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Abstract. Intellectual property right violations are an important prob-
lem for integrated system designers. We propose a new solution for mit-
igating such violations, denoted as soft physical hash functions. It com-
bines previously introduced ideas of soft hash functions (in the field of
image processing) and side-channel leakage (in the field of cryptographic
hardware). For this purpose, we first introduce and formalize the com-
ponents of an intellectual property detection infrastructure using soft
physical hash functions. Next, we discuss its advantages over previous
proposals aiming at similar goals. The most important point here is that
the proposed technique can be applied to already deployed products.
Finally, we validate our approach with a first experimental study.

1 Introduction

While technology shrinking has been the enabling factor for producing increas-
ingly powerful micro- and nano-electronic devices, it has also made the manu-
facturing process of these devices an increasingly difficult and expensive task.
Besides, the high complexity of present hardware/software co-designs leads most
system developers to assemble various pieces of hardware and software produced
by different companies. This has motivated the development of new businesses,
relying on the selling of Intellectual Property (IP) cores. A recent study from
Semico Research estimated that the IP core market reached 4 billion US$ in
2009, i.e. a growth of 23,2% compared to the 2005 figures [28]. The advantages
of re-using IP cores are enormous in terms of cost and development time re-
ductions. But they also raise important risks regarding IP theft. Namely, the
high-valued nature of hardware/software systems naturally creates a strong in-
centive for piracy, cloning of products and copyright infringement. In addition,
the selling of IP cores implementing certain functionalities, that have to be in-
tegrated in larger developments, raise compatibility constraints that make the
situation even more challenging. This is in part due to the versatility of these
IP, that can be distributed under different shapes. For example, IP can be found
in high-level format (i.e. described with a high-level language) or in low-level
format (i.e. as completely laid out functional blocks restricted to a given tech-
nology). As a result, various solutions have been proposed to decrease the risk
of unlicensed IP usage.



Looking at low-level IP, two main general approaches are usually suggested in
the literature. A first line of research can be denoted as “permission-based”. The
idea is that before running, any functional system performs some test in order
to make sure that it has the right permissions. The use of passwords is a typical
example of such an approach. More robust ideas have also been introduced in
two main directions. On the one hand, the test could check the presence of a
cryptographically-enhanced security chip (rather than a simple password), as
typically suggested in [3, 22]. On the other hand, one can also take advantage
of Physically Unclonable Functions, in order to make sure that the system is
running on the correct (unique) piece of hardware, e.g. as suggested in [16, 29].

A second active line of research is to exploit watermarking techniques. In
general, a watermark is a piece of information that is embedded in a digital signal,
in order to verify its authenticity or the identity of its owners. Its main evaluation
criteria are robustness (i.e. the watermark should be detectable even if the digital
signal is slightly modified by some processing, e.g. filtering), imperceptibility
(i.e. the original signal and the masked signal should be perceptually close) and
capacity (i.e. the embedded mark should be large). By contrast to the permission-
based approach, watermarking is useful a posteriori, in order to detect illegal
copies at lower cost than reverse engineering. While first investigated in the
context of image processing, watermarking has also been applied for software
IP protection [7, 25]. More recently, it has attracted attention for hardware IP
protection, e.g. [1, 18, 19].

Two types of limitations can be highlighted for these approaches. The first
one mainly applies to the performance and security of permission-based protec-
tions. That is, in order to include such mechanisms in a circuit, one needs to
modify its original layout. This means that some logic gates are lost (and con-
sume power) for this purpose. Besides, as permission checks imply the addition
of some circuitry in the chips, an adversary who has access to the source code
(by reverse engineering or any other means) can remove this part of the designs,
hence producing illegal copies without any protection. The second limitation is
more general and relates to the flexibility of the solutions. Namely, for both types
of IP protections, the decision to protect an implementation has to be part of
the design process (and must sometimes be made early in this process). Hence,
it cannot help for already deployed products.

