
Shuffling Against Side-Channel Attacks:
a Comprehensive Study with Cautionary Note

Nicolas Veyrat-Charvillon, Marcel Medwed,
Stéphanie Kerckhof, François-Xavier Standaert

Université catholique de Louvain, UCL Crypto Group,
B-1348 Louvain-la-Neuve, Belgium.

Abstract. Together with masking, shuffling is one of the most fre-
quently considered solutions to improve the security of small embed-
ded devices against side-channel attacks. In this paper, we provide a
comprehensive study of this countermeasure, including improved imple-
mentations and a careful information theoretic and security analysis of
its different variants. Our analyses lead to important conclusions as they
moderate the strong security improvements claimed in previous works.
They suggest that simplified versions of shuffling (e.g. using random start
indexes) can be significantly weaker than their counterpart using full per-
mutations. We further show with an experimental case study that such
simplified versions can be as easy to attack as unprotected implementa-
tions. We finally exhibit the existence of “indirect leakages” in shuffled
implementations that can be exploited due to the different leakage mod-
els of the different resources used in cryptographic implementations. This
suggests the design of fully shuffled (and efficient) implementations, were
both the execution order of the instructions and the physical resources
used are randomized, as an interesting scope for further research.

1 Introduction

Already in the first Differential Power Analysis (DPA) paper, Kocher et al.
mentioned time randomization as a possible solution to improve security against
side-channel attacks [15]. Following, different countermeasures have been pro-
posed to exploit this idea, e.g. relying on the addition of random delays [7, 31],
shuffling the execution order of independent operations [13, 26], or more gener-
ally, trying to build a non-deterministic processor [4, 19]. As usual in side-channel
attacks, the main question regarding these solutions is: “to what extent do they
improve security and at which cost?”. In this paper, we propose a comprehensive
treatment of this question in the case of the shuffling countermeasure.

For this purpose, we start with the efficiency issue. In general, shuffling can be
applied to any set of independent operations. The SubBytes layer of 16 S-boxes
in the AES Rijndael is a typical example. Randomizing such operations can be
done in different ways. Taking the extreme cases, either the S-boxes are executed
according to a Random Permutation (RP) among 16! possible ones, or they are
executed from a Random Start Index (RSI) among 16 possible ones, that is then
incremented. This difference is nicely illustrated with previous works on shuffled
implementations of the AES. In a first paper from 2006 [13], the authors use par-
tial shuffling and first-order masking based on S-box pre-computation. Whereas

masking is applied to the whole cipher, shuffling is only applied to the first and
last rounds. Furthermore, the RSI approach is pursued, for performance reasons.
In a second work from Rivain et al., higher-order masking is implemented and
shuffling is mainly based on the RP approach [26]. Yet, for the MixColumns
operations, only the (first-order masked) columns are shuffled, accounting for
8! possible permutations. That is, thanks to the first-order masking, they have
8 positions that can be shuffled, vs. 4 if MixColumns was not masked, and 16
for the other AES transforms. Implementation details are not given in [26], but
we assume that this choice is again motivated by performance reasons, with a
MixColumn operation implemented with xtime tables [10]. Apart from those
works, shuffling was also applied to hardware implementations with 8- or 32-bit
datapaths, where RSI is usually preferred as it nearly comes for free [11, 20, 22].

Following this state-of-the art, our first contribution is to improve the perfor-
mances of software implementations using the RP approach. In this respect, we
start from the observation that in an unprotected block cipher implementation,
one usually keeps as much data as possible in the processor registers, in order
to minimize RAM access. By contrast, once random access to these registers is
required (as in shuffled implementations), RAM usage is inevitable. This implies
that any register access becomes a serial of load and store operations, resulting
in major performance overheads. We mitigate these overheads by exploiting a
different technique, which consists in manipulating the program flow. It allows
us to operate on registers while at the same time randomizing the sequence of
operations. In practice, we present two approaches: the first one changes the
program flow “on-the-fly”, while the other one re-writes the program memory
prior to execution. The latter approach can be viewed as an adaptation of the
self-modifying codes used in software engineering [2], also applied to counteract
side-channel attacks in [1]. Our new solutions come with contrasted performance
results. Namely, the on-the-fly proposal minimizes the overall cycle count, while
the program memory manipulations allow very efficient online encryption at the
cost of long (possibly offline) pre-computations. For illustration, we apply these
proposals (and previously published ones) to the AES Furious implementation
available from [23]. Besides, we also investigate the efficient generation of (small)
random permutations in low-cost microcontrollers. That is, we take a well known
optimal algorithm for permutation generation and modify it slightly, in order to
improve its performances. As a result, we are able to generate close-to-uniform
permutations, and obtain an efficient alternative to proposals such as [8].

Next, we investigate the security of shuffling against side-channel attacks.
Here, we start from the observation that the existing literature usually evaluates
the impact of shuffling based on a so-called “integrated DPA” (aka windowing
attack), introduced in [7] and applied, e.g. in [26, 30]. Intuitively, if the manipu-
lation of a sensitive variable is spread over t time samples, its correlation with
the actual leakages will be reduced by a factor

√
t using such an attack, instead

of t without integration. Integrating is a convenient tool for evaluation as it can
be directly used to estimate the data complexity of a DPA using Mangard’s for-
mulas [17]. Yet, a possible limitation of this technique is that it treats the RSI

and RP cases in the same way. Hence, a natural question is to determine whether
these two approaches are indeed equivalent in general, or if advanced evaluation
tools can be used to put forward additional weaknesses for RSI implementations.
Our results regarding this question are summarized as follows.

