
Efficient Removal of Random Delays from
Embedded Software Implementations using

Hidden Markov Models

François Durvaux, Mathieu Renauld, François-Xavier Standaert?,
Loic van Oldeneel tot Oldenzeel, Nicolas Veyrat-Charvillon

Université catholique de Louvain, UCL Crypto Group,
B-1348 Louvain-la-Neuve, Belgium.

Abstract. Inserting random delays in cryptographic implementations is
often used as a countermeasure against side-channel attacks. Most previ-
ous works on the topic focus on improving the statistical distribution of
these delays. For example, efficient random delay generation algorithms
have been proposed at CHES 2009/2010. These solutions increase se-
curity against attacks that solve the lack of synchronization between
different leakage traces by integrating them. In this paper, we demon-
strate that integration may not be the best tool to evaluate random delay
insertions. For this purpose, we first describe different attacks exploiting
pattern-recognition techniques and Hidden Markov Models. Using these
tools and as a case study, we perform successful key recoveries against an
implementation of the CHES 2009/2010 proposal in an Atmel microcon-
troller, with the same data complexity as against an unprotected imple-
mentation of the AES Rijndael. In other words, we completely cancel the
countermeasure in this case. Next, we show that our cryptanalysis tools
are remarkably robust to attack improved variants of the countermea-
sure, e.g. with additional noise or irregular dummy operations. We also
exhibit that the attacks remain applicable in a non-profiled adversarial
scenario. These results suggest that the use of random delays may not
be effective for protecting small embedded devices against side-channel
leakage. They highlight the strength of Viterbi decoding against such
time-randomization countermeasures, in particular when combined with
a precise description of the target implementations, using large lattices.

1 Introduction

Protecting small embedded devices against side-channel attacks is a challeng-
ing task. Following the DPA book [17], masking and hiding are two popular
solutions to achieve this goal. Masking can be viewed as a type of data random-
ization technique, in which the sensitive (key dependent) intermediate values in
an implementation are split into different shares. One of its important outcomes
is that, under certain physical assumptions (e.g. that the leakage of the different
shares can be considered as independent), the security of a masked implemen-
tation against side-channel attacks increases exponentially with the number of

? Associate researcher of the Belgian fund for scientific research (FNRS-F.R.S.).

shares [3]. On the drawbacks side, masking usually implies significant perfor-
mance overheads. In addition, the exponential security increase it theoretically
guarantees is only effective when the amount of noise in the measurements is suf-
ficient [24]. Hence, it is hardly useful as a standalone countermeasure for small
cryptographic devices, and is usually combined with hiding. Roughly speaking,
hiding aims at reducing the side-channel information by adding randomness to
the leakage signal (rather than to the data producing it) and can take advantage
of different methods. For example, the direct addition of physical noise, or the
design of dual-rail logic styles [26], are frequently considered options. Exploiting
time-randomization is another alternative, e.g. used to protect smart cards.

Among the different time-randomization techniques proposed in the litera-
ture, e.g. [5, 14, 27], one can generally distinguish the software ones, e.g. based on
Random Delay Interrupts (RDIs), from the hardware ones, e.g. based on increas-
ing the clock jitter. Usually, the more hardware-flavored is the countermeasure,
the more signal-processing oriented are the solutions to overcome them [11, 19,
28]. In this paper, we pay a particular attention to the software-based solutions
exploiting RDIs. In this setting, it is interesting to notice that most previous
evaluations of the countermeasures’ impact (e.g. [16]) pre-process the leakage
traces by integrating them. Somewhat influenced by this evaluation technique,
recent works such as the ones of Coron and Kizhvatov at CHES 2009/2010 [6,
7] mainly focused on how to improve the statistical distribution of the random
delays, in order for their integration to produce the most noisy traces. However,
looking at the source codes provided in these papers that alternate actual cipher
computations with dummy operations, a natural question is to ask whether
techniques based on pattern-recognition could not be used to directly remove
the delays. In other words, could it happen that, at least in certain contexts,
this countermeasure can be strongly mitigated, or even completely reversed?