In parallel, security enhancements that are specific to high-level IP and
take advantage of software facilities have also been proposed. One typical ex-
ample is source code or bitstream encryption that is used, e.g. in FPGA [9].
While this solution is useless in the case of hardwired IP, as there is no code
to encrypt/decrypt, it can be a useful complement in some IP protection sys-
tems, where a part of the value to preserve is software. Note that the encryp-
tion/decryption of the source code or bitstream then has to be secure against
other types of physical attacks, e.g. using side-channels [24]. It is also necessary
that the encryption/decryption keys are stored in a sufficiently secure memory
(a problem for which the tamper resistant property of PUF could help [31]).



In this paper, we propose a new IP protection scheme that applies both to
high-level and low-level IP. It mitigates some of the limitations, and can be ef-
ficiently combined with, previously introduced solutions for this purpose. More
precisely, we take advantage of two main ingredients. First, we build on the idea
of soft (aka robust, aka perceptual) hash functions, that are yet another tool used
to protect the copyright of digital data (e.g. images) [13, 21, 23, 32]. Second, we
exploit the physical representation of the IP, e.g. through its power consump-
tion, as proposed with side-channel watermarks [4, 35]. In addition, we use the
formalism introduced in the context of Physically Unclonable Functions [2], in
order to specify the components of our IP detection infrastructure. Combining
these elements, we introduce soft physical hash functions as a powerful yet flex-
ible way to deal with the IP of microelectronic circuits and systems. We then
define the main properties of such functions, namely their content sensitivity
and perceptual robustness. Finally, we instantiate a first soft physical hash func-
tion with simple signal processing tools and analyze its properties based on an
experimental case study. Namely, and based on the implementation of 10 dif-
ferent block ciphers in an Atmel microcontroller that have been made public
through the ECRYPT project [11], we show experimentally that a soft physical
hash function can efficiently discriminate these different implementations, while
being robust to some elementary code transformations that should not modify
the IP (perceptually).

2 IP in hardware and software design flows

This section briefly introduces the hardware and software design flows, and dis-
cusses where the IP lies in such systems. We conclude by describing two general
attacks against IP in integrated systems. The hardware design flow is illustrated
in the left part of Figure 1. It is essentially made of five successive steps for
which a succint description is given next.

1. Description. This step consists in specifying the implementation of an algo-
rithm with a Hardware Description Language (HDL), e.g. VHDL and Ver-
ilog. Such languages determine the number and type of operations that have
to be implemented on chip, as well as their scheduling. The result of this
step is called the hardware source code.

2. Synthesis. This step consists in converting the hardware source code into
an idealized electronic circuit. The synthesis tools automatically translate a
high-level description into a lower-level one (e.g. gate-level). It is function-
ally equivalent to the hardware source code and corresponds to the target
platform (e.g. ASIC or FPGA). The result of this step is called a netlist.
Netlists are idealized in the sense that they do not correspond to a physical
description of the chip. Yet, the result of synthesis is highly dependent on
the tool options (e.g. space- or time-oriented optimizations).

3. Place and route. At this point of the design flow, the automated tools build
a physical model for all the logic and memory elements of the netlist. They



also simulate their mapping on the circuit surface, taking the position of
each cell, the width and length of connections, . . . into account. The result
of this step is called the layout. It is again dependent on the tool options.

Note that for reconfigurable devices such as FPGA, the design flow essentially
stops here (i.e. moves to final Step 5). Namely the layout can be directly loaded
into the device that will next act as a dedicated circuit with the same function-
ality. By contrast for ASIC, an additional Step 4 has to be carried out:

4. Manufacturing. Once the design of the chip is finished, its layout is sent to a
manufacturer in order to be physically built. Manufacturing usually includes
a packaging step that consists in protecting the chip with a plastic coating.

5. Integration. Eventually, and optionally, the chip can be integrated into a
larger system, combining different electronic pieces together.

1. Description
(VHDL, Verilog)

2. Synthesis

3. Place and
route

Reconfigurable
computing device

4. Manufacturing
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Hardwired
computing device

Hardware source code

Netlist
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1. Description
(C, C++, Java,

Python, ...)