First, we specialize the information theoretic and security analysis from [28]
to the context of shuffled implementations. It allows us to confirm that integrated
DPA is indeed suboptimal compared to a Bayesian exploitation of the leakages.
While our worst-case evaluations rely on profiled attacks [6, 27], we believe they
are important to moderate claims of strong security improvements provided by
shuffling (e.g. the data complexity increases by a factor 360 in [4]). In particular,
these results complement the previous work of Asiacrypt 2010 [29], in which such
an information theoretic and security analysis was performed for masking. As a
result and for the first time, we obtain lower bounds for the data complexity of
standard side-channel attacks against shuffled implementations.

Second, we notice that security evaluations for masking always combine the
leakage corresponding to the masked data and its masks, e.g. [21, 24]. Quite
surprisingly, and to the best of our knowledge, the impact of such a scenario has
not been investigated in the case of shuffling. Therefore, we include the possibility
of a leakage on the permutation (or start index) manipulated when shuffling.
We show that as soon as some information is leaked about them, attacks against
RSI- and RP-based implementations become significantly different, the RSI case
being much easier to attack, for computational reasons.

Finally, we observe that direct leakages about the start index or permutations
naturally arise in practice and can be exploited. More surprisingly, we also show
the existence of “indirect leakages”, coming from the different power consump-
tion models of the hardware resources manipulating the key bytes. For example,
since the 16 registers used in our shuffled Furious implementations have (slightly)
different models, marginalizing the distribution of the observed leakage over the
16 AES key bytes provides information about which S-box is computed.

Summarizing, we observe that all previous works on shuffling reduced the size
of the permutation set for some of the operations in the protected algorithm.
Hence, our results bring the important cautionary note that time complexity is
critical in the security evaluation of this countermeasure, as permutations with
a small size can be enumerated which leads to exploitable weaknesses. In this
respect, an implementation protected with RSI-based shuffling can sometimes be
as weak as an unprotected one. As for the RP-based solution, we recall that it can
be used as a noise amplifier for leaking devices, but never as a noise generator.

2 Efficient implementations

This section explores the software design space for shuffling the AES on an Atmel
ATMega644P microcontroller [3]. We first describe an efficient way to obtain
close-to-uniform permutations in this device. Next, we show how to obtain an
AES implementation for which every transform can be shuffled according to
such permutations, including MixColumns (and the key scheduling algorithm if

needed). Afterwards, we describe different implementations: a basic one relying
on a previously proposed “double indexing” method, and two optimized ones
relying on randomized execution path and program memory. We finally provide
precise performance evaluations and a comparison with previous works.

Permutation generation. The first building block of a shuffled implementa-
tion is a permutation generator. From a sequence S := {1, . . . , n}, a uniform
permutation can be produced in linear time [14]. The original algorithm iterates
over every element Si (with i from 0 to n − 2), and swaps it with a random
element from the remaining tail, i.e. {Si, . . . , Sn−1}. However, sampling from
{i, . . . , n − 1} needs either a modulo operation and a random number greater
than n to start from, or an approach with probabilistic run-time. We avoided this
performance drawbacks by sampling from {0, . . . , n− 1}. Permuting a sequence
of 16 entries following this algorithm takes 362 cycles on our device, using 8 bytes
of randomness. It still allows to generate all permutations, but with a slight bias
that decreases with the size of the permuted set. To estimate the impact of this
bias for different sizes of the permutation set N , we systematically sampled 108

permutations generated with this method, and built histograms with N ! bins.
We then estimated the Euclidean distance between these biased histograms and
a uniform distribution. In addition, we compared this situation with the one
obtained with a quite minimum side-channel leakage. Namely, we assumed that
the Hamming weight of the first entry of a (uniformly generated) permutation
is known to be the least informative one (i.e. with half of the bits set to one). As
can be observed in Table 2, the bias due to this small side-channel information
is already significantly larger than the one due to the permutation generation
algorithm. Furthermore, actual leakages in Sections 3 and 4 affect all the per-
mutation entries, which further reduces the bias of the permutation generation
algorithm compared to the one caused by physical information. Eventually, we
will show in the next sections that exploiting these biases in a side-channel at-
tack where we shuffle among 16! possible permutations is computationally hard.
Therefore, we conclude that our performance optimized algorithm should not
lead to a significant security reduction of the shuffling countermeasure.

N 3 4 5 6 7 8 9

Perm. generation 0.04535 0.03522 0.02034 0.00993 0.00430 0.00170 0.00063
Small SCA Leak. 0.28868 0.20412 0.07454 0.03726 0.01627 0.00643 0.00234

Table 1. Bias of the optimized permutation algorithm vs. bias of a small SCA leakage.

Obtaining independent operations. Applying shuffling to an implementa-
tion requires finding sets of independent operations. In the AES case, sets of 16
independent operations naturally arise from the AddRoundKey and SubBytes
transforms. By contrast, the situation is a little bit trickier for ShiftRows and
MixColumns. For example, implementing ShiftRows requires one extra byte of
storage in an unprotected implementation, and two in the case of RSI-based shuf-
fling (i.e. when the permutation is “monotonous”, which restricts the number of

permutations to 16). But if 16 independent operations are desired, 16 bytes of
temporary storage are required. As for MixColumns, four additional registers are
sufficient if the state is processed column-wise, but this would then account for 4!
permutations. Hence, having 16 independent operations again requires 16 bytes
of temporary storage. Since our device has only 32 registers, some of which be-
ing already occupied, RAM usage becomes inevitable for shuffling. Besides, the
key schedule has only four independent operations by default. This is because
within one key schedule round, there are only four S-box executions. Thus, the
smallest number of indistinguishable operations is four. Yet, applications requir-
ing on-the-fly key expansion also need an appropriate SPA protection to prevent
attacks such as [16]. In these cases, we interleaved the real key schedule with
three dummy key schedules, in order to obtain 16 shuffleable operations.