We answer this question positively and show that, when implemented in an
Atmel 8-bit microcontroller, designs protected with the CHES 2009/2010 coun-
termeasures can be as easy to attack as unprotected ones. We start by observing
that simple tools based on correlation analysis can be used to detect different
types of patterns in leakage traces. For example, one can identify the structure
of random delays, or block cipher operations such as AddRoundKey, SubBytes
or MixColumn in the AES, opening the door to various attacks. On the one
hand, this suggests that omitting the possibility of random delay removal (e.g.
by only considering attacks that integrate the leakage traces) may not lead to
an adequate estimation of the security. On the other hand, heuristic tools based
on correlation analysis are inherently limited in more complex situations, where
the dummy operations are less regular than in [6, 7], or when the random delays
exploit the hardware interrupt feature of the underlying microcontroller. For
this purpose, we propose to take advantage of Hidden Markov Model (HMM)
cryptanalysis, as a generic modeling tool to capture these variants of the RDI
countermeasure. As previously observed in [10, 15], HMMs provide a very natural
tool to deal with implementations in which some operations are randomized. We
show experimentally that by adequately modeling a protected AES implemen-

tation as a HMM, we are able to produce traces that exactly correspond to the
ones of an unprotected implementation, with very high probability. As it remains
that the addition of RDIs prevents the use of averaging to improve the quality
of an adversary’s measurements, we additionally evaluate the amount of noise
that should be added to our measurements, in order for the countermeasure to
become effective (i.e. to get closer to the security increases predicted using inte-
gration of the traces). It turns out the application of HMMs is remarkably robust
to noise addition. In particular, and compared to previous works, we show that
using a complete lattice of 6000 states to describe our target AES implemen-
tation allows a very resilient decoding of the random delays. We then conclude
the paper by discussing possible improvements of the countermeasure and their
limitations, as well as a non-profiled variant of our HMM-based cryptanalysis.

Related work. In a recent and independent work, Strobel and Paar investigated
the use of pattern matching for removing random delays in embedded software.
Their proposal can be viewed as an alternative to our correlation-based tech-
niques in Section 3. Namely, the work in [25] uses pattern matching in order to
detect each random delay independently and exploits hard information made of
a string of Hamming weights obtained from power measurements. By contrast,
our method in Section 4 models the complete assembly code of a protected AES
implementation as a HMM (i.e. considers all the delays jointly) and exploits
probabilistic information from the power traces. As a result, we obtain a bet-
ter robustness to noise and a more objective evaluation tool. In this respect, we
finally note that compared to this previous work, the amount of noise in our mea-
surements can be such that the direct identification of the operations fails with
high probability. In other words, it is the Viterbi decoding that allows dealing
with scenarios where Simple Power Analysis (SPA) attacks are unsuccessful.

2 Background: the CHES 2009/2010 countermeasure

Overall, adding random delays in an implementation can be viewed as a trade-
off between the performance overheads (measured in code size and cycle count)
and the variance added to the position of a target operation in side-channel
measurement traces. In this section, we describe the countermeasure introduced
at CHES 2009 (and improved at CHES 2010) by Coron and Kizhvatov, highlight
their important characteristics and present our implementation. Note that these
references are used for illustration, as they correspond to the state-of-the-art
in RDI. However, the techniques we introduce would apply similarly to other
variants of such time-randomizations, as will be confirmed in Section 4.5.

Summarizing, both proposals focus on finding a good statistical distribution
for the (random) lengths of the delays. First, the CHES 2009 paper analyzes the
so-called floating-mean method. Its goal is to decrease the average total length
of random delays while increasing the variance they imply for the position of
side-channel attack target samples. Next, in the CHES 2010 paper, the authors
remark that a bad choice of parameters for the floating-mean method can lead to

security weaknesses. As a result, they proposed an improved solution, together
with a new criterion to evaluate the security of RDI. In both cases, their imple-
mentations ran on an 8-bit Atmel AVR platform, similar to the one we consider
in this paper. In practice, the random delays were inserted at 10 places per AES
round: once before AddRoundKey, once before each 32-bit SubBytes block, once
before each 32-bit MixColumn block and once after the last MixColumn block.
Our implementation of the RDI countermeasure followed the same guidelines as
in [6, 7] and was based on the AES-128 “furious” design, available as open source
in [1]. Note that, as our goal is to identify and remove the delays from the traces,
the actual distribution of their lengths has no incidence on our results. In other
words, our focus is on how the delays are inserted in the normal flow of the AES
instructions, not on how much delay is inserted at each step.

Algorithm 1 Random delay insertion function
randomdelay:

(1) rcall randombyte 3 cycles
(2) tst RND 1 cycle
(3) breq zero 1 cycle (2 if true)
(4) nop 1 cycle
(5) nop 1 cycle

dummyloop:

(6) dec RND 1 cycle
(7) brne dummyloop 2 cycles (1 if false)

zero:

(8) ret 4 cycles
randombyte:

(9) ld RND, X+ 2 cycles
(10) ret 4 cycles

More precisely, the code we used in our experimental evaluations is described
in Algorithm 1. It is essentially the same as the one presented in [6], with the
simplified randombyte function that only fetches some random numbers from
a register, and can be read as follows. Whenever a random delay needs to be
inserted, the randomdelay function is called. This function in turn calls (rcall)
the randombyte function that provides a value RND (that has to be carefully cho-
sen in order to get good statistical distribution for the delay lengths). Depending
on the value of RND, there are two possible cases: either RND = 0 and the function
directly terminates by calling zero and returning (ret) to the normal flow of
the AES instructions; or RND 6= 0 and we enter the dummyloop. This loop simply
consists in decrementing (dec) RND until it reaches 0: the function terminates
afterwards. The right part of Algorithm 1 indicates the number of clock cycles
required by the different operations in our Atmel device. Summarizing, and not
considering the case where RND starts at 0, each delay is essentially constituted
of a header of 16 cycles, (RND− 1) dummy loops of 3 cycles, a final dummy loop
of 2 cycles, and at last a return (ret) instruction of 4 cycles.

3 Pinpointing useful operation leakages

The previous section described the RDI countermeasure and the source code that
we ran in an Atmel microcontroller. In this section, we show that the different
operations in this target device produce significantly different leakages that can
be detected with simple tools based on correlation analysis. Beforehand, we
briefly describe the setup we used to perform our experiments.

3.1 Measurement setup and pre-processing

Our target device is an Atmel ATMega644P. Its power consumption has been
measured at maximum clock frequency (i.e. 20MHz) and taken over a shunt re-
sistor inserted in the supply circuit of the microcontroller. Sampled data was
acquired with a Tektronix TDS7k oscilloscope. In order to facilitate our attack,
we applied a simple pre-processing step. Namely, we first split the traces into
consecutive clock cycles, using the Fast Fourier Transform to recover the rising
edges of the clock signal. This was achieved by filtering the frequency spectrum
around the clock frequency and its harmonics, then applying the inverse trans-
form on the filtered signal. This pre-processing provides a sequence of peaks
indicating where the rising edges of the clock signal are. Following, we were
able to work on a sequence of clock cycles instead of raw side-channel traces. It
reduced both the difficulty of the attack and its computational cost.

3.2 Correlation-based attacks

Let us first have a look at the power traces of an AES implementation protected
with the RDI countermeasure. As illustrated in Figure 1, a simple visual inspec-
tion allows determining the different parts of the code. In other words, there
are significant operation leakages that can be detected with SPA in this case.
Two main approaches can be considered for this purpose. On the one hand, one
can target the dummy operations, i.e. find the clock cycles during which the
dummyloop is executed. For example, random delays present a very distinctive
outlook, since they contain short repetitive patterns, each loop lasting only three

AddRoundKey RDI HeaderDummy loops

RDI Tail

Dummy loops

time samples

po
w

er
 c

on
su

m
pt

io
n

Fig. 1. AddRoundKey operation protected with the random delay countermeasure.

clock cycles. As a result, given that one can extract the pattern of this loop (in-
cluding its header or tail), it is possible to match this pattern to clock cycles
in the side-channel traces, by computing the cross-correlation between them.
Eventually, the adversary can filter the traces by removing any cycle which is
highly correlated with the delay pattern and attack the filtered traces, e.g. with
Correlation Power Analysis (CPA) [2]. On the other hand, the adversary can
also target the actual AES operations, instead of the delays. Indeed, while the
inserted delays are of variable length and their shape can be changed, the AES
operations are fixed and have to be executed by the program. It turns out that
this detection is specially easy when large sequences of operations are executed
without dummy operations. For example, AddRoundKey is rather distinctive
in the proposal of [6, 7], as it consists in sixteen three-cycle loops surrounded
by RDI delays. Hence, if the part of the power trace that corresponds to this
sequence of operations can be extracted in a preliminary profiling, it can be
compared with other side-channel traces using cross-correlation, just as for the
detection of dummy operations. An exemplary result of this detection technique
is given in Figure 2. It highlights that significant information on the executed
operations is available in our measurements, and that integrating traces is not
the best approach for analyzing RDIs when such an information is available.

time samples

co
rr

e
la

tio
n

 c
o

e
ffi

ci
e

n
t

Fig. 2. Cross-correlation between an AddRoundKey pattern and one protected trace.

These preliminary results are worth a few general words of discussion.

1. On improving the countermeasure. In the first place, the previous figures ad-
mittedly target the direct application of the CHES 2009/2010 countermeasures.
However, while the choice of dummy operations to execute has little or no im-
pact on “integrating” attacks, it is critical when playing with pattern matching
as we undertake in this paper. In particular, two simple improvements could be
implemented. First, one could use AES operations in the dummy cycles. Sec-
ond, the hardware interrupts of the target microcontroller could be exploited,
in order for the RDIs to occur at less predictable places (e.g. the guarantee that
AddRoundKey is executed as a single block would vanish in this case).

2. On the heuristic nature of the correlation-based approach. Second, it is worth
emphasizing that the previous exploitation of cross-correlation is essentially
heuristic. While it is intuitively useful to put forward a risk of attacks, it is
also limited and hardly generic. In particular, if the aforementioned improve-

ments were implemented, cross-correlation-based attacks would become ineffec-
tive. This justifies the introduction of HMM cryptanalysis in the next section.
As will be discussed in Section 4.5, it allows exploiting the leakages of improved
countermeasures, for which correlation-based attacks become ineffective.

3. On the meaning of Kerckhoffs’ principles in implementation attacks. Even-
tually, the analysis of RDIs raises the question of what the adversary exactly
knows about his target implementation. In general, cryptographers like to con-
sider that most potential information (e.g. about the algorithms) is public and
that security only relies on the secrecy of a key. Straightforwardly translating
this principle in the physical world would imply that source codes are given to
the adversary, a condition that may not always be found in the field though. Such
a question directly relates to the question of profiled vs. non-profiled attacks as
well. For example, in the previous discussion of correlation-based attacks, is it
realistic that the adversary can build an approximate pattern for the dummy
operations or AES operations? In the following, we will first investigate the case
where the answer is yes and justify this choice with three main reasons.

1. In practice, the gap between profiled and non-profiled attacks and the lack of
knowledge about the underlying hardware and implementation can usually
be overcome in the long term. Examples of solutions to reduce this gap in-
clude the use of non-profiled stochastic models [9, 21], or techniques inspired
from side-channel attack reverse-engineering, e.g. discussed in [8, 12, 20].

2. In general in cryptography, security evaluation are looking for worst cases,
and this also applies to implementation attacks [23]. Hence, regardless the
practical relevance of certain adversarial scenarios, it is essential to consider
them as they provide a bound on what an actual adversary could achieve,
and a fair understanding of the security level provided by cryptographic
implementations. Security against specific attacks can of course be higher
than what is lower-bounded by worst-case evaluations.

3. Sound countermeasures should provide additional security even in the worst
cases. For example, if an adversary is given a masked implementation with an
accurate description of its design and source code (including the exact time
instants when the shares are manipulated), the analysis of Chari et al. [3]
still holds and the data complexity of an attack against this implementation
does still increase exponentially with the amount of shares.

Note that as an illustration of the first point (i.e. the sometimes small gap
between profiled and non-profiled attacks), we additionally provide a non-profiled
version of our proposed HMM cryptanalysis in Section 4.6.