2. Conversion

3. Loading

Functional
System
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Computing
device

Computing device
details

Fig. 1: Hardware (left) and software (right) design flows.

In general, most systems used in current applications combine (hardwired
or reconfigurable) computing devices with software programming. Software is
used either to control the dedicated hardware, or to perform some general pur-
pose computations for which standard computing platforms (microcontrollers,



microprocessors) provide sufficient performance. The software design flow is il-
lustrated in the right part of Figure 1. It is essentially made of three steps that
we describe next.

1. Description. As for the hardware flow, a high-level description language is
used (e.g. C, C++, Java, . . . ). It specifies a sequence of (sometimes data-
dependent) operations to execute on some fixed hardware in order to perform
an algorithmic task. The result of this step is called the software source code.

2. Conversion. This step consists in converting the high-level software source
code into a lower-level description, denoted as the machine code. As for the
hardware flow, it exploits automated tools (i.e. interpreters or compilers) the
options of which may significantly affect the final performances.

3. Loading. This last step consists in writing the machine source code into the
computing device memory, from which instructions are executed. As a result,
a fully functional system is obtained and ready to use in actual applications.

Where does the IP lie? From the previous design flows, it appears that differ-
ent types of IP are manipulated by the functional systems that are used in final
applications. On the one hand, the source codes contain the high-level IP. They
are easy to manipulate and provide the most readable description of algorithmic
tricks used to obtain efficient implementations. In addition, they are extremely
malleable, as it is easy to slightly modify them, or to run again the synthesis
and place and route (resp. conversion) steps, in order to produce two computing
devices (resp. systems) with the same functionality and slightly different layouts
(resp. machine codes). On the other hand, the layout and machine codes contain
the low-level IP that is less malleable but possibly includes further optimization
efforts performed during the synthesis and place and route (resp. conversion)
steps. The netlist in a hardware design flow falls between these two extremes.

Attacks against the IP. Leaving technical details aside, two main types of
attacks can be mounted to violate IP. First, “recovery and clone” attacks imply
that the adversary just re-uses the stolen IP as such. They typically target the
layouts or machine codes. Second, “recovery and modify” attacks imply that the
adversary modifies the IP before re-using it in an illegal system. They typically
target source codes. Clearly, the second attacks are much more powerful and, in
general, harder to prevent. As mentioned in the introduction, permission-based
IP protections are useless against such attacks, as the adversary can remove them
in his modified design. But in cases where a watermark is somewhat “additive”
(e.g. [4, 35]), the risk that an adversary identifies the watermark insertion and
removes it also increases. In practice, there exist many ways in which attacks
against the IP can be implemented. Reverse engineering generally comes in the
first place for ASIC. A rather complete survey is given in [30]. One can also
mention approaches taking advantage of side-channel analysis [8, 12, 17, 27]. But
threats caused by dishonest manufacturers, producing more chips than licenced,
or industrial IP theft, are other examples. There finally exist many attacks that
are specific to one technology. For example, bitstream security is a serious issue



for SRAM-based FPGA [34]. In order to remain generic, most of our discussions
in the following section are independent of the technical solutions used to perform
IP theft.

3 A new approach based on soft hash functions

Looking at previous works, the protection of IP in integrated circuits and sys-
tems appears to easily take advantage of general solutions for the protection of
digital data. As a result, and besides the watermarking and permission-based
techniques, it is natural to investigate other tools that have been proposed to
prevent the piracy of digital images. Following, we propose to exploit robust
hash functions [13, 32], also known as soft hash functions [21] or perceptual hash
functions [23], for this purpose. We will use the term “soft hash functions” in
the rest of the paper. By contrast to cryptographic hash functions, for which the
output string is highly sensitive to small perturbations of the input, soft hash
functions are such that similar objects should return highly correlated digests
(i.e. be perceptually robust), while different objects should produce uncorrelated
ones (i.e. be content-sensitive). Soft hash functions exist in keyed and un-keyed
version. We will only consider the second category and leave the design of a
keyed version as a scope for further research.

In practice, the soft hash functions we will consider are generally made of
two main ingredients. First, a feature vector evaluation phase outputs an inter-
mediate response that is expected to represent the object to characterize in the
most accurate manner. In other words, this intermediate string should be very
content-sensitive. Second, an extraction phase should apply signal processing
and summarize the feature vector into a smaller output hash value that best
trades content sensitivity for perceptual robustness. In addition, soft hash func-
tion infrastructures use a detection tool in order to compare different hashes and
determine whether they correspond to the same object. The main idea that we
propose in this paper is to extract a physical feature from the objects to protect.
We denote the resulting tool as a Soft Physical Hash function (SPH) that will
be the main component of our IP detection infrastructure. Interestingly, SPH
can be viewed as a particular type of physical function systems, as formally
defined in [2]. But whereas this previous work focuses on the robustness, un-
clonability and unpredictability of physical functions, we rather care about the
previously mentioned perceptual robustness and content sensitivity. Relations
with the formal definitions from [2] will be given in the next section. Intuitively,
an IP detection infrastructure can be specified as follows:

1. Object to protect. This could be any type of IP, namely a source code, a
netlist, a layout, or a machine code, as defined in Section 2.

2. Physical feature vector evaluation. This could be any physical emanation of
the device running the IP. For example, side-channels such as the power con-
sumption [20] or the electromagnetic radiation [14] are natural candidates.



3. Extraction. This could be any signal processing outputting a hash value that
best represents the IP. For example, one could compress by selecting the
“points of interest” in a side-channel measurement trace.

4. Detection. This could be any statistical tool that allows determining the level
of similarity between two hash values. Again, techiques from the side-channel
attack community could help, e.g. correlation [5] or template attacks [6].

In addition, one generally has to consider the context in which the IP protection
mechanism will be applied. Namely, we could consider:

1. Known or unknown inputs. That is, can the IP claimer select the data that
is manipulated by the target device during the physical feature evaluation
(in which case the soft hash can characterize both operation and data depen-
dencies)? Or is he limited to executions on random, and possibly unknown,
inputs (in which case the soft hash only characterizes operation dependen-
cies)?

2. Known or unknown source code. That is, does the IP claimer know the full
source code he is trying to detect or does he only have access to its soft
physical hash value (e.g. if the IP claimer is a third party)?

3. Same or different technologies. That is, are the soft hash values to be com-
pared extracted from devices in the same technology or not?

4. Same or different setups. That is, are the soft hash values to be compared
extracted with the same measurement apparatus or not?

Obviously, certain scenarios are more challenging than others and the perceptual
robustness and content sensitivity of a SPH can significantly vary accordingly.
Before entering into more details and instantiation issues, we would like to point
out a few advantages of the proposed approach. In the first place, and contrary
to the permission-based and watermarking approaches, using SPH does not re-
quire to modify the designs a priori. This allows improved flexibility, as one can
decide even after implementation to exploit this idea for IP theft detection. It
also means that implementing the protection mechanism implies no performance
overhead at all. Second, SPH theoretically allow preventing some recovery and
modify attacks. This is due to the fact that there is nothing to remove from
a protected design, but the IP itself (i.e. the protection is fully intrinsic). Of
course, the detection phase will be significantly more challenging when modi-
fications are substantial (because content sensitivity is inherently limited once
modified designs become too different), but it can at least tolerate some mal-
leability in the objects to protect. Third, the proposed solution remains cheaper
than reverse engineering, as it only requires to measure a physical feature.

4 Definitions

4.1 The IP detection infrastructure

The main goal of this section is to provide some formalism to define and study
the aforementioned IP detection procedure, based on the idea of SPH. This pro-
cedure naturally fits in the generic framework for physical functions presented



in [2], that is depicted in Figure 2. Indeed, SPH perfectly correspond to the def-
inition of physical function systems. Hence, we reuse and lighten the formalism
provided in [2] and apply it to our IP detection using SPH. The generic frame-
work we propose for IP detection is illustrated in Figure 3, where a soft physical
hash function is a probabilistic procedure SPH(IP,X) that returns a hash value
h.

SPH : (IP, X) 7→ h.

Fig. 2: Generic framework for physical functions [2].

Such outputs are obtained in two steps. First, a physical feature vector is
obtained (with the Eval(·) procedure), corresponding to the measurement of
some physical quantity observed during the processing of data X (that may
contain more than one input) by a device running the given IP. The probabilistic
nature of a SPH comes from this procedure and is due to many different reasons,
such as the variability that can be observed between different devices running
the same IP, or the noise in the measurements. This part of the system is the
one bringing the content sensitivity property but, as just stated, there is a non-
negligible variability that should be removed for reaching perceptual robustness.
This is precisely the role of the Extract(·) procedure. During this second step, the
physical feature vector is processed to extract the robust information it contains,
returning a hash value that should characterize the IP running on the device.

Next, an IP detection infrastructure is composed of two soft physical hash
functions SPH(IPref , ·) and SPH(IPsus, ·), corresponding to the reference and the
suspicious devices. Each SPH outputs a hash value that should identify the IP
running on the device under test. Additionally to these two SPH, a detection
tool Detect(·, ·) is used to compare the hash values href and hsus returned by
the SPH. This procedure outputs a similarity score that should be close to 1 for
similar IP, and close to 0 for different ones:

Detect : (href , hsus) 7→ s ∈ [0, 1].
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Performance metrics are required to evaluate SPH. In the following section,
we define perceptual robustness and content sensitivity, so that we will be able
to quantify these properties and to determine relevant tools for extracting hash
values.

4.2 Performance metrics

The IP detection infrastructure aims at confirming/invalidating the presence of
an IP running on a suspicious device. As mentioned earlier in the paper, this
IP can be of different nature, such as a layout or source code for instance. The
main difficulty for formally defining our problem comes from the fact that some
modifications of the source code should not be considered as defining a new
IP. For example, trivial modifications (e.g. changing variable names, switching
registers, adding dummy operations, changing compiler options) can clearly be
regarded as preserving the IP, but other modifications such as code optimizations
can also be considered as improving, yet relying on, the initial IP. Defining the
boundary between IP reuse and new IP definition is outside the scope of this
paper1. Here we assume the existence of such a definition and concentrate on
providing a tool allowing us to decide whether a given device is based on a given
IP or not, in the sense of this definition. More formally, we consider a set Fpre
of IP-preserving transformations. The detection tool should consider as “close”
an IP and its transform if the transformation function belongs to Fpre, and as
“distant” if the transformation belongs to F̄pre.

1 In Section 5 we will run experiments on typical examples, where, on the one hand,
IPs are modified and reused, and, on the other hand, different IPs are considered.



Remark. The use of sets Fpre and F̄pre is a purely formal way of dealing with
the perceptual notion of closeness involved in this problem. These sets should be
complementary but obviously, in practice, we will only consider some transfor-
mations in both sets. Notice that F̄pre may contain modifications of an IP, but
also transformations that simply consist in changing the IP. For instance, let IP1

be the IP corresponding to the source code of a social network and IP2 be the
one corresponding to a plane autopilot. Then, formally, there exists F̄ ∈ F̄pre
such that IP1 = F̄ (IP2). Nevertheless, and as will be clear in the next section,
such a definition is useful to capture practical transforms that can be consid-
ered as IP-preserving, while providing the flexibility to evaluate a wide range of
scenarios.

As a result, the robustness and sensitivity of a SPH are related to the set
of transformations considered to be IP-preserving, to the detection tool that is
used, to the threshold τ that has been fixed to make the decision, and to the data
complexity N corresponding to the number of IP runs that will be measured.
We denote by XN the set of N -input requests that can be sent to the devices
and define our evaluation metrics as follows.

Definition 1. (τ -perceptual robustness): Let τ ∈ [0, 1], the τ -perceptual robust-
ness of a SPH relatively to a detection tool Det, a set of transformations Fpre

and a data complexity N , is the probability that the similarity score of a reference
IP and its transformation by F ∈ Fpre is larger than τ :

PeRoNτ (Det,Fpre) , PrIP,X∈XN ,F∈Fpre
[Det (SPH(IP,X),SPH(F (IP), X)) ≥ τ ] .

Definition 2. (τ -content sensitivity): Let τ ∈ [0, 1], the τ -content sensitivity of
a SPH relatively to a detection tool Det, a set of transformations Fpre and a
data complexity N , is the probability that the similarity score of a reference IP
and its transformation by F̄ ∈ F̄pre is smaller than τ :

CoSeNτ (Det, F̄pre) , PrIP,X∈XN ,F̄∈F̄pre

[
Det

(
SPH(IP,X),SPH(F̄ (IP), X)

)
≤ τ

]
.

An IP detection infrastructure aims at combining an SPH to a relevant detection
tool in order to ensure good performances regarding both perceptual robustness
and content sensitivity. This context is the one of binary hypothesis testing where
τ corresponds to a threshold, 1 − PeRo is non-detection error probability and
1− CoSe is the false-alarm error probability.

5 First experimental results

This section demonstrates the use of SPH based on power consumption traces to
perform IP detection. First, we propose a simple instance of IP detection infras-
tructure, that uses classical tools in signal processing and side-channel attacks.
Then, we provide experimental results that confirm the content sensitivity and
perceptual robustness of this instance. These results are obtained for a particular
set of IP and some representative code transformations that we considered as
IP-preserving.



5.1 An exemplary instance

We first present our instance by specifying the four elements that define an IP
detection infrastructure enumerated in Section 3. Then, we detail the context we
consider for detecting IP. Finally, we provide information about our measurement
setup.

Object to protect. As a first case study, we investigated the relevance of our IP
detection based on SPH in the context of software implementations. In particu-
lar, we took advantage of the cryptographic algorithms made available as open
source codes in [11]. We considered the assembly codes of these lightweight ci-
phers as IP to protect, in order to analyze situations ranging from very similar
algorithms to totally different ones.

Physical feature evaluation. Inspired by side-channel attacks, we characterize
an IP by measuring the power consumption of a device running this IP. As the
literature on power analysis attacks suggests, such a physical feature vector is
expected to be highly content sensitive.

Extraction. We somehow need to compress the feature vector, removing part
of the variability due to the “noise”2, while keeping the content sensitive infor-
mation. The Fourier transform is a natural candidate for such compressing and
filtering purposes. The technique we propose is to apply a Fast Fourier Transform
(FFT) to the traces obtained, to take its modulus, and to only extract the values
corresponding to frequencies below the clock frequency. Information in higher
frequencies does not refer to logic gates but to the device itself. We provide below
(Figure 5) results that emphasize the positive effect of this preprocessing.

Detection. As a detection tool, we propose to use the widespread Pearson cor-
relation coefficient that has shown its interest in many previous works in the
domain of power-based cryptanalysis [5]. Let us recall that the Pearson correla-
tion coefficient between two vectors x and y of length n having mean values x̄
and ȳ is defined as:

ρ(x, y) ,

∑n
i=1(xi − x̄) · (yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
.

Context. As mentioned in Section 3, the IP detection infrastructure can be used
in different contexts. We specify the settings of our experimental work as follows.
First, inputs to the device are unknown to the detection infrastructure and a
single trace is used to perform the detection. Second, the source code is also
unknown to the IP detection infrastructure. Third, the same technology, i.e. an
Atmel 644P, has been used to perform all the measurements. Finally, the same
measurement setup has been used for all these measurements.

2 We stress that the term noise is generic. It can refer to measurement noise, but also
to noise due to minor transformations of the code or the use of different inputs for
the evaluation phase.



Measurement setup. We obtained power consumption traces by measuring the
voltage variations around an inductance at the input of the power supply of the
microcontroller. The clock frequency of the controller was fixed to 20 MHz, and
the sampling frequency to 50 MHz. For each IP, a reference trace corresponding
to a single encryption was stored. Next, the suspicious traces were cut or padded
(by re-encrypting the ciphertext), in order to deal realistically with the (frequent)
situation were IP have different cycles counts3.

5.2 Testing content sensitivity

Using different ciphers. As a first step, we applied our instance of SPH on
different ciphers. We chose to focus on the 10 block ciphers in Table 1. This first
experiment aims at confirming that the proposed IP detection infrastructure
indeed provides content sensitivity and perceptual robustness in a simple case,
where the set of IP-preserving transformations Fpre is reduced to identity, and
the set F̄pre consists in choosing another cipher in the list.

Table 1: Table of ciphers used as IP.

AES DESXL HIGHT KASUMI
KATAN MCRYPTON NOEKEON PRESENT

SEA TEA

For each of the 100 possible couples of IP (reference, suspicious) we measured
20 traces (corresponding to different inputs) for both IP, and applied the IP
detection tool for each of the 400 possible pairs of traces. The similarity scores
obtained are plotted in Figure 4.

Black dots are the scores obtained when IP are compared to F (IP) with
F ∈ Fpre and gray dots are the one obtained when the transformation belongs
to F̄pre. This picture is encouraging : both content sensitivity and perceptual
robustness are reached in experiments using a single trace. Indeed, for any τ value
between 0.86 and 0.27, the detection rule makes no mistake for this particular
set of IP and these particular sets Fpre and F̄pre.

Remark on KASUMI. The reader may have noticed that almost all reference
ciphers lead to scores higher than 0.95, except for KASUMI. The explanation is
quite simple. Indeed, the execution path of KASUMI depends on the data being
processed. To avoid timing attacks, cryptographers usually add nop operations to
make the implementation time-constant. While this prevents the execution time
from being data-dependent, this is not the case of instructions performed: traces

3 We first ran tests with a single execution of the IP but then it was too easy to detect
IPs. Since a cipher is generally used to encrypt more than one block we chose to
perform tests on looping IPs.
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Fig. 4: Similarity scores for different IP.

obtained by processing different outputs will correspond to different instruction
sequences. This explains why we observe these smaller scores for KASUMI. Note
also that a few scores are larger than 0.9 in Figure 4: they correspond to the
comparison of two traces obtained with the same input.

Using different implementations of a same cipher. As the setting of
Figure 4 is quite favorable (since we are comparing totally different IP), we now
move to a more challenging context and consider a single block cipher, namely
the standard AES, and four of its implementations. Three of them are the Fast,
Furious and Fantastic implementations that can be found in [26]. The fourth
one is proposed in [11] and named Francesco in reference to the first-name of its
programmer. Again, for each of the 16 possible couples of reference/suspicious
IP, we performed 2500 experiments (corresponding to 50 traces for both IP). To
highlight the positive effect of using an FFT, we plotted the results obtained
with/without such extraction, in the right/left parts of Figure 5.

Fig. 5: Similarity scores for different AES implementations using the FFT (right)
or not (left).

As can easily be seen, and as expected, using the FFT in the extraction step
drastically decreases the variance observed in the similarity scores in the case
where traces are directly compared (left part), while keeping the content sensi-
tivity property. Indeed, each implementation should be considered as a different



IP since they are really different one from the other. This emphasizes the need of
an extraction tool that compresses the feature vector to ensure robustness: using
FFT there is a wide range of thresholds (namely 0.37 to 0.95) for which both
perceptual robustness and content sensitivity are equal4 to 1 (that is, a 100%
success rate) while without this tool, any value of the threshold will induce a
non-zero error probability.

Yet, it remains that the content sensitivity could come from the simple fact
that each implementation requires a different number of cycles to perform an
encryption. In order to rule out this possibility, we additionally tuned the Fast
and the Furious implementations in such a way that they have the same number
of clock cycles and their only differences consist in actual round variations. For
this purpose, the key expansion, first key addition, and final rounds remained
the same and the inner rounds of the Fast implementation has been padded
with nop operations. As can be observed in Figure 6, and even in this case,
both implementations are detected as different IP with, again, a large range of
thresholds leading to perceptual robustness and content sensitivity of 1.
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Fig. 6: Similarity scores for tuned versions of Fast and Furious AES implemen-
tations.

5.3 Testing perceptual robustness

The previous experiments exhibit the good behavior of our SPH instance re-
garding content sensitivity. We now focus on its perceptual robustness. That is,
can we still detect an IP when minor modifications have been applied to the
original code? As previously mentioned, testing perceptual robustness requires
to agree on a set of IP-preserving transformations. We identified two types of
transformations, depending on whether they alter the performances or not:

– addr: i.e. changing registers or SRAM addresses (non-altering);
– swap: i.e. swapping instructions if possible (non-altering);
– dumo: i.e. adding dummy operations out of the rounds (altering);

4 Obviously these values are only estimates since one cannot consider all possible IPs
and all possible code modifications.



– dumi: i.e. adding dummy operations in the rounds (altering).

We chose to apply these modifications to the Furious implementation of AES.
Our results are given in Figure 7. Dots correspond to scores obtained when
comparing the reference implementation (ref) to its modification by one or
more of the listed transformations. The number of added dummy-operations is
the same for both dumo and dumi (57 additional cycles). As can be seen, the
proposed instance is directly robust regarding all non altering transformations.
Concerning the addition of dummy operations, we can observe that increasing
the encryption time does not always critically decrease the robustness (cf. dumo)
but, that adding dummy operations inside a repetitive part of the cipher is more
damaging. This observation naturally relates more to the simple nature of our
extraction and detection procedures than to the very idea of SPH. Interestingly,
simple tweaks allow to deal with such more challenging contexts, as illustrated
in Figure 8.
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Fig. 7: Similarity scores for transforms of the Furious implementation.

In this final figure, we slightly modified our SPH in order to first identify
the block cipher rounds (using cross-correlation). Next, we applied the FFT
separately on the different rounds, and used the average correlation over these
rounds as detection procedure. While this approach remains clearly heuristic,
the experimental results in Figure 8 show that it allows discriminating the ad-
dition of dummy operations within the rounds from the move towards another
implementation of the AES.
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To conclude, this set of experiments suggests that the concept we propose
is valid and provides good results even when it is instantiated with classical
tools. Moreover, we have shown that more challenging scenarios can be handled
using more advanced techniques. A deeper investigation of these scenarios is the
natural next step now that this preliminary work has shown promising results.

6 Conclusion and future works

This paper introduced, defined and proposed a first instantiation of SPH infras-
tructure, as a flexible and efficient way to protect the IP of integrated systems.
Experimental results in the context of software implementations confirm the
relevance of the approach. Namely, we are able to discriminate proprietary IP
using our instance of SPH, in the challenging scenario where the source code
and inputs of the IP to protect remain unknown to the detection infrastructure,
with minimum data complexity. Quite naturally, the strong contribution of the
control logic in a software implementation makes it a target of choice for our
IP detection infrastructure. Hence, the investigation of other contexts such as
FPGA, hardware or more complex implementations is an interesting scope for
further research. In view of the strong results obtained with simple tools in soft-
ware, we expect the method to remain applicable in those cases, in particular in
known input scenario (taking advantage of the strong literature in side-channel
attacks) and/or if the source code is available to the detector (in order to take
advantage of Hidden Markov Model cryptanalysis techniques such as in [33, 10]).
Eventually, another potentially interesting research direction would be the def-
inition of design strategies (or code modifications) that could be applied to the
IP before its release in order to facilitate the future detection of this IP with
SPH.
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editors, CHES, volume 2162 of Lecture Notes in Computer Science, pages 251–
261. Springer, 2001.

15. Louis Goubin and Mitsuru Matsui, editors. Cryptographic Hardware and Embedded
Systems - CHES 2006, 8th International Workshop, Yokohama, Japan, October 10-
13, 2006, Proceedings, volume 4249 of Lecture Notes in Computer Science. Springer,
2006.

16. Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and Pim Tuyls. FPGA
intrinsic PUFs and their use for IP protection. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science,
pages 63–80. Springer, 2007.

17. Sylvain Guilley, Laurent Sauvage, Julien Micolod, Denis Réal, and Frédéric Valette.
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