Basic implementation with double indexing. Direct shuffling requires an
indirect indexing of the operands. That is, a counter is used to index a permu-
tation vector, and the result is used to index the operand vector. Thus, instead
of operating on registers directly, two RAM accesses are required for each (read
or write) access to operands. This naturally leads to quite large cycle counts,
as in AVR devices, load and store operations take two cycles (compared to one
cycle for arithmetic and logic operations). Implementing a fully shuffled AES
this way results in an execution time of 30 202 cycles, excluding the key sched-
ule. In the following we propose two different strategies in order to improve on
these figures. In both cases, instructions are shuffled rather than data location,
in order to allow register usage. Precisely, we are still limited by the number
of available registers when performing certain transforms. But contrary to the
double indexing proposal we do not always access RAM when operating on inter-
mediate data. The first solution changes the execution path on-the-fly while the
second actually rewrites the program memory (i.e. assuming that this re-writing
is pre-computed, this solution can be seen as a simplified one-time program [12]).

Optimized implementation with randomized execution path. For this
implementation, the assembly code of every (compound of) round transform(s)
is split into 16 independent blocks of instructions. Each of the 16 blocks is aug-
mented with a label. This allows us to identify its address in ROM. Furthermore,
every transform is associated with an array of 17 16-bit words, where the first
16 words hold the addresses of the 16 blocks, and the 17th holds the address of
the return instruction. The array content is initialized with the addresses of the
labels at compile time. Finally, we append a flow-control macro to each of the
16 blocks. This macro performs three things: fetch an address from the array,
advance the pointer to the next array entry, and jump to the fetched address.

During the execution of the cipher, we first re-order the first 16 addresses in
the array, according to a previously generated permutation. Then, when we enter
a transform, we set a pointer to the beginning of the array and execute the flow-
control macro. This causes the execution of the first block and sets a pointer to
the address of the next block. The flow-control macro is executed 16 times, until
it finally looks up the address of the return instruction. In practice, we defined

several sets of transforms and therefore need an address array for each of them.
The first one is the compound of AddRoundKey, SubBytes, and ShiftRows.
This transform reads the state from RAM and stores the result into the register
file. The next one performs MixColumns and stores the result back to RAM.
Afterwards, we perform one iteration of the key schedule. Similar to ShiftRows
and MixColumns, this implies additional memory requirements, because of the
RotWord operation. We finally need a standalone AddRoundKey layer for the
last round. As each of the address arrays need 17x2 bytes, we have an additional
RAM use of 170 bytes (for technical reasons, the key schedule uses two 17x2-
byte address arrays). Permuting each of these arrays takes 205 cycles, implying
an overhead of 1225 cycles. Eventually, for every set of transforms, we need to
load an address and jump to this address 17 times, each of which takes 6 cycles.
Together with the preamble to set up the array pointer, it leads to an additional
overhead of 108 cycles for each of these compounds of transforms.

Optimized implementation with randomized program memory. For this
implementation, we used the self-programming capabilities of the ATMega644p
microcontrollers. As the shuffling applies to independent operations, and as for
each operation, the state bytes are always stored in the same registers or RAM
locations, the execution order of the operations can be permuted by modifying
the data corresponding to these locations in program memory. In our target
controller, the program memory has to be modified one page (i.e. 256 bytes)
at a time. Hence, the shuffling can be prepared in five steps. First, the page is
transferred from program memory to the RAM. Afterwards, the bytes of code
corresponding to state-byte locations are modified according to the permutation
vector. Then, the previous version of the page is erased from program mem-
ory, and the new page is loaded into a page buffer. Finally, this page buffer is
written in program memory. This process is executed before each AES execu-
tion. The main advantage of this solution is that after pre-processing of a shuffled
program memory, the execution time of the AES is nearly the same as for the un-
protected implementation. Minor differences come from the fact that we need to
have independent operations, which implies to use RAM for the storage of some
intermediate results. Its main drawback is the long pre-computation time, which
accounts for approximately 18 milliseconds independently of the clock frequency.
This comes from the time-consuming instructions used to erase program memory
and write page buffer in memory (4.5 millisecond per page writen or erased [9]),
and the low granularity of these instructions (i.e. working at the page level) in the
Atmel controllers. More flexible devices (e.g. devices with ARM architectures)
would allow to improve this limitation. Note also that our target Atmel’s EEP-
ROM allows only for 10 000 re-write cycles, which could possibly lead to DoS
attacks. If this is an issue, and depending on the actual available ROM, different
areas can be used randomly and increase the number of possible encryptions by
some factor. Again, alternative devices could be considered to relax this limita-
tion. For example, the ARM LPC214x series allows already for 100 000 cycles.
Note finally that, as this implementation mainly makes sense if pre-processing
is allowed, it is naturally executed with a pre-computed key scheduling.

Implementation results. The performance results of our implementations are
compared with previous works in Table 2. Namely, we use the AES Furious as
reference. As for protected implementations, we considered the basic one based
on double indexing and the ones of Herbst et al. and Rivain et al. However, as
mentioned above, they do not allow direct comparison. Herbst et al. only protect
the outer rounds (one and ten) with RSI-based shuffling, but implement masking
for all the rounds and the key schedule. Rivain et al. implement higher-order
masking and use a “simplified” shuffling for the MixColumns operation (they
also work on a different 8051-based architecture). The implementation for which
we give cycle numbers is not masked except for MixColumns. By contrast, our
implementations use log-table based polynomial multiplication, and are able to
shuffle all bytes during MixColumns. Not surprisingly, our implementation based
on double indexing is the slowest. Its performance is comparable to the one of
Rivain et al. Manipulating the program counter allows us to get a performance
improvement of almost a factor five and, excluding the key scheduling, leads to
encryption time only twice as slow as Rijndael Furious. As previously mentioned,
the larger overheads when executing the key scheduling come from the need to
execute additional dummy schedulings, in order to keep a permutation among
16! for this part of the implementation. Finally, the randomized program memory
allows the fastest online encryption (i.e. excluding program re-writing).

Table 2. Implementation result comparison

Implementation Clock cycles RAM [byte]

Furious [23] 2 739 176
Furious with KS [23] 3 546 176
Herbst et al. [13] 11 845 -
Rivain et al. [26] 29 400 -

Dbl. ind. 30 202 240
Dbl. ind. with KS 46 395 132
Rand. exec. path 6 934 394
Rand. exec. path with KS 14 834 302
Rand. prog. mem. 3299 (+'18 msec) 480

3 Evaluation framework

We now move to the security analysis of the shuffling countermeasures and its
variants. For this purpose, we rely on the evaluation framework from [28] and
adapt it to capture the specificities of shuffled implementations. In order to have
a fair understanding of the strengths and weaknesses of the countermeasure, we
pay a particular attention to worst-case (profiled) attacks. But for completeness,
we also compare them with the integrated DPA used in previous works.

Notations. Variables are denoted with capital letters, sampled values with
lowercase letters and functions with sans serif fonts. We consider the standard
DPA attacks described in [18] and illustrate our notations with the case of the

AES Rijndael. In this context, the adversary tries to recover a 16-byte master
key k = {k0, k1, . . . , k15}, from a leakage corresponding to the first key addition
and S-box layers. In attacks against unprotected implementations, each S-box is
executed at a well defined time instant, giving rise to key leakages defined as:

L0

 Sbox(k0 ⊕X0), L1

 Sbox(k1 ⊕X1),
L2

 Sbox(k2 ⊕X2) . . .

That is, we have 16 leakage points (or cycles) Lc (where c is the cycle index) and
16 subkeys ks. If we denote the part of the master key that is manipulated at time
c with a variable Sc, we straightforwardly have Sc = c in this unprotected case.
Note that the variable nature of the leakages comes both from possible noise in
the measurements and the variable (known) inputs Xi. By contrast, in the case
of a shuffled implementation, the execution order of the S-box computations is
randomized according to a permutation P, leading to key leakages of the form:

L0

 Sbox(kP(0) ⊕XP(0)), L1

 Sbox(kP(1) ⊕XP(1)),
L2

 Sbox(kP(2) ⊕XP(2)) . . .

That is, we have Sc = P(c) with P the secret permutation that is re-generated
for every new input block, e.g. with the algorithm in Section 2. In this protected
case, not only leakage about the S-box execution may be obtained, but also
leakage on the permutation used in the shuffled implementation. In theory, an
attack could exploit sixteen “direct” permutation leakages denoted as L′c

 Sc.
Such notations allow us to reflect both the RSI- and RP-based shuffling methods.

In the first case, we have P(c) = c+τ (mod 16), with τ
R←− [0 : 15]. In the second

case, P is directly picked up among the set of all 16! permutations, i.e. P
R←− P16.

Information theoretic analysis. As a first step in our evaluation, we perform
an information theoretic analysis that is aimed to capture the worst-case security
of an implementation. In general, and for a fixed key byte Ks, we assume that
the adversary can observe a leakage vector L = {L0, L1, . . . , L15}. The goal of
this evaluation is to obtain an accurate estimation of the mutual information1:

MI(Ks;L, X) = H[Ks]−
∑
k

Pr[Ks = k]
∑
x

Pr[X = x]

·
∫
l

Pr[L = l|Ks = k,X = x] · log2 Pr[Ks = k|L = l, X = x] dl.

In this equation, the term Pr[Ks = k|L = l, X = x] is directly obtained from
Pr[L = l|Ks = k,X = x] using Bayes’ theorem. Hence, it is this last conditional
leakage probability that is most critical to evaluate. For convenience, we will
ignore the variable X in the rest of the paper, as it is assumed to be known for
all computations. Next, we will consider two main evaluation scenarios.

1 As discussed in [25], this mutual information can only be perfectly estimated when
the evaluator knows the exact leakage model of his target device. This only happens
in simulated analyses (e.g. as will be performed in the next section). Whenever a
practical evaluation is carried out, it is formally a “perceived information” that is
evaluated, with the goal to be as close as possible to the mutual information.

1. No permutation leakage, i.e. the adversary gets 16 leakage cycles, and each
of them could correspond to the target subkey with probability 1/16. That is:

Pr[L = l|Ks = k] =
∑
c

1

16
Pr[Lc = lc|Ks = k].

We will refer to this attack as case (1.a). Besides, and as mentioned in intro-
duction, a usual trick to attack shuffled implementations is to integrate over the
leakage cycles. In this case, the adversary defines a variable L =

∑
c Lc, and

performs the attack against this variable. It boils down to consider 15 cycles out
of 16 as “algorithmic noise”. We will refer to this attack as case (1.b).

2. Leakage on the permutation. In the same way as all the shares are as-
sumed to leak in a masked implementation, it is natural to assume that the
manipulation of a permutation may leak in a shuffled implementation. In prac-
tice, such leakages usually appear each time the permutation is manipulated in
the microcode, e.g. when fetching the Sc’th part of the key, or when jumping to
the Sc’th piece of code computing an S-box. We now show how to perform an
information theoretic evaluation in these cases. As previously, the impact of dif-
ferent implementations of the countermeasure affects the term Pr[L = l|Ks = k].
For this purpose, we start with the following general formulation:

Pr[L = l|Ks = k] =
∑
c

f(c, s, l′)∑
c′ f(c

′, s, l′)
Pr[Lc = lc|Ks = k],

with l′ the vector of 16 leakages on the previously defined variable Sc (indi-
cating the part of the master key used at time c). The function f essentially
indicates how the knowledge available about this variable can be exploited by
the adversary, as witnessed by the five examples that we now describe.

2.a. Unprotected implementation. In this case, we have f(c, s, l′) = 1 if c = s and 0
otherwise (i.e. the adversary knows exactly where each key byte is manipulated).

2.b. Direct template attack. In this case, we just add the permutation leakage
in the conditional probabilities, yet without making any difference between the
RSI and RP cases, by computing f(c, s, l′) = Pr[L′c = l′c|Sc = s]. Note that the
case with no permutation leakage corresponds to f(c, s, l′) = 1/16.

2.c. Taking advantage of RSI. Here, the the adversary exploits the fact that only
16 permutations are possible (out of the 16! ones), which can be enumerated.

Hence, he can compute: f(c, s, l′) =
∏15

i=0 Pr[L′i = l′i|Si = (s− c+ i) mod 16].

Contrary to the RSI case, using a RP implies that the permutation is picked
up randomly among the 16! ' 244, which is significantly harder to enumerate.
Hence, our following experiments will additionally consider two heuristic solu-
tions that can be used to mitigate this issue and attack more efficiently.

2.d. Restricted enumeration against RP. In this case, the function f is identical
to the exhaustive one, i.e. f(c, s, l′) =

∑
p

∏15
i=0 Pr[L′i = l′i|Si = p(i)], but the

sum only goes over an enumerable subset of most probable p’s. A beam search is
used for this purpose [32]. This is a breadth-first search that limits the number of
nodes (i.e. permutations in the sum) by pruning the least probable ones, which

is done by weighting permutations p’s with
∏15

i=0 Pr[L′i = l′i|Si = p(i)].

2.e. Excluding heuristic. One alternative option to simplify the enumeration is to
consider that whenever Sc = s, we have that c 6= c′ implies Sc′ 6= Sc. This can be
reflected with: f(c, s, l′) = Pr[L′c = l′c|Sc = s] ·

∏
c′ 6=c (1− Pr[L′c′ = l′c|Sc′ = s]),

which, up to normalization, is equivalent to:

f(c, s, l′) =
Pr[L′c = l′c|Sc = s]

1− Pr[L′c = l′c|Sc = s]
.

Overall, an intuition on the security of different implementations is obtained by
quantifying the number of possible execution orders considered by the adversary
(which may be more than the actual number of permutations, if attacks do not
fully exploit their structure). In the unprotected case, only one order can occur.
For the direct template attack, the adversary does not combine the different Sc

informations and we implicitly have 1616 possible execution orders. In the RSI
case, we exploit the fact that only 16 permutations are possible. The attack enu-
merating all possible permutations lists all 16! hypotheses. Finally, the excluding
heuristic implicitly allows 16× 1515 ones. This situation can be seen as an error
correcting problem where 16 noisy values are transmitted, that can be integers
from 0 to 15. The security of the countermeasure relies on a large probability
of decoding error. In the RSI case, we only have 16 possible codewords, which
gives us a very resilient code, lowering the probability of errors and thereby the
strength of the countermeasure. For a RP, we have 16! codewords over a space of
1616 possible transmissions, hence increasing the probability of decoding errors.

As far as performing these attacks/evaluations in practice is concerned, case
(a) is a classical template attack for which the computational complexity is usu-
ally neglected. Carrying out attacks/evaluations where L′ is exploited naturally
requires to build additional templates. Yet, the computational complexity of
cases (b), (c) and (e) can also be neglected, as they only imply a few additional
arithmetic operations. In fact, only case (d) may require intensive computations,
if all permutations with non-negligible likelihood (with respect to L′) are taken
into account by the beam search. As will be shown in the next section, increasing
the noise gradually implies that all permutation candidates have more similar
likelihoods. Hence, this last attack is only applicable for low noise levels.

Security analysis. The second step of our evaluation is to perform a security
analysis. It allows measuring the extent to which the different strategies listed
have a strong impact on the data complexity of successful side-channel attacks.
For this purpose, we apply template attacks with the key selected as:

k̃ = argmax
k∗

q∏
j=1

Pr[Lj = lj ,L′
j

= l′
j |Ks = k∗],

and we compute their success rate, in function of the data complexity q.

4 Simulated experiments

In order to gauge the impact of the proposed formulations and attacks, we
first lead various experiments against simulated AES implementations. For this
purpose, we re-use the notations introduced in the previous section and as-
sume that the adversary is provided with a key leakage vector L with elements
Lc = HW(Sbox(kP(c) ⊕XP(c))) +N (0, σ2), and possibly a permutation leakage
vector L′ with elements of the form L′c = HW(Sc) + N (0, σ2). In both cases,
the second term is a Gaussian distributed random noise, with variance σ2 that
we will use as a parameter of our evaluations. Using these notations, there are
various contexts that could be investigated. As illustrated in Table 3, we classify
them among two axes: the target device and the adversary’s means.

Target devices
Unp. RSI shuf. RP shuf.

adversary’s
means

L
unp-ta
(2.a)

int-ta (1.b)
uni-ta (1.a)

L,L′ dpleak-ta (2.b)
L,L′

rsienum-ta (2.c)
resenum-ta (2.d)

+ comp. excluding-ta (2.e)

Table 3. Classification of the attacks

As far as the target device is concerned, we considered the case of an un-
protected implementation for reference, an RSI-based shuffled implementation
and a RP-based shuffled implementation. As far as the adversary’s means are
concerned, we first analyzed attacks where only the key leakage vector L is
available. Next we evaluated attacks where the permutation leakage vector L′ is
additionally provided. Finally, we quantified the efficiency gains obtained when
exploiting computational power, in order to enumerate (i.e. sum over) the pos-
sible permutations. Overall, this gives rise to seven attacks:

1. Template attack against the unprotected implementation (unp-ta), i.e. the
straightforward case where S-boxes are executed in deterministic order.

2. Template attack against integrated leakages (int-ta), i.e. the attack against
shuffled implementations previously used, e.g. in [7, 26, 30].

In these two first cases, template attacks and correlation DPA are essentially
equivalent given that they exploit the same leakage model [18]. For coherence,
we will keep on using template attacks everywhere. But as the experiments in
Section 5 target a microcontroller with strong Hamming weight leakage depen-
dencies, simpler (non-profiled) attacks would naturally apply as well. By con-
trast, the following attacks explicitly take advantage of a Bayesian description.

3. Template attack with uniform Sc (uni-ta). In this case, the adversary follows
the Bayesian strategy but does not exploit any information on the permu-
tation (i.e. he assumes a uniform prior on the leakage cycles). Hence, the
attacks still have identical efficiencies in the RSI and RP cases.

4. Template attack with direct permutation leakage (dpleak-ta). It corre-
sponds to the attack (2.b) described in the previous section. Here, the leak-
age vector L′ is simply added in the adversary’s conditional probabilities.
But again, it does not distinguish between the RSI and RP cases.

5. Template attack with permutation leakage enumerating the RSI permuta-
tions (rsienum-ta). It corresponds to the attack (2.c) in the previous sec-
tion, where the adversary takes advantage of the 16 permutations that a
RSI-based shuffling tolerates to combine its permutation leakages.

6. Template attacks with restricted enumeration (resenum-ta). It corresponds
to the attack (2.d) described in the previous section. A beam search [32] is
performed to enumerate the most likely permutations.

7. Template attacks with excluding heuristic (excluding-ta). It corresponds
to the attack (2.e) in the previous section, where the likelihood of the per-
mutations is weighted by simply excluding duplicates.

unp-ta
int-ta

uni-ta
dpleak-ta

rsienum-tarsienum-ta
excluding-taexcluding-ta

resenum-taresenum-ta

10−3

10−2

10−1

100

101

102

M
u
tu

a
l

In
fo

rm
a
ti

o
n

2−10 2−5 20 25 210

Noise Variance

Fig. 1. Mutual information versus noise variance

The result of a simulated information theoretic analysis for these different
attacks is given in Figure 1, in function of the noise variance. Several observa-
tions can be highlighted. First, and as usual in such worst-case evaluations, the
asymptotic trend only appears for large noise levels. In this respect, the main
conclusion is that (unlike masking [29]), the slope of the MI curves is the same
for both the unprotected and all the shuffled implementations. Intuitively, it
suggests that shuffling can (at best) be used to amplify the noise existing in
side-channel measurements (i.e. imply a shift of the IT curves). Besides, one
can observe that for lower noise levels, significant differences arise between the
different scenarios of Table 3. For example, it is interesting to note that even
without exploiting permutation leakage, the integrated attack is less efficient
than the template attack with uniform prior. It confirms that this integrated at-
tack is suboptimal in a profiled case, and is not suited to evaluate the worst-case

security of an implementation in low-noise scenarios. Quite naturally, the dis-
tance between integrated and stronger attacks increases as permutation leakage
becomes available. In this setting, the amount of information extracted is quite
dependent on countermeasure implemented. If the RSI approach is chosen (and
this information is exploited computationally), the implementation turns out to
be as weak as an unprotected one until noise levels beyond σ2 = 20. By con-
trast, in the RP case, the noise amplification happens earlier. In this respect, it
is worth to notice the limited difference between the dpleak-, excluding-, and
resenum-tas for RP-shuffled implementations, the latter ones only bringing a
small advantage. We also observe that as expected, the resenum-ta could only
be launched until noise levels of approximately σ2 = 2−2: beyond this threshold,
the large amount of permutations to enumerate with the beam search turned
out to be hardly tractable. This last fact confirms the expectation in Section 2
that the small bias resulting from our efficient permutation generation algorithm
should not lead to significantly improved side-channel attacks.

Note that the insecurity of RSI-based shuffling (and, to a lower extent, RP-
based shuffling) for low noise levels has to be interpreted with care. What our
analysis shows is not that the start index or permutation is trivially revealed
with a template-based SPA (as the number of permutation candidates in the
beam search already explodes when σ2 = 2−2). It is really the fact that the
16 leakage samples of the permutation can be exploited jointly that make these
countermeasures weak. In other words, what these results show is the importance
of computational power in the evaluation of shuffling: summing over 16 cases is
easy, summing of 16! ones is harder, as highlighted by the different curves of the
rsienum-ta and excluding-/resenum-ta information theoretic evaluations.

As a complement of information theoretic analyzes, we performed a security
analysis, and computed the success rates of our different attacks, in function
of the number of plaintexts measured by the adversary. This allows translating
the IT curves of Figure 1 into data complexities. For illustration, we selected
three different noise variances, corresponding to low (i.e. σ2 = 2−3), middle (i.e.
σ2 = 20) an large (i.e. σ2 = 23) noise levels (where large refers to the fact that the
IT curves are merging at this stage). The results of these simulated experiments
are given in Figure 2 and confirm the previous observations. We again observe
the weakness of the RSI-based shuffling in the low noise level case, and the lower
efficiency of the integrated attack. The success rate curves also exhibit the slight
advantage of the heuristic enumeration when exploiting the leakage of a RP for
the smallest noise level, as well as the better behavior of the (computationally
cheap) excluding heuristic when the noise increases (again, the resenum-ta
evaluation could only be performed in the low noise case, i.e. upper figure).

5 Practical experiments

The previous simulated attacks naturally raise the question whether our attacks
similarly apply to real world implementations. In order to validate our conclu-
sions, we also performed these attacks against shuffled implementations of the
AES, based on the randomized execution path technique of Section 2.

unp-ta
int-ta
uni-ta
dpleak-ta

rsienum-tarsienum-ta
excluding-taexcluding-ta
resenum-taresenum-ta

0

0.2

0.4

0.6

0.8

1
Success rate

10 100 1000 # traces

0

0.2

0.4

0.6

0.8

1
Success rate

10 100 1000 # traces

0

0.2

0.4

0.6

0.8

1
Success rate

10 100 1000 # traces

Fig. 2. Success rates of simulated attacks, σ2 = 2−3 (top), 20 (middle), 2+3 (bottom).

Our target device is an 8-bit Atmel microcontroller, and our measurement
setup was monitoring the voltage variations of this target device over a small
resistor inserted in our supply circuit, with a digital oscilloscope. Based on this
setup, we profiled our implementation and built the probability distributions
of the vectors L and L′. That is, we first estimated 16 templates correspond-
ing to the leakages of the permutation indexes c, i.e. Pr[L′c|Sc = s]. Next, we
constructed 16 × 16 templates for the key leakages at the output of the S-
box, i.e. Pr[Lc|Ks = k], for each value of c and s. The reason for having the
16 × 16 sets of key leakage templates is that these leakages behave differently
when, at a given point in time, different subkeys are used. That is, we have
Pr[Lc|Ks1] 6= Pr[Lc|Ks2] if s1 6= s2, and Pr[Lc1 |Ks] 6= Pr[Lc2 |Ks] if c1 6= c2.
This fact is due to the slightly different power consumptions of different regis-
ters and memory accesses of the Furious implementation in our target device.

In order to limit the profiling efforts, our templates were kept univariate and
constructed with the stochastic approach from [27], using the Hamming weight of
the S-box outputs as base vectors. Interestingly, the fact that different key bytes
give rise to different templates leads to indirect leakages on the permutation.
That is, we have Pr[Lc|Ks1] 6= Pr[Lc|Ks2] for a fixed cycle c. By summing over
the 256 key candidates, we can then obtain marginal probabilities Pr[Lc = lc|Ks]
for all key byte indexes s. This directly leads to useful information of the type:

Pr[Sc = s|Lc = lc] =
Pr[Lc = lc|Ks]∑
s′ Pr[Lc = lc|Ks′]

·

Furthermore, this information is directly reflected in all the Bayesian attacks,
without any modification of the descriptions in Section 3 (including uni-ta for
which direct permutation leakages are ignored). That is, just the fact that we
built 16× 16 templates for different s and c values allows to exploit it.

The success rates of our experimental attacks are illustrated in Figure 3,
where the noise level corresponds to σ2 = 3.25. We observe that in this real
case study, the RSI-based shuffled implementation remains as easy to attack as
an unprotected one, in our worst-case evaluation setting. Besides, we note that
the indirect leakage is quite useful for the template attack with uniform prior.
One important consequence of this indirect leakage is that the uni-ta could also
apply to our countermeasure with randomized program memory, even if the pre-
computation was performed in a perfectly secure (i.e. leakage-free) environment.
Interestingly, we also remark that the integrated attack is less efficient than in
our simulated experiments, and is stuck to very low success rate for the data
complexities we considered (yet, it eventually succeeded for larger number of
measurements). This can be explained by two main reasons. First, the leakages
on the permutation extracted with our templates (including the indirect ones)
was larger than in our simulations, which naturally increases the gap between the
integrating attack and the others. Second, the fact that different Atmel resources
leak according to different models creates an additional noise for the integrating
attack, due to a modeling error (i.e. these differences are lost after integration).

unp-ta
int-ta
uni-ta + indirect leakage dpleak-ta + indirect leakage

rsienum-ta + indirect leakagersienum-ta + indirect leakage
excluding-ta + indirect leakageexcluding-ta + indirect leakage

0

0.2

0.4

0.6

0.8

1
Success rate

10 100 1000# traces

Fig. 3. Success rate of actual attacks on an ATMEL AVR implementation.

6 Conclusions

In this paper, we first proposed two new implementations of the shuffling counter-
measure in small (e.g. 8-bit) microcontrollers. They respectively allow improved
performances in terms of overall cycle count and online cycle count. Next, we
provided the first comprehensive evaluation of the shuffling countermeasure, in-
cluding worst-case Bayesian attacks. For this purpose, we described intuitive
formulas capturing the different variants of shuffling, and integrated them in a
general evaluation framework from Eurocrypt 2009. These evaluation tools al-
lowed us to show that previously used integrated attacks may not be enough for
assessing the security of a shuffled implementations. We put forward that sim-
plifying the permutation generation (e.g. by using RSI rather than RP) can lead
to a complete breakdown of the countermeasure if not too noisy measurements
are available (which turned out to be verified in a practical case study). We
also explained the computational origin of these weaknesses (i.e. their relation
with the total amount of permutations that are considered in the countermea-
sure). Finally, we exhibited that indirect leakages may be available in shuffled
implementations, due to the different leakage models of different resources. This
suggest an interesting scope of further research. Namely, since our results show
that randomizing the order of instructions in cryptographic implementations is
not always sufficient, can we design efficient ways to randomize both the execu-
tion order and the physical resources used in a cryptographic implementation?

Acknowledgements. This work has been funded in parts by the ERC project
280141 (acronym CRASH) and the 7th framework European project TAMPRES.
S. Kerckhof is a PhD student funded by a FRIA grant. F.-X. Standaert is a
Research Associate of the Belgian Fund for Scientific Research (FNRS-F.R.S).

References

1. Antoine Amarilli, Sascha Müller, David Naccache, Dan Page, Pablo Rauzy, and
Michael Tunstall. Can code polymorphism limit information leakage? In Clau-
dio Agostino Ardagna and Jianying Zhou, editors, WISTP, volume 6633 of Lecture
Notes in Computer Science, pages 1–21. Springer, 2011.

2. Bertrand Anckaert, Matias Madou, and Koen De Bosschere. A model for self-
modifying code. In Jan Camenisch, Christian S. Collberg, Neil F. Johnson, and
Phil Sallee, editors, Information Hiding, volume 4437 of Lecture Notes in Computer
Science, pages 232–248. Springer, 2006.

3. Atmel. http://www.atmel.com/products/microcontrollers/avr/.

4. Ali Galip Bayrak, Nikola Velickovic, Paolo Ienne, and Wayne Burleson. An
architecture-independent instruction shuffler to protect against side-channel at-
tacks. TACO, 8(4):20, 2012.

5. Çetin Kaya Koç and Christof Paar, editors. Cryptographic Hardware and Embedded
Systems - CHES 2000, Worcester, MA, USA, August 17-18, 2000, Proceedings,
volume 1965 of Lecture Notes in Computer Science. Springer, 2000.

6. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of
Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

7. Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential power
analysis in the presence of hardware countermeasures. In Çetin Kaya Koç and
Paar [5], pages 252–263.

8. Jean-Sébastien Coron. A new dpa countermeasure based on permutation tables.
In Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti, editors, SCN, volume
5229 of Lecture Notes in Computer Science, pages 278–292. Springer, 2008.

9. Atmel Corporation. 8-bit Microcontroller with 16K/32K/64K Bytes In-System
Programmable Flash - ATmega164P/V ATmega324P/V ATmega644P/V, 2010.
Rev. 8011O- 07/10, http://www.atmel.com/images/8011s.pdf.

10. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

11. Martin Feldhofer and Thomas Popp. Power Analysis Resistant AES Implementa-
tion for Passive RFID Tags. In Christiopher Lackner, Timm Ostermann, Michael
Sams, and Ronal Spilka, editors, Austrochip 2008, pages 1–6, 2008.

12. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In David Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer
Science, pages 39–56. Springer, 2008.

13. Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An aes smart card
implementation resistant to power analysis attacks. In Jianying Zhou, Moti Yung,
and Feng Bao, editors, ACNS, volume 3989 of Lecture Notes in Computer Science,
pages 239–252, 2006.

14. Donald E. Knuth. The art of computer programming, volume 2 (3rd ed.): seminu-
merical algorithms. Addison-Wesley Publishing, Boston, MA, USA, 1997.

15. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

16. Stefan Mangard. A Simple Power-Analysis (SPA) Attack on Implementations of
the AES Key Expansion. In Pil Joong Lee and Chae Hoon Lim, editors, ICISC,
volume 2587 of Lecture Notes in Computer Science, pages 343–358. Springer, 2002.

17. Stefan Mangard. Hardware countermeasures against dpa − a statistical analysis of
their effectiveness. In Tatsuaki Okamoto, editor, CT-RSA, volume 2964 of Lecture
Notes in Computer Science, pages 222–235. Springer, 2004.

18. Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. One for all
− all for one: Unifying standard dpa attacks. IET Information Security, 5 (2),
2011:100–110.

19. David May, Henk L. Muller, and Nigel P. Smart. Non-deterministic processors. In
Vijay Varadharajan and Yi Mu, editors, ACISP, volume 2119 of Lecture Notes in
Computer Science, pages 115–129. Springer, 2001.

20. Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Francesco
Regazzoni. Fresh re-keying: Security against side-channel and fault attacks for low-
cost devices. In Daniel J. Bernstein and Tanja Lange, editors, AFRICACRYPT,
volume 6055 of Lecture Notes in Computer Science, pages 279–296. Springer, 2010.

21. Thomas S. Messerges. Using second-order power analysis to attack dpa resistant
software. In Çetin Kaya Koç and Paar [5], pages 238–251.

22. Amir Moradi, Oliver Mischke, and Christof Paar. Practical evaluation of dpa coun-
termeasures on reconfigurable hardware. In HOST, pages 154–160. IEEE Computer
Society, 2011.

23. Bertram Poettering. Rijndael Furious, http://point-at-infinity.org/avraes/.
24. Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical analysis of second

order differential power analysis. IEEE Trans. Computers, 58(6):799–811, 2009.
25. Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina

Kamel, and Denis Flandre. A formal study of power variability issues and side-
channel attacks for nanoscale devices. In Kenneth G. Paterson, editor, EURO-
CRYPT, volume 6632 of Lecture Notes in Computer Science, pages 109–128.
Springer, 2011.

26. Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-order masking and
shuffling for software implementations of block ciphers. In Christophe Clavier and
Kris Gaj, editors, CHES, volume 5747 of Lecture Notes in Computer Science, pages
171–188. Springer, 2009.

27. Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for dif-
ferential side channel cryptanalysis. In Josyula R. Rao and Berk Sunar, editors,
CHES, volume 3659 of LNCS, pages 30–46. Springer, 2005.

28. François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Antoine Joux, editor, EU-
ROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 443–461.
Springer, 2009.

29. François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt
Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard. The world is not
enough: Another look on second-order dpa. In Masayuki Abe, editor, ASIACRYPT,
volume 6477 of Lecture Notes in Computer Science, pages 112–129. Springer, 2010.

30. Stefan Tillich and Christoph Herbst. Attacking state-of-the-art software
countermeasures-a case study for aes. In Elisabeth Oswald and Pankaj Rohatgi,
editors, CHES, volume 5154 of Lecture Notes in Computer Science, pages 228–243.
Springer, 2008.

31. Michael Tunstall and Olivier Benôıt. Efficient use of random delays in embed-
ded software. In Damien Sauveron, Constantinos Markantonakis, Angelos Bilas,
and Jean-Jacques Quisquater, editors, WISTP, volume 4462 of Lecture Notes in
Computer Science, pages 27–38. Springer, 2007.

32. Weixiong Zhang. State-space search - algorithms, complexity, extensions, and ap-
plications. Springer, 1999.