4 Hidden Markov model cryptanalysis

Having justified the need of optimal evaluation tools, this section investigates
a new cryptanalysis of RDIs based on HMMs. We argue that it constitutes an
interesting generic tool to capture our problem. In particular, and contrary to

the correlation-based techniques, it can easily deal with various types of dummy
operations and interrupt processes. As mentioned in introduction, this approach
follows previous works in the field of reverse-engineering and cryptanalysis of ran-
domized implementations, where similar principles have been used. For example,
the work of Karlov and Wagner is close to ours as it exploits HMMs to break
randomized exponentiation algorithms [15]. Yet, one important difference is the
size of the lattices that we consider to represent our AES implementation: while
this previous work exploits a state machine with 3 states, we build a complete
lattice of 6000 states to model the protected AES, which allows a very resilient
decoding. To a certain extent, removing random delays in side-channel traces
can also be seen as a simplified reverse-engineering problem. That is, Eisenbarth
et al. intend to build a disassembler, in order to extract an exact sequence of
unknown instructions being executed by a device [10]. We follow the same goal
in the case where the instructions are known, but the number of dummy loops
that are executed for each delay is unknown. In the following, we first explain
how to translate the RDI detection as a HMM problem. Next, we describe how
to actually remove the delays from side-channel leakage traces and present re-
sults of experimental attacks. Eventually, we discuss possible improvements of
the countermeasure as well as a non-profiled variant of the attack.

4.1 Building the HMM

A Markov model is a (memoryless) system with a finite number of states, for
which the probabilities of transition to the next state only depend on the current
state. It is thus constituted of a set of states πi’s and a transition probability
matrix T . T (i, j) is the (a priori) probability that the next state is πj if the
current state is πi. If we denote with st the current state of the system at time
t, T (i, j) = Pr(st+1 = πj |st = πi). In the case of a Hidden Markov model,
the sequence s = (s0, s1, ..., sn) of the states occupied by the system is not
known. However, the adversary has access to (at least) one observable that gives
partial information about this sequence. Namely, at each time step t, a random
vector lt is observed by the adversary. In addition to the transition probability
matrix, the HMM is then characterized by the emission probability functions
associated to each state πi, namely: ei(lt) = Pr(lt|st = πi). For our protected

Index Cycle Index Cycle Index Cycle

0 NOP 0 9 RET 2 18 BRNE T 1
1 RCALL 0 10 RET 3 19 MOV 0
2 RCALL 1 11 TST 0 20 EOR 0
3 RCALL 2 12 BREQ F 0 21 LPM 0
4 LDI 0 13 BREQ T 0 22 LPM 1
5 LD 0 14 BREQ T 1 23 LPM 2
6 LD 1 15 DEC 0 24 RJMP 0
7 RET 0 16 BRNE F 0 25 RJMP 1
8 RET 1 17 BRNE T 0

Table 1. List of instruction cycles occurring in the protected AES implementation.

AES implementation, the Markov model describes the encryption process, with
each state πi associated to an instruction (e.g. NOP, RET, ...). Some instructions
take only one clock cycle, but others require several clock cycles to be completed.
As each state should correspond to the same number of clock cycles, longer
instructions are split into different states, e.g. RCALL is split into three states
associated to RCALL 0, RCALL 1 and RCALL 2. We call instruction cycle the (part
of an) instruction associated with a state πi. The list of all the 26 instruction
cycles appearing in the code of the protected AES can be found in Table 1.
Note that the same instruction cycle can be used at multiple places in the AES
code, corresponding to different running states, e.g. π0 ↔ MOV 0, π1 ↔ EOR 0,
π2 ↔ MOV 0, . . . More precisely, the protected AES code can be divided into two
types of instruction sequences: the deterministic instruction sequences and the
dummy loops. In the deterministic sequences, the instruction cycle associated to
a state is fully determined by its position in the sequence. In order to model these
deterministic sequences, we can simply use one different state per successive cycle
in the sequence, with deterministic transition probabilities: T (i, i+1) = 1 (see the
top of Figure 3). By contrast, the non-deterministic dummy loops are constituted
of a branching (BRNE) and a decrement (DEC) instruction. This translates into
4 instruction cycles: BRNE T 0, BRNE T 1 and DEC 0 in the loop (i.e. while the
counter is decremented), and eventually BRNE F 0 to end the loop.

There are two main ways to encode these loops in a Markov model. The sim-
plest one consists in using 4 states, as presented in the middle part of Figure 3.
The transition probabilities at the output of the DEC state are p to restart an-
other loop, and 1−p to exit the loop. This representation uses a fixed probability
p, that cannot be changed based on the number of loops previously executed. It
is thus not possible to render the details of the probability distribution of the
delay lengths. Another way is to “unfold” the dummy loops by using 255×3 + 1
states, as in the lower part of Figure 3 (255 being the maximum number of
dummy loops in one delay). It is then possible to fine tune the probabilities p1,
p2, ..., in order to match the probability distribution of the delay lengths as
closely as possible. The first representation is only perfectly accurate to model
delay lengths following a geometric distribution (which is not our case), but offers
better performances due to the lower number of states. The second representa-
tion is more precise and allows modeling more accurately different distributions
of random delay lengths, potentially leading to a better robustness against noisy
measurements. However, its larger number of states also implies a more complex
resolution phase. Experimental results described in the next section showed that
the compact representation (with p = 0.1, chosen empirically) was sufficient to
obtain successful attacks with low data complexity, even with delay lengths not
following a geometric distribution. Hence, we focus on this one in the rest of
the paper. Eventually, our Markov model for the protected AES implementation
has approximately 6000 states, each of them associated to one of the 26 different
instruction cycles given in Table 1. The corresponding transition matrix T is
very sparse, as the sequence of instructions is deterministic most of the time (in
which case T (i, i+ 1) = 1 is the only non-zero value of the ith line).

... LD 0
πt

LD 1
πt+1

EOR 0
πt+2

LD 0
πt+3

LD 1
πt+4

...1 1 1 1 1 1

... BRNE T 0
πt

BRNE T 1
πt+1

DEC 0
πt+2

BRNE F 0
πt+3

...

1

1

1

p

1− p 1

... BRNE T 0
πt

BRNE T 1
πt+1

DEC 0
πt+2

BRNE T 0
πt+3

BRNE T 1
πt+4

DEC 0
πt+5

BRNE T 0
πt+6

...

BRNE F 0
πt+n

1 1 1

p1

1− p1

1 1

p2

1−
p2

1

Fig. 3. Parts of the Hidden Markov model. Above: beginning of the addRoundKey op-
eration (deterministic sequence). Middle and below: dummy loop.

4.2 Building the templates

Given a Markov model for the protected AES, we still have to estimate the
emission probability functions ei(lt) = Pr(lt|st = πi) corresponding to each
state πi. We make two assumptions for this purpose:

1. The power trace l can be cut cycle by cycle: l = (l0, l1, ...). This is possible
using the FFT-based technique of Section 3.1. We denote with trace cycle
each part li of the power trace corresponding to one clock cycle. Trace cycles
are measured vectors of 25 values (obtained with the setup of Section 3.1).

2. The emission at time t, denoted as lt, only depends on the type of the
instruction executed at time t. This assumption is admittedly not entirely
accurate (because data dependencies, pipeline effects, . . . are neglected). But
it again turned out to be sufficiently respected for our attacks to succeed.

Estimating the emission probability functions is equivalent to building a tem-
plate for each state πi. But contrarily to standard side-channel template attacks,
where templates are built from a single instruction in order to distinguish the
data being processed (e.g. [4]), we build templates for the different instruction

cycles in order to tell them apart. That is, as our Makov Model contains 6000
states, we could build up to 6000 templates. But thanks to our second assump-
tion, the same template can be used for every state πi associated to the same
instruction cycle from Table 1. Hence only 26 templates are required for the
6000 different states. Next, the emission probability functions are directly de-
termined by these templates: for an instruction cycle i, we have the function
ei(lt) = N (lt|µ̂i, Σ̂i). For each template, the mean vector µ̂i and correlation

matrix Σ̂i are estimated from a set of trace cycles lt corresponding to the same
instruction cycle i. In order to build these 26 templates, we thus need to find
sets of trace cycles lt corresponding to each possible instruction cycle. However,
due to the unknown lengths of the delays in a protected implementation, it is
impossible to directly match trace cycles to their corresponding instruction cy-
cles. As a result, we used a profiling phase for this purpose. That is, we built the
templates from a training device for which the length of the delays was fixed. In
addition, we used this profiling phase in order to efficiently reduce the dimen-
sionality of our traces cycles, using the Principal Component Analysis (PCA)
technique described in [22]. PCA consists in linearly projecting the data (i.e. the
trace cycles) on a lower dimensional subspace, in such a way that the variance
between the different instruction cycles is maximized. We kept 3 dimensions
per template, which appeared to be a good compromise between the amount of
variability we retain and the complexity of the parameters we need to evaluate.

4.3 Removing the delays

Given properly profiled templates, all the parameters of our HMM are fixed: the
state vector π, the transition probability matrix T and the emission probability
functions ei. Hence, it only remains to identify the state sequence s = (s0, s1, ...)
that is the best match for a given observation sequence l = (l0, l1, ...). The Viterbi
algorithm can be launched for this purpose, as described with Algorithm 2 and
briefly explained as follows. Let us consider a HMM with Ns states, and a se-
quence of No observations. A probability table V ∈ RNs×No is first built, such
that each value V (i, j) is the probability of the most probable sequence of states
ending in state πi, given the sequence of observations (l0, ..., lj). The first column
of V is initialized with the probabilities for the different states to match the first
observation l0: V (i, 0) = pi · ei(l0) (where the pi’s are the initial a priori proba-
bilities that the system starts in state πi). Next, for each additional observation
lt in the sequence, the probabilities for the different states are determined by
V (i, t) = ei(lt) ·maxj(V (j, t− 1) · T (j, i)). These probabilities take into account
the emission probability of the current observation (i.e. ei(lt)), but also the most
probable sequences of length t − 1 (i.e. V (j, t − 1)), weighted by the transition
probabilities T (j, i)’s. A matrix I ∈ NNs×(No−1) is finally used to store, for each
step t ≥ 1 and each state i, the index j of the most probable state sequence of
length t − 1 that can lead to state i: I(i, t − 1) = argmaxj(V (j, t − 1) · T (j, i)).
Once the full sequence of observations is processed, the algorithm selects the
most probable ending state, and backtracks to the first observation using the
matrix I to select at each step the previous state in the most probable sequence.

Algorithm 2 Viterbi algorithm

input: a HMM characterized by a set of Ns states πi, initial probabilities pi, a
transition probability matrix T and emission probability functions ei.
input: a sequence of No observations l = (l0, l1, ...).
output: the most probable sequence of states corresponding to the observations.
Define V a new matrix in RNs×No .
Define I a new matrix in NNs×(No−1).
//Initial probabilities.
for i = 0 to i = Ns − 1 do
V (i, 0)← pi · ei(l0)

end for
//Computing the probabilities.
for t = 1 to t = No − 1 do

for i = 0 to i = Ns − 1 do
V (i, t)← ei(lt) ·maxj(V (j, t− 1) · T (j, i))
I(i, t− 1)← argmaxj(V (j, t− 1) · T (j, i))

end for
end for
//Backtracking to find the most probable path.
Define s a new vector of size No.
s(No − 1)← argmaxj(V (j,No))
for t = no − 2 to t = 0 do

s(t)← I(s(t+ 1), t)
end for
return s

4.4 Results of the HMM method and impact of the noise

We evaluated the efficiency of the HMM method by using it against power traces
measured from a protected implementation of the AES on our 8-bit Atmel mi-
crocontroller. For comparison purposes, we also investigated the security of a
non-protected implementation running on the same platform, in order to eval-
uate the security improvement offered by RDIs. Since we are considering first-
order (standard) DPA attacks (as defined in [18]), we chose to run CPA to
illustrate the insecurity of these implementations. We used a simple Hamming
weight model for this purpose. As shown in Figure 4, the success rate of CPA
against the protected implementