledge
of the operations scheduling in the target device. Interest-
ingly, the knowledge of precise leakage models has recently
been shown to be problematic in non-profiled attacks [25],
e.g. in the case of devices with strongly non-linear leakage
functions. Hence, although the existence of such devices
remains an open question [18], they at least create a theo-
retical motivation for understanding the strengths and weak-
nesses of collision attacks.

This paper brings two main contributions related to this
state of the art.

First, we observe that many previous collision attacks do
not efficiently deal with errors (i.e. when the correct value of
a key-dependent variable is not the likeliest indicated by the
leakages), and rely on add-hoc solutions for this purpose. In
order to handle erroneous situations more systematically, we
introduce two new technical ingredients. On the one hand,
we propose to re-write side-channel collision attacks as a
low density parity check (LDPC) decoding problem. On the
other hand, we describe a (non-profiled) Bayesian extension
of collision detection techniques. We show that these tools
are generic and allow successful key recoveries with less
measurement data than previous ones, by specializing them
to two exemplary attacks introduced by Bogdanov [2,3] and
Moradi et al. [15].

Second, we question the relevance of side-channel col-
lision attacks and their underlying assumptions, based on
experimental case studies. For this purpose, we start by show-
ing practical evidence that in “simple” scenarios, the effi-
ciency of these attacks is lower than the one of more standard
attacks, e.g. the non-profiled extension of Schindler et al. [19]
stochastic approach, described in [8]. We then observe that
in actual software implementations, the detection of colli-
sions can be difficult due to code optimizations. As a typical
example, we observe that the leakage behavior of different
AES S-boxes in an Atmel microcontroller may be differ-
ent, which prevents the detection of a collision with high
confidence for these S-boxes. We conclude by exhibiting an
(hypothetical) scenario where the leakage function is highly
non-linear (i.e. in the pathological example from [25]), col-
lision attacks lead to successful key recoveries whereas all
non-profiled attacks fail.

Finally, note that this paper is an extended version of the
work presented at CHES 2012 [10] that contains additive fea-
tures concerning list-decoding. More precisely, we provide
more details about using a decoding algorithm that returns
more than a single codeword (in order to trade data for com-
putations for instance). We have been able to experimentally
compare different set of parameters for the proposed proce-
dure due to a recently published algorithm for key rank esti-

mation [24]. The proposed procedure is detailed in Sect. 4.4,
corresponding experiments can be found both in Sect. 5.2
and Appendix C.

2 Background

2.1 Notations

In order to simplify the understanding of the paper, we will
suppose that the targeted block cipher is the AES Rijndael.
Hence, the number of S-boxes considered is 16, and these
S-boxes manipulate bytes. Nevertheless, all the following
statements can be adapted to another key alternating cipher,
by substituting the correct size and number of S-boxes. In this
context, the first-round subkey and plaintexts are all 16-byte
states. We respectively use letters k and x for the key and a
plaintext, and use subscripts to point to a particular byte:

x
def= (x1, x2, . . . , x16), k

def= (k1, k2, . . . , k16).

Next, the attackers we will consider have access to a cer-
tain number of side-channel traces, corresponding to the
encryption of different plaintexts encrypted using the same
key k. We denote with nt the number of different inputs
encrypted, and with x (1), . . . , x (nt) the corresponding plain-
texts. Each trace obtained is composed of 16 sub-traces cor-

responding to the 16 first-round S-box computations t (i)
def=

(t (i)1 , . . . t (i)16). Each sub-trace is again composed of m points
(or samples). Hence, the sub-trace corresponding to the a-th

S-box will be denoted as t (i)a
def= (t (i)a,1, . . . , t (i)a,m). Further-

more, we will use the corresponding capital letters X , K and
T to refer to the corresponding random variables.

2.2 Linear collision attacks

Linear collision attacks are based on the fact that if an
attacker is able to detect a collision between two (first-round)
S-box executions, then he obtains information about the key.
Indeed, if a collision is detected, e.g. between the computa-
tion of S-box a for plaintext x (ia) and S-box b for plaintext
x (ib), this attacker obtains a linear relation between the two
corresponding input bytes:

x (ia)
a ⊕ ka = x (ib)

b ⊕ kb.

This relation allows him to decrease the dimension of the
space of possible keys by 8, removing keys for which ka ⊕
kb �= x (ia)

a ⊕ x (ib)
b . A linear system can then be built by

combining several equations, and solving this system reveals
(most of) the key. Naturally, the success of the attack mainly
depends on the possibility to detect collisions. Two main
approaches have been considered for this purpose.

123

J Cryptogr Eng (2013) 3:45–58 47

In the first approach, simple statistics such as the Euclid-
ean distance [20] or Pearson’s correlation coefficient [21],
are used as detection metrics. In this case, the detection of a
collision can be viewed as a binary hypothesis test. It implies
to define an acceptance region (i.e. a threshold on the corre-
sponding statistic). As a result, a collision may not be detected
and a false collision may be considered as a collision. This
second point is the most difficult to overcome, as a false-
collision implies adding a false equation in the system, which
in turn implies the attack failure. Heuristic solutions based
on binary and ternary vote have then been proposed in [3]
to mitigate this issue. In binary vote, the idea is to observe
the same supposed collision using many traces, and to take
a hard decision by comparing the number of times the colli-
sion detection procedure returns true with some threshold.
Ternary vote is based on the fact that if there is a collision
between two values, then the output of the collision-detection
procedure should be the same when comparing both traces
with a third one.

An alternative approach is the correlation-enhanced attack
introduced by Moradi et al. [15]. This approach is somehow
orthogonal to the first one, since we are not in the context
of binary hypothesis testing anymore. Namely, instead of
only returning true or false, a comparison procedure
directly returns the score obtained using the chosen statistic
(e.g. Pearson’s correlation coefficient). Hence, when com-
paring two sub-traces t (i)a and t (j)

b , we obtain a score that is
an increasing function of the likelihood of Ka ⊕ Kb being
equal to x (i)

a ⊕ x (j)
b .

Besides, the authors of [15] combined their attack with
a pre-processing of the traces, that consists in building “on-
the-fly” templates of the form:

t̄ (x)
a =

∑
i,x (i)

a =x
t (i)a

#{i, x (i)
a = x}

· (1)

That is, traces corresponding to an a-th S-box input of
value x are averaged to form the template trace t̄ (x)

a . Such a
pre-processing is typically useful to extract first-order side-
channel information (i.e. difference in the mean values of the
leakage distributions).

3 General framework for linear collision attacks

In this section, we propose a general framework for describ-
ing the different linear collision attacks that have been pro-
posed in the literature. One important contribution of this
framework is to represent these attacks as a decoding prob-
lem. In particular, we argue that a natural description of col-
lision attacks is obtained through the theory of LDPC codes,
designed by Gallager [9].

3.1 Collision attacks as an LDPC decoding problem

We start with the definition of LDPC codes.

Definition 1 LDPC codes (graph representation). Let G be
a bipartite graph with m left nodes and r right nodes. Let us
denote by GE the set of edges i.e. (i, j) ∈ GE if and only if
the i-th left node and the j-th right node are adjacent. This
graph defines a code C of length m over F

m
q , such that for

w = (w1, w2, . . . , wm) ∈ F
m
q , we have:

w ∈ C ⇐⇒ ∀1 ≤ j ≤ r,
⊕

i,(i, j)∈GE

wi = 0.

This code is said to be an (m, i, j) LDPC code if the max-
imum degree for a left nodes is i and the maximum degree
for a right nodes is j .

In general, left nodes are called message nodes while
right nodes are named check nodes, since they correspond
to conditions for code membership. This definition can be
directly related to our collision attack setting. First, a colli-
sion between S-boxes a and b provides information on the
variable:

�Ka,b
def= Ka ⊕ Kb.

Next, observe that the system composed of these 120 rela-

tions is of rank 15 that is the vector �K
def= (�K1,2,�K1,3,

. . . ,�K15,16) only determines the key K up to 28 equivalent
keys. Hence, it can be seen as a codeword of an LDPC code of
dimension 15 and length 120. This LDPC code correspond-
ing to our problem has a very particular structure: the set of
check nodes only contains right nodes of degree equal to 3.
These nodes correspond to the linear relationships:

�Ka,b ⊕ �Ka,c = �Kb,c, ∀ 1 ≤ a < b < c ≤ 16.

Therefore, finding the key in a linear collision attack con-
sists in finding the likeliest codeword of the aforementioned
LDPC code, and then exhaustively testing the keys derived
from this system by setting K1 to each of its 28 possible val-
ues. This LDPC formulation for the linear collision attack
problem allows the use of a decoding algorithm to recover
the likeliest system of equations from a noisy vector �K .
In general, it is well known that the performances of such a
decoder can be drastically improved when soft information
is available. Interestingly, soft information is naturally avail-
able in our context, e.g. through the scores obtained for each
possible value of a variable�Ka,b. Nevertheless, these scores
do not have a direct probabilistic meaning. This observation
suggests that a Bayesian extension of the statistics used for
collision detection, where the scores would be replaced by
actual probabilities, could be a valuable addition to collision
attacks, in order to boost the decoder performances. As will
be shown in Sect. 5, this combination of LDPC decoding and
Bayesian statistics can indeed lead to very efficient attacks.

123

48 J Cryptogr Eng (2013) 3:45–58

3.2 General framework

A general description of linear collision attacks is given in
Algorithm 1 and holds in five main steps. First, the traces
may be prepared with a PreProcessTraces procedure.
For example, signal processing can be applied to align traces
or to remove noise. Instantiations of this procedure proposed
in previous attacks [3,15] will be discussed in Sect. 4.1. Next,

for each pair of S-boxes, the vector Sa,b
def= (

Sa,b(δ)
)
δ∈F256

containing scores for the 256 possible values δ of the vari-
able �Ka,b is extracted (ComputeStatistics proce-
dure). Different techniques have again been proposed for
this purpose in the literature (see Sect. 4.2 for some exam-
ples). In order to best feed the LDPC decoder, the scores can
be turned into distributions for the variables �Ka,b, thanks
to an ExtractDistributions procedure. As will be
discussed in Sect. 4.2, this can be emulated by normalizing
scores, or obtained by applying a Bayesian extension of the
computed statistics. In particular, we will show how mean-
ingful probabilities can be outputted for two previously intro-
duced similarity metrics (in a non-profiled setting). Using
these distributions, theLDPCDecodeprocedure then returns
a list of the � most likely codewords that correspond to the
most likely consistent systems {S1, . . . ,S�} of 120 equations
(with Si more likely than Si+1). Such a decoding algorithm
is detailed in Sect. 4.3 for the case � = 1. Finally, the 28 full
keys fulfilling S1 are tested in the TestKey procedure. The
correct key is returned if found otherwise keys fulfilling S2

are tested and so on. If the correct key does not fulfill any of
the Si ’s, then failure is returned.

4 Instantiation of the framework procedures

Following the previous general description, we now propose
a few exemplary instantiations of its different procedures.

Doing so, we show how to integrate previously introduced
collision attacks in our framework.

4.1 Pre-processing

Pre-processing the traces is frequently done in side-channel
analysis, and collision attacks are no exceptions. For exam-
ple, Bogdanov [2–4] attacks take advantage of averaging (by
measuring the power consumption of the same plaintext sev-
eral times), in order to reduce the measurement noise. Sim-
ilarly, Moradi et al. [15] start by building the “on-the-fly”
templates defined in Equation (1). This latest strategy shows
good results in attacks against unprotected implementations
with first-order leakages and our experiments in Sect. 5 will
exploit it.

4.2 Information extraction

The use of an LDPC soft-decoding algorithm requires
to extract distributions for the variables �Ka,b. As men-
tioned in Sect. 3.1, one can emulate those distributions by
normalizing scores obtained with classical detection tech-
niques. But the optimal performances of a soft-decoder
are only reached when these distributions correspond to
actual a posteriori probabilities Pr

[
�Ka,b = δ

∣
∣S(a, b, δ)

]
.

While such probabilities are easily computed in profiled
attacks, obtaining them in a non-profiled setting requires
more efforts and some assumptions. In this section, we
first introduce general tools that may be applied to any
given detection technique for this purpose. For illustra-
tion, we then apply them to both the Euclidean distance
(ED) and the correlation-enhanced (CE) detection tech-
niques.

4.2.1 Bayesian extensions: general principle

The naive approach for extracting distributions from scores
S(a, b, δ), obtained for a candidate �Ka,b = δ, is to apply
normalization:

Norm(S(a, b, δ))
def= S(a, b, δ)

∑
δ′ S(a, b, δ′)

·

As already mentioned, such normalized scores are not
directly meaningful since they do not correspond to actual
probabilities Pr

[
�Ka,b = δ

∣
∣S(a, b, δ)

]
. Therefore, and as

an alternative, we now propose a Bayesian technique for com-
puting scores that corresponds to these probabilities and is
denoted as:

BayExt(S(a, b, δ)) ≈ Pr
[
�Ka,b = δ

∣
∣S(a, b, δ)

]
,

where the ≈ symbol recalls that the distributions are esti-
mated under certain (practically relevant) assumptions. For
this purpose, we introduce the next model.

123

J Cryptogr Eng (2013) 3:45–58 49

Model 1 Let T (resp. T ′) be the sub-trace corresponding to
the execution of an S-box with input X (resp. X ′). Let S(T, T ′)
be a statistic extracted from the pair of traces (T, T ′) (typ-
ically the Euclidean distance or a correlation coefficient).
Then, there exists two different distributions Dc and Dnc such
that:

Pr
[
S(T, T ′) = s

] =
{

PrDc [S = s] if X = X ′,
PrDnc [S = s] otherwise.

We note that in theory, the distribution of the statistic in
the non-collision case should be a mixture of different distri-
butions, corresponding to each pair of non-colliding values.
However, in the context of non-profiled attacks, estimating
the parameters of these distributions (mean and variance, typ-
ically) for each component of the mixture would require a
large amount of measurement traces (more than required to
successfully recover the key). Hence, we model this mixture
as a global distribution. As will be clear from our experi-
mental results, this heuristic allows us to perform successful
attacks with small amounts of measurement traces. Model 1
directly implies that the posterior distribution of �Ka,b can
be expressed using only PrDc [si] and PrDnc [si] as stated in
the following Lemma.

Lemma 1 Let �
def= (si ,�xi)1≤i≤m be the set of m indepen-

dent statistics si and the corresponding suggested value �xi

observed for a given XOR of key bytes �Ka,b. Then

Pr
[
�Ka,b = δ

∣
∣�

] ∝
m∏

i=1

Pr
[
si

∣
∣�xi ,�Ka,b = δ

]
,

∝
∏

i,�xi =δ

PrDc [si]
∏

i,�xi �=δ

PrDnc [si] ,

where ∝ stands for “proportional to” and PrDc [si] (resp.
PrDnc [si]) denotes the probability of the statistic to be equal
to si when resulting from the comparison between to identical
(resp. different) inputs. Moreover, if for any i , PrDnc [si] is
non-zero, then:

Pr
[
�Ka,b = δ

∣
∣�

] ∝
∏

i,�xi =δ

PrDc [si]

PrDnc [si]
·

Proof The first line is a direct application of Bayes’ rela-

tion: Pr
[
�Ka,b

∣
∣�

] = Pr
[
�

∣
∣�Ka,b

]
Pr[�Ka,b]

Pr[�] . Indeed, observ-

ing that Pr
[
�Ka,b

]
and Pr [�] are positive constants and that

observed statistics are supposed independent allow to con-
clude. The second line results from Model 1, and the final
formula is obtained dividing by

∏
i PrDnc [si]. �

In order to solve our estimation problem, we have no other
a priori information on Dc and Dnc than their non-equality.
This problem is a typical instance of data clustering. That
is, the set of observations si is drawn from a mixture of
two distributions Dc and Dnc, with respective weights 2−8

and (1 − 2−8). For both detection metrics in this paper, we
show next that it is easy to theoretically predict one out of
the two distributions. We will then estimate the parameters
of the other distribution based on this prediction and some
additional measurements. Lemma 2 (proven in Appendix A)
provides formulas to estimate the non-collision distribution
parameters based on the collision ones. Moving from the col-
lision to the non-collision distribution can be done similarly.

Lemma 2 Let D be a mixture of two distributions Dc and
Dnc with respective weights 2−8 and 1 − 2−8. Let us denote
by μ̄ and σ̄ 2 estimates for the expected value and variance
of D obtained from observed values. Similarly, we denote
(μ̄c, σ̄ 2

c) estimates obtained for Dc. Then, we can derive the
following estimates for expected value and variance of Dnc:

μ̄nc = μ̄ − 2−8μ̄c

1 − 2−8 , and σ̄ 2
nc = σ̄ 2 − 2−16σ̄ 2

c

(1 − 2−8)2 ·

4.2.2 Specialization to the Euclidean distance detection

The Euclidean distance (ED) has been proposed as a detec-
tion tool in [20] and investigated in a profiled setting in [4].
The Euclidean distance1 between two traces T and T ′ equals:

ED(T, T ′) def=
m∑

j=1

(Tj − T ′
j)

2.

Let us first detail a natural non-Bayesian use of this sim-
ilarity metric. Then, we will specialize the aforementioned
framework in order to provide formulas to compute actual
probabilities Pr

[
�Ka,b

∣
∣t̄a, t̄b

]
from observed Euclidean dis-

tances. In general, the smaller is the Euclidean distance
between traces T̄ (ia)

a and T̄ (ib)
b , the more probable the value

x (ia)
a ⊕x (ib)

b for the variable �Ka,b is. Hence, we will consider

the opposite of ED
(

T̄ (ia)
a , T̄ (ib)

b

)
as the score to normalize:

SED(a, b, δ)

def= Norm

⎛

⎝d0 − max
x (ia)

a ⊕x
(ib)

b =δ

ED
(

T̄ (ia)
a , T̄ (ib)

b

)
⎞

⎠ (2)

where d0 is chosen such that all values

d0 − max
x (ia)

a ⊕x
(ib)

b =δ

ED
(

T̄ (ia)
a , T̄ (ib)

b

)

are strictly positive. Note that if a single trace is given, only
a single Euclidean distance can be computed between each

1 Actually this corresponds to the square root of the Euclidean distance
but the root does not alter the ordering hence there is no reason to
consider it.

123

50 J Cryptogr Eng (2013) 3:45–58

pair of S-boxes a and b. By contrast, many Euclidean dis-
tances can be computed per pair of S-boxes when the number
of traces increases. In that case we have to consider all these
distances to obtain a single score. We made the heuristic
choice of using the max function to select which Euclidean
distance will be retained to compute the scores. We have no
other justification than the fact that this was the one that has
shown best performances among different metrics (excluding
the Bayesian one of course). Let us now consider the appli-
cation of the Bayesian framework to the use of ED. We will
use EDB to refer to this Bayesian extension of ED. As men-
tioned earlier, efficiently deriving probabilities from scores
in a non-profiled setting requires to make some assumptions.
In the following, we consider the frequent case where the
leakage is the sum of a deterministic part (that depends on an
intermediate computation result) and a white Gaussian noise,
as proposed in [19] and stated in Model 2.

Model 2 For any input byte Xi
a and for any point j in the

corresponding sub-trace T i
a , the power consumption T i

a, j is

the sum of a deterministic value L j (Xi
a) and some additive

white Gaussian noise Ni
a, j of variance σ 2

j :

T i
a, j = L j (Xi

a) + N i
a, j .

To lighten notation, we will omit superscripts and sub-
scripts when a statement applies for all inputs and sub-
traces. This model admittedly deviates from the distribution
of actual leakage traces, since the noise in different samples
can be correlated. We note again that in non-profiled attacks,
it is not possible to obtain any information on the covari-
ances of this Gaussian noise. Nevertheless, taking points in
the trace that are far enough ensures that these covariances
are small enough for this approximation to be respected in
practice, as will be confirmed experimentally in Sect. 5. In
such a context, the variables (Tj − T ′

j) are drawn according

to the Gaussian distribution N (L j (X)− L j (X ′), 2σ 2
j). As a

result, the normalized Euclidean distance becomes:

EDB(T, T ′) def=
m∑

j=1

(Tj − T ′
j)

2

2σ 2
j

, (3)

and can be modeled using χ2 distribution family (i.e. sums
of squared Gaussian random variables). Indeed, each term
of the sum is distributed according to a non-central χ2 dis-
tribution with non central parameter (Tj − T ′

j)
2. In the case

of a collision, this parameter vanishes and all the terms are
drawn according to a central χ2 distribution. Hence Dc is a
χ2 distribution with m degrees of freedom. In the case of Dnc,
the attacker has no knowledge of (L j (X) − L j (X ′))2 and is
unable to directly estimate the distribution. Yet, as previously
mentioned it is possible to obtain a good approximation of
this distribution from the parameters of Dc using Lemma
2. Experiments show that the shape of Dnc quickly tends

towards a Gaussian distribution when increasing the num-
ber of points �. Combining these observations, we obtain the
following score:

BayExt(SED(a, b, δ))

def= Norm

⎛

⎜
⎝exp

⎡

⎢
⎣

∑

x (ia)
a ⊕x

(ib)

b =δ

(
EDB

(
T̄ (ia)

a , T̄ (ib)
b

)
− μnc

)2

2σ 2
nc

−EDB

(
T̄ (ia)

a , T̄ (ib)
b

)
⎤

⎥
⎦

⎞

⎟
⎠ . (4)

Remark If averaging of traces is performed during the
PreProcessTraces procedure, the number of traces
used to compute values T̄ (ia)

a may be different. Hence, the
normalized Euclidean distance EDB has to take this into
account when comparing sub-traces T̄ (ia)

a and T̄ (ib)
b . This is

done by replacing 2σ 2
j by σ 2

j

(
1

#(a,ia)
+ 1

#(b,ib)

)
in (3), where

#(a, ia) is the number of traces averaged to obtain T̄ (ia)
a .

4.2.3 Specialization to the correlation-enhanced detection

We now consider the use of Pearson’s correlation coefficient
as detection tool. Let us recall that for two vectors U and
V having the same length and mean values Ū and V̄ , the
correlation coefficient is defined as:

ρ(U, V)
def=

∑
i (Ui − Ū)(Vi − V̄)

√∑
i (Ui − Ū)2

√∑
i (Vi − V̄)2

·

Many papers take advantage of this comparison metric
in the side-channel literature. In the following, we focus on
the correlation-enhanced solution proposed in [15], as it gen-
erally provides the best results. This attack applies to “on-
the-fly” templates t̄ such that T̄ (x)

a contains the sub-traces
obtained by averaging the computations of an S-box a with
plaintext byte x . The detection is based on the fact that if
�Ka,b = δ, then traces T̄ (x)

a should correspond to (i.e. be
similar with) traces T̄ (x⊕δ)

b . We denote the permutation of the

vector T̄b that contains the T̄ (x⊕δ)
b ’s for increasing x values

as T̄ ⊕δ
b . Then, the normalized score for a given δ is obtained

with SCE(a, b, δ)
def= Norm

(
ρ

(
T̄a, T̄ ⊕δ

b

))
.

In practice, some values of T (x)
a or T (x⊕δ)

b may not be
defined if few traces are used. In the case where at least one
of the two traces is undefined, the coordinate will be ignored
in the computation of the correlation coefficient. As for the
Euclidean distance, we propose to apply the Bayesian exten-
sion to the use of the correlation-enhanced detection. The
distribution of the correlation coefficient is not easy to han-
dle, but we can approximate it with a Gaussian one using
the Fisher transform of this coefficient, as proposed in [14]:

123

J Cryptogr Eng (2013) 3:45–58 51

CEB(a, b, δ)
def= arctanh SCE(a, b, δ). Asymptotically, the

random variables CEB(a, b, δ) are normally distributed with

mean equal to the expected value of ρ
(

T̄a, T̄ ⊕δ
b

)
, and vari-

ance (N − 3)−1, where N is the number of coordinates used
to compute the correlation coefficient. Given these modified
statistics, we now derive the corresponding Bayesian exten-
sion. For non-collisions, the correlation coefficient has an
expected value of 0. Let us denote the expected value of the
correlation when a collision occurs as μc. Since both distrib-
utions have the same variance (say σ 2), Lemma 1 translates
into:

Pr
[
�K = δ

∣
∣CEB(a, b, δ) = s

] ∝ e− (s−μc)2

σ2

e− s2

σ2

∝ exp

[
s2 − (s − μc)

2

σ 2

]

∝ exp

[
2s

σ 2

]

.

In practice, it turned out that distributions are really close
to Gaussian, even for a small number of traces used, but their
variance did not tend towards the expected value (N − 3)−1.
Hence, in our following experiments, we rather used:

SCE_B(a, b, δ)
def= Norm

(
e2 CEB(a,b,δ)

)
. (5)

Again, results in Sect. 5 show that even if based on slightly
incorrect models, the impact of these Bayesian extensions on
the attack efficiency is positive.

4.3 LDPC decoding

First of all, notice that no efficient exact maximum-likelihood
decoding algorithms are available in our context. That is,
algorithms that would ensure that the returned codeword is
the most likely one would have prohibitive costs compared
to “approximated” (yet relevant) solutions as the one we con-
sider here.

Such a soft-decoding algorithm for non-binary LDPC
codes can be found in [1] and is presented in Algorithm
1. It consists in iterating a belief propagation stage a cer-
tain number of times. Let us recall that a code can be repre-
sented using a bipartite graph: left nodes are message nodes
and correspond to positions of the codeword; right nodes
are check nodes that represent redundancy constraints. The
attacker receives distributions for the message nodes. The
belief propagation step boils down to updating these message
node distributions according to the adjacent message nodes
(that is, message nodes sharing a common check node). Such
a decoding algorithm actually works for any linear code, but
quickly becomes intractable as the degree of check nodes

increases. In the case of LDPC codes, this degree is small (by
definition) which makes the algorithm run efficiently. In our
particular context where check nodes have degree 3, infor-
mation from adjacent nodes can further be exploited through
the convolution:

Pa,c ∗ Pb,c(δ)
def=

∑

α∈F256

Pa,c(δ)Pb,c(δ ⊕ α).

The only proofs of convergence of this algorithm that can
be found are for graphs having no cycles or class of ran-
dom graphs. They cannot be applied to our context where
the graph is fixed and has many small cycles. Nevertheless,
for all our experiments (presented in Sect. 5) the algorithm
has converged in a relatively small number of iterations (at
most 10 in a very worst case). Note that the convolution of
two probability tables can be computed using a fast Walsh
transform. Indeed, for a field of q elements, the q convolu-
tions can be computed in
(q ln q). Hence, Algorithm 1 has
a complexity of
(q ln q).

Note that this algorithm returns a single codeword where
the LDPCDecode procedure defined in Algorithm 1 may
return � > 1 codewords. This problematic of list decoding is
addressed in the following section.

About non-linear collisions Collision attacks can be
enhanced by considering not only the first round but the sec-
ond round too. In that case relations between key bytes are not
linear anymore but still the main structure of Algorithm 2 can
be used. Indeed, this Belief Propagation algorithm applies to
any kind of constraints over data bytes. The point is that the
distribution update that is performed using a convolution in
Algorithm 2 would then require heavier computations. More
precisely, the general complexity of such update over Fq for
a check node of degree d is
(qd−1). We leave the inves-
tigation of check-node degrees obtained when considering
more than the first round and the application of such decod-
ing algorithm to this context to further research.

123

52 J Cryptogr Eng (2013) 3:45–58

4.4 About list decoding

The problem of soft list-decoding of non-binary LDPC codes
has not triggered so much attention in the coding community.
More generally, list-decoding for large values of � is far from
transmission preoccupations. We hence have no on-the-shelf
decoding algorithm to propose.

Such list-decoding procedure with large list size is indeed
of interest for cryptanalytic purposes. The reasons why a
cryptanalysis could benefit from such algorithm is twofold.
First, it enables trade-offs between data complexity and off-
line computations. Second, and as we will see in Sect. 5,
in some situations, the correct codeword will be among the
most likely but not the most likely one whenever billions of
traces are used. In such case where first-order success rate is
stuck to 0 but for a small o, the o-th order success rate is close
to 1, being able to test other likely keys is of great interest.

In this section we discuss a solution for the attacker to
enumerate codewords (hence keys) in a relevant order (that
is an order close to the decreasing probability order). This
solution combines the base idea of information set decoding
and a key enumeration algorithm provided in [23].

Two different scenarios may be considered here.

(i) The attacker wants to recover the key whenever he would
have to test all possible keys.

(ii) The attacker plans to test at most 28 � keys.

In the first scenario we are less interested in the set of
codewords returned by the algorithm (that is all codewords)
than in the ordering of these codewords. Technically, the
ordered list of codewords cannot be stored and hence the
decoding algorithm should enumerate codewords and test the
corresponding keys on-the-fly. Such algorithm should enu-
merate codewords in an order as close as possible from the
likelihood-decreasing order and possibly without repetition.
This problem is precisely the one addressed in [23] in the par-
ticular context where positions are independent (that is a con-
text without redundancy). Adapting this algorithm to redun-
dant situation is possible but would induce an intractable
overhead in our setting.

The solution proposed here is to restrict ourselves to 15
positions of the code such that two distinct codewords have
two distinct truncated 15-byte values (in coding theory, such
a set is named information set). Doing so we can take profit
of the algorithm in [23] to enumerate key classes (equiva-
lently codewords) during an attack and also take profit of
the rank estimation procedure of [24] in our experiments
(that does not handle redundancy). Once an information set
is chosen, we enumerate codewords (and test the correspond-
ing 28 keys) until the correct one is found. The drawback of
such technique is that while the algorithm in [23] ensures
that keys are enumerated in decreasing order of probabili-

ties, this property does not hold here since we only consider
15 out of 120 positions. Indeed, the probability of a codeword
is computed based on the product of the value probabilities
for all positions of the code and not only 15 and thus the
ordering induced by those 15 positions does not necessarily
correspond to the actual one.

The second scenario is closer to reality in the sense that
keys may have limited lifetime (session keys for instance)
and thus attackers should have a limited time to perform
the attack. We assume that the attacker has enough memory
to store the list of � codewords (if not the case he should
take a smaller � or switch to context (i)). As we previously
explained, no efficient exact list-decoding algorithm is avail-
able. A solution is to consider a subset of codewords and to
return the ordered list of the � most likely. Contrarily to the
approach proposed for scenario (i), we ensure that the first
returned codeword is more likely than the second since we
compute the probabilities using all the available positions.
Nevertheless, since considering a subset of codewords we
might miss likely codewords and possibly the correct one.

The solution proposed for scenario (ii) is actually based
on the idea of information set decoding. While the contexts
are really different the basic idea of information set decod-
ing, that can be summed-up as “performing many bounded
decoding over different smaller codes”, applies here. Indeed,
a way of considering a subset of relevant codewords is to
consider different information sets, perform bounded list-
decoding using the algorithm of [23] and store codewords in
an updated structure containing the � most likely codewords
encountered so far.

Notice that the solution proposed for scenario (i) actually
is a particular case of the solution (ii) where a single infor-
mation set is used and � is set to 25615. We summarize the
algorithm proposed.

123

J Cryptogr Eng (2013) 3:45–58 53

Different parameters should be adjusted depending on the
context:

– the number of different information sets considered (N +
1 in the algorithm);

– the way information sets are chosen;
– the application of belief propagation steps before/during

the process.

This second approach is only meaningful if the correct key
rank has a large variability depending on the chosen infor-
mation set. This will depend on the parameters used for the
decoding procedure (a discussion on these parameters can
be found in Appendix C). We observed in our experiments
that the key rank was not varying so much when carefully
choosing information sets (typically at most a factor 25).

Evaluation and context (ii) We would like to emphasize
that Algorithm 3 is not as suited for evaluation than the
approach (i). Using such an algorithm, an evaluator can only
estimate complexities of attacks he is able to mount (and this
will be computationally intensive). On the contrary, approach
(i) allows the use of the estimation algorithm in [24] to esti-
mate key ranks beyond the computational capabilities of the
evaluator. Hence, even in the case where the information set
choice heavily influences the key rank, and for evaluation
purpose, we suggest to use approach (i) on different infor-
mation sets then taking as final rank the minimum observed
correct key rank.

5 Experiments

We now present experiments obtained in three different set-
tings. The first set of attacks targets a reference implemen-
tation of the AES and confirms the relevance of the tools
we introduced. Following, a second set of attacks targeting
an optimized implementation of AES (namely, the furious
implementation from [17]) is presented. The main observa-
tion is that small code optimizations may lead to variations in
S-boxes leakage functions, which in turn results in less effi-
cient attacks. For these two first sets of attacks, we measured
the power consumption of an Atmel microcontroller running
the target AES implementations at 20 MHz, by monitoring
the voltage variations over a small resistor inserted in the
supply circuit. We then conclude this paper by investigating
a theoretical setting where leakage functions are not linear.
This final experiment motivates the potential interest of col-
lision attacks compared to other non-profiled distinguishers.

In the following, we compare collision attacks (Coll) using
the Euclidean distance (ED) and the correlation-enhanced
(CE) detection techniques, with the non-profiled variant of
Schindler et al.’s stochastic approach [19] (DPA stoch.),
described in [8] and using a 9-element basis including the

Fig. 1 Order 28 success rates of attacks using the homemade imple-
mentation

target S-boxes output bits. Collision attacks have been per-
formed using the instantiation of PreProcessTraces
procedure from [15], defined by (1). As mentioned in Sect. 1,
and for all our experiments, we assumed that we were able to
divide each leakage trace in 16 sub-traces corresponding to
the 16 AES S-boxes. For the real measurements, the detection
metrics were directly applied to these sub-traces, following
the descriptions in the previous sections. As for the simulated
ones in Sect. 5.3, we generated univariate leakages for each
S-box execution, according to the hypothetical (linear and
non-linear) leakage functions and a Gaussian noise.

5.1 Attacking the reference implementation

In this first experiment, we consider a favorable setting where
each table look-up is performed with the same register (our
asm code provided in Appendix B). The goal is to empha-
size the gain obtained from the LDPC formulation of the
problem and the Bayesian extension. The 28-th order suc-
cess rates (defined in [22]) obtained in this case are given
in Fig. 1. Original collision attacks directly extract the key
from scores obtained with the ED or CE metrics. Attacks
taking advantage of the LDPC decoder are marked with
an (L), and the use of the Bayesian extension is denoted
by (B).2 As expected, using the LDPC decoding algorithm
greatly improves the attacks performances. Moreover, using
the Bayesian extension also provides a non-negligible gain.
Interestingly, when both tools are combined, ED and CE
detection metrics seem to be equivalent in terms of data com-
plexity. This may be a good empirical indication that the error
correcting codes approach we propose really extracts all the
available information.

5.2 Attacking the optimized implementation

In this next experiment, we targeted the AES furious
implementation. This optimized implementation is a more

2 Since the Bayesian extension does not modify the ordering of the
scores, using it only makes sense when applying the LDPC decoding
algorithm.

123

54 J Cryptogr Eng (2013) 3:45–58

Fig. 2 Median key rank for furious implementation (best parameters)

challenging target, since the S-box layer and the ShiftRows
operation are interleaved. Moreover, the table look-ups are
performed from different registers. Due to these optimiza-
tions, the leakage functions of the different S-boxes are not
so similar anymore (see Appendix B). Hence, the correct
key is unlikely to correspond to the most likely codeword. A
direct consequence of this more challenging context is that
the success rate of order 28 is not suited to evaluate the attack
performances (i.e. the correct key may be rated beyond the 28

first ones by the attack). As an alternative, we estimated the
median rank of the correct key among the 2128 possible val-
ues. This has been done by running the key rank estimation of
[24] on the 15 distributions corresponding to the positions of
the chosen information set. Within a few seconds we obtain
very precise bounds on the key rank that we translate into a
key rank distribution from which we extract the median rank.

Remark Notice that this way we obtain the key median rank
corresponding to a particular choice of information set and
not the actual rank. Nevertheless, the attacker himself should
not be able to enumerate keys in a decreasing order.

We discuss both the choice of the information set and the
application of the belief propagation in Appendix C.

Figure 2 shows results obtained using the best parame-
ters for the four similarity metrics (namely the standard and
Bayesian versions of both Euclidean distance and correlation
coefficient). They all correspond to choosing the information
set according to posterior entropies (the number of informa-
tion sets being given in legend).

In this particular context, the models on which Bayesian
extensions are derived does not hold. Nevertheless, we
observe that the Bayesian extensions still provide a non-
negligible advantage compared to standard metrics.

As expected, since two S-boxes have drastically differ-
ent behaviors than others, the attacks are stuck to 223. Intu-
itively we have no information about two of the 15 bytes
determined by the attack plus one byte due to the rank of the
linear-collision systems. Thus, we are somehow exhaustively
searching a key among 224=3·8 what explains the median rank
of 223.

Fig. 3 28-th order success rate for linear (top) and non-linear (bottom)
leakage functions

5.3 Simulated experiments with non-linear leakages

In the previous experiments, the non-profiled variant of
Schindler et al. stochastic approach consistently gave bet-
ter results than the (improved) collision attacks investigated.
As a result, one can naturally question the interest of such
attacks in a security evaluation context. In order to discuss
this issue, this final section analyzes the relevance of collision
attacks in a purely theoretical setting. We used two different
sets of simulated traces for this purpose: the first ones were
generated using a leakage function of which the output is a
linear function of the S-boxes output bits; the second ones
were generated with a leakage function of which the out-
put is a highly non-linear function of the S-boxes output bits
(i.e. a situation emulating the worst case scenario from [25]).
The results corresponding to these alternative scenarios are
in Fig. 3. As expected, the linear leakages in the top part
of the figure are efficiently exploited by all attacks, with an
improved data complexity for the stochastic approach. By
contrast, in the bottom of the figure, the stochastic approach
is unable to exploit the non-linear leakages, and only col-
lision attacks lead to successful key recoveries.3 This con-
firms that there exist situations in which non-profiled colli-

3 Increasing the basis with non-linear elements would not allow solving
this issue as long as only non-profiled attacks are considered. It would
lead to more precise leakage models both for the correct key candidates
and the wrong ones, by over-fitting.

123

J Cryptogr Eng (2013) 3:45–58 55

sion attacks are able to exploit information leakage that no
other non-profiled attack can. We leave the quest for such
leakage functions (or protected circuits) as a scope for fur-
ther research.

6 Conclusion

LDPC codes provide a natural way to describe side-channel
collision attacks. In this paper, we first propose a general
framework for collision attacks based on this LDPC represen-
tation of the problem. We then show that previous works can
naturally be expressed using this framework, derive Bayesian
extensions to scores classically used as collision detection
metrics.

We also propose the use of two LDPC decoding algo-
rithms for recovering the key. One can be found in coding
theory literature while the other is a homemade list-decoding
procedure based on the underlying idea of information set
decoding.

The relevance of the introduced tools is confirmed by per-
forming attacks against two different implementations of the
AES in a low-cost microcontroller. In addition, we observed
that simple code modifications (optimizations) can make the
detection of collisions challenging in software implemen-
tations. Such situations, and more generally the need of
enabling trade-offs between number of traces and off-line
computations, stress the importance of list-decoding with
large list sizes in cryptanalysis. We suggest further research
in this direction since the proposed algorithm is rather heuris-
tic and since only few parameters have been investigated in
the present work.

Eventually, we discussed the relevance of such collision
attacks in security evaluations. In particular, we exhibited
that they can be necessary in situations where profiling the
target device is impossible and meaningful leakage models
(needed for standard DPA to succeed) cannot be obtained by
engineering intuition.

Appendix A: Proof of Lemma 2

We want to express the mean and the variance of a mixture
of two distributions as a function of the means and variances
of these distributions. Let us recall that D is a mixture of two
distributions Dc and Dnc with respective weights 2−8 and 1−
2−8. We denote by μ and σ 2 the expected value and variance
of D, by (μc, σ

2
c) the expected value and variance of Dc, and

by (μnc, σ
2
nc) the expected value and variance of Dnc. Let Xc

and Xnc be respectively drawn according toDc and Dnc and X
be the mixture 2−8 Xc+(1−2−8)Xnc. Then, due to the linear-
ity of the operator, E (X) = E

(
2−8 Xc + (1 − 2−8)Xnc

) =
2−8μc + (1−2−8)μnc. Thus, it follows that μnc = μ−2−8μc

1−2−8 .

Concerning the variance, a slightly more difficult calculus
leads to the claimed result. First, we use the relationship
V (X) = E

(
X2

) − E (X)2 and we develop its first term in:

E

(
X2

)
= E

(
2−16 X2

c + 22−8(1 − 2−8)Xc Xnc

)

+(1 − 2−8)2 X2
nc.

Since Xc and Xnc are independent variables, we have:

E

(
X2

)
= 2−16

E

(
X2

c

)
+ 2−7(1 − 2−8)E (Xc) E (Xnc)

+(1 − 2−8)2
E

(
X2

nc

)
.

We then notice that E
(
X2

c

) = σ 2
c + μ2

c (the same holds for
E

(
X2

nc

)
). Hence:

E

(
X2

)
= 2−16(σ 2

c + μ2
c) + 2−7(1 − 2−8)μcμnc

+(1 − 2−8)2(σ 2
nc + μ2

nc).

Now returning to V (X) = E
(
X2

) − E (X)2, we finally
observe that many terms in μ vanish to yield V (X) =
2−16σ 2

c + (1 − 2−8)2σ 2
nc.

Appendix B: Additional details about the target
implementations

Our experiments are based on two different implementations
of the AES: a reference one that has been designed such that
S-boxes’ look-ups have similar leakage functions, and the
furious implementation. Codes corresponding to one look-
up are presented in Table 1 and commented below.

We observed that the most leaking operation in the S-box
computation was the mov operation, that stores the input of
the S-box in the ZL register. Hence, in the reference imple-
mentation, we first copy intermediate values in a register
SR, that is the same for all 16 S-boxes computations. Then,
SR is updated and the output is copied back to the initial
state register. On the contrary, we can see that in the furious
implementation, the ZL register is directly updated from the
state register (here ST22), and the answer directly goes back
to the state register. In addition, the furious implementation
combines the S-box layer with theShiftRows operation. It
explains why the output is stored inST21 and notST22. The
optimizations in the furious implementation are the main rea-
son of the poor results of the attacks performed. As a simple

Table 1 S-box code for used AES implementations

Reference Furious

mov SR, ST22 mov H1, ST21

mov ZL, SR mov ZL, ST22

lpm SR, Z lpm ST21, Z

mov ST22,SR

123

56 J Cryptogr Eng (2013) 3:45–58

0 50 100 150 200 250
0.019

0.022

0.025

0.028

0.031

0.034

0.037

Input values

T
en

si
on

 m
ea

su
re

d
(V

)

S−box 1

0 50 100 150 200 250
0.019

0.022

0.025

0.028

0.031

0.034

0.037

Input values

T
en

si
on

 m
ea

su
re

d
(V

)

S−box 3

Fig. 4 Leakage functions for the reference implementation

illustration, we plotted the templates of the leakage points
used in the attacks for different S-boxes in Fig. 4 (for the
reference implementation) and Fig. 5 (for the furious one).

Appendix C: Discussion on parameters for list decoding

In this section we discuss two parameters for the list decoding
procedure presented in Sect. 4.4 namely the application of
belief propagation and the information set choice.

Using belief propagation in the procedure Choosing an
information set and using it to enumerate codewords seems
to be not optimal since we actually do not benefit from infor-
mation contained in other positions (redundancy). Note that
this is not obvious when different information sets are used
and when the overall probability of a codeword is computed
using the 120 positions. However, in the case we consider
a single information set is used and codewords are enumer-
ated according to a partial probability computed from the 15
chosen positions.

To take profit of redundancy in this situation, the applica-
tion of the belief propagation step should be used to propagate
information according to the linear constraints of the code.
The question is then how many iterations should we perform?

0 50 100 150 200 250
0.018

0.02

0.022

0.024

0.026

0.028

Input values

T
en

si
on

 m
ea

su
re

d
(V

)

S−box 1

0 50 100 150 200 250
0.018

0.02

0.022

0.024

0.026

0.028

Input values

T
en

si
on

 m
ea

su
re

d
(V

)

S−box 3

Fig. 5 Leakage functions for the furious implementation

Fig. 6 Median ranks using Euclidean distance metric with different
number of belief propagation steps

We performed experiments for 0 (no application), 1 and 2
iterations and obtained results in favor of the application of
the belief propagation. We do not provide results obtained for
correlation coefficient since in both standard and Bayesian
cases applying twice the propagation step led to better results.
This is not so clear for Euclidean distance as can be seen in
Figs. 6 and 7.

Indeed, we see that for the Bayesian extension of the
Euclidean distance, performing belief propagation alters
results as soon as the number of traces are available reaches

123

J Cryptogr Eng (2013) 3:45–58 57

Fig. 7 Median ranks using Bayesian Euclidean distance metric with
different number of belief propagation steps

some point (between 100 and 250 traces depending on the
number of iterations considered).

Such degradation of performances may be due to the
fact that in the context of Furious implementation the base
hypothesis from which we built the Bayesian extension is not
fulfilled anymore. The extension for correlation coefficient
seems to be not (or at least less) impacted. This difference
may comes from the nature of hypotheses: for Euclidean dis-
tance an hypothesis is made for the behavior of (infrequent
and informative) colliding events while for correlation coeffi-
cient the hypothesis refers to (less informative) non-colliding
events.

Choice of the information set The second important point
in the procedure is the choice of the information set. Ideally
we would like to chose the least faulty positions.

One may assume that when a position is faulty (due to
the lack of information) the corresponding distribution looks
“more uniform” than a position where the correct value has
a good rank. This heuristic can be partially confirmed as
positions depending on the two particular S-boxes have a
larger entropy than others.

This remark implies that to overcome the problem encoun-
tered when attacking the Furious implementation, one could
try to detect such error prone S-boxes, remove them from the
analysis and use the single output decoding algorithm.

Since a list-decoding algorithm also aims at trading data
for computation time, the former remark does not mean that
such algorithm is useless. Hence we investigated the use of
entropy to choose the information set.

We previously saw that applying belief propagation
improved attacks we ran. Thus, the question is should we
consider entropy posterior or prior to this step? Intuitively,
applying the belief propagation should correct errors or con-
firm good positions thanks to redundancy. Thus, it is expected
that positions having small entropy after the belief propaga-
tion steps are less faulty than the ones before.

This is confirmed by experiments where the choice of
information set with prior entropies shows median larger
ranks with a typical (and significant) factor of 25.

Appendix D: About time complexity

Metrics used in Sect. 5 for analyzing experiments only con-
sider the success rate of the attacks as a function of their data
complexity. We consider the time complexity of the proposed
collision attack in this section. When attacking ns S-boxes
processing nb-bit words, these complexities for our different
procedures are:

ComputeStatistics O
(
n2

s n2
t m

)

ExtractDistributionsO
(
n2

s (n
2
t + 2nb)

)

LDPCDecode O
(
n2

s nb2nb
)

When using the pre-processing technique that has a
cost
(nsnt m), the complexity of the procedure Compute
Statistics is decreased to O

(
n2

s 22nbm
)
. Hence, it turns

out that, in realistic contexts, collision attacks can be per-
formed in a negligible time compared to the on-line acqui-
sition and the final key search phases (a similar comment
applies to stochastic attacks). Furthermore, by carefully pro-
filing the number of cycles needed to perform the different
steps of the attacks, we observed that the slight time overhead
induced by the use of a Bayesian extension and/or an LDPC
decoding algorithm is positively balanced by the reduction of
the data complexity, hence leading to globally more efficient
attacks.

We stress that no precise timing is given here because the
core of the attacks performed took less than a single second
on a traditional PC. Hence we consider that such information
is not relevant regarding the time spent to read traces from
the drive or to perform enumeration/rank estimation.

References

1. Bennata, A., Burshtein, D.: Design and analysis of nonbinary
LDPC codes for arbitrary discrete-memoryless channels. IEEE
Trans. Inform. Theory 52, 549–583 (2006)

2. Bogdanov, A.: Improved side-channel collision attacks on AES.
In: Adams, C.M., Miri, A., Wiener, M.J. (eds.) Selected Areas in
Cryptography-SAC 2007, vol. 4876 of LNCS, pp. 84–95. Springer,
Heidelberg (2007)

3. Bogdanov, A.: Multiple-differential side-channel collision attacks
on AES. In: Oswald, E., Rohatgi, P. (eds.) Cryptographic Hardware
and Embedded Systems-CHES 2008, vol. 5154 of LNCS, pp. 30–
44. Springer, Heidelberg (2008)

4. Bogdanov, A., Kizhvatov, I.: Beyond the limits of DPA: combined
side-channel collision attacks. IEEE Trans. Comput. 61(8), 1153–
1164 (2011)

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with
a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) Crypto-
graphic Hardware and Embedded Systems-CHES 2004, vol. 3156
of LNCS, pp. 16–29. Springer, Heidelberg (2004)

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.,
Koç, C.K., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems-CHES 2002, vol. 2523 of LNCS, pp. 13–28. Springer,
Heidelberg (2003)

7. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.:
Improved collision-correlation power analysis on first order pro-

123

58 J Cryptogr Eng (2013) 3:45–58

tected AES. In: Preneel, B., Takagi, T. (eds.) Cryptographic Hard-
ware and Embedded Systems-CHES 2011, vol. 6917 of LNCS, pp.
49–62. Springer, Heidelberg (2011)

8. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side
channel attacks and leakage modeling. J. Cryptogr. Eng. 1(2), 123–
144 (2011)

9. Gallager, R.G.: Low density parity check codes. Trans. IRE Prof.
Group Inform. Theory IT. 8, 21–28 (1962)

10. Gérard, B., Standaert, F.-X.: Unified and optimized linear collision
attacks and their application in a non-profiled setting. In: Prouff,
E., Schaumont, P. (eds.) Cryptographic Hardware and Embedded
Systems-CHES 2012, vol. 7428 of LNCS, pp. 175–192. Springer,
Heidelberg (2012)

11. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis.
In: Wiener, M.J. (ed.) Advances in Cryptology-CRYPTO 1999,
vol. 1666 of LNCS, pp. 388–397. Springer, Heidelberg (1999)

12. Ledig, H., Muller, F., Valette, F.: Enhancing collision attacks. In:
Joye, M., Quisquater, J.-J. (eds.) Cryptographic Hardware and
Embedded Systems-CHES 2004, vol. 3156 of LNCS, pp. 176–190.
Springer, Heidelberg (2004)

13. Lomne, V., Roche, T.: Collision-correlation attack against some
1st-order Boolean masking schemes in the context of secure
devices. In: Prouff, E. (ed.) Constructive Side-Channel Analysis
and Secure Design: COSADE, LNCS. Springer (2013, to appear)

14. Mangard, S.: Hardware countermeasures against DPA? a statisti-
cal analysis of their effectiveness. In: Okamoto, T. (ed.) Topics
in Cryptology-CT-RSA 2004, vol. 2964 of LNCS, pp. 222–235.
Springer, Heidelberg (2004)

15. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced
power analysis collision attack. In: Mangard, S., Standaert, F.-X.
(eds.) Cryptographic Hardware and Embedded Systems-CHES
2010, vol. 6225 of LNCS, pp. 125–139. Springer, Heidelberg
(2010)

16. Moradi, A.: Statistical tools flavor side-channel collision attacks.
In: Johansson, T., Pointcheval, D. (eds.) Advances in Cryptology-
EUROCRYPT 2012, vol. 7237 of LNCS, pp. 428–445. Springer,
Heidelberg (2012)

17. Poettering, B.: Fast AES implementation for Atmel’s AVR micro-
controllers. http://point-at-infinity.org/avraes/

18. Renauld, M., Standaert, F.-X., Flandre, D.: Information theoretic
and security analysis of a 65-nanometer DDSLL AES S-box.
In: Preneel, B., Takagi, T. (eds.) Cryptographic Hardware and
Embedded Systems-CHES 2011, vol. 6917 of LNCS, pp. 223–239.
Springer, Heidelberg (2011)

19. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differen-
tial side channel cryptanalysis. In: Rao, J., Sunar, B. (eds.) Crypto-
graphic Hardware and Embedded Systems-CHES 2005, vol. 3659
of LNCS, pp. 30–46. Springer, Heidelberg (2005)

20. Schramm, K., Leander, G., Felker, P., Paar, C.: A collision-attack
on AES: Combining side channel and differential-attack. In: Joye,
M., Quisquater, J.-J. (eds.) Cryptographic Hardware and Embedded
Systems-CHES 2004, vol. 3156 of LNCS, pp. 163–175. Springer,
Heidelberg (2004)

21. Schramm, K., Wollinger, T.J., Paar, C.: A new class of collision
attacks and its application to DES. In: Johansson, T. (ed.) Fast
Software Encryption-FSE 2003, vol. 2887 of LNCS, pp. 206–222.
Springer, Heidelberg (2003)

22. Standaert, F.-X., Malkin, T., Yung, M.: A unified framework for
the analysis of side-channel key recovery attacks. In: Joux, A. (ed.)
Advances in Cryptology-EUROCRYPT 2009, vol. 5479 of LNCS,
pp. 443–461. Springer, Heidelberg (2009)

23. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X:
An optimal key enumeration algorithm and its application to side-
channel attacks. In: Knudsen, L.R., Wu, H. (eds.) Selected Areas
in Cryptolography-SAC 2012, vol. 7707 of LNCS, pp. 390–406.
Springer, Heidelebrg (2012)

24. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security eval-
uations beyond computing power: how to analyze side-channel
attacks you cannot mount? To be published at EUROCRYPT
(2013) (Preliminary work can be found at http://eprint.iacr.org/
2012/578)

25. Veyrat-Charvillon, N., Standaert, F.-X.: Generic side-channel dis-
tinguishers: Improvements and limitations. In: Rogaway, P. (ed.)
Advances in Cryptology-CRYPTO 2011, vol. 6841 of LNCS,
pp. 354–372. Springer, Heidelberg (2011)

123

http://point-at-infinity.org/avraes/
http://eprint.iacr.org/2012/578
http://eprint.iacr.org/2012/578

	Unified and optimized linear collision attacks and their application in a non-profiled setting: extended version
	Abstract
	1 Introduction
	2 Background
	2.1 Notations
	2.2 Linear collision attacks

	3 General framework for linear collision attacks
	3.1 Collision attacks as an LDPC decoding problem
	3.2 General framework

	4 Instantiation of the framework procedures
	4.1 Pre-processing
	4.2 Information extraction
	4.2.1 Bayesian extensions: general principle
	4.2.2 Specialization to the Euclidean distance detection
	4.2.3 Specialization to the correlation-enhanced detection

	4.3 LDPC decoding
	4.4 About list decoding

	5 Experiments
	5.1 Attacking the reference implementation
	5.2 Attacking the optimized implementation
	5.3 Simulated experiments with non-linear leakages

	6 Conclusion
	Appendix A: Proof of Lemma 2
	Appendix B: Additional details about the target implementations
	Appendix C: Discussion on parameters for list decoding
	Appendix D: About time complexity
	References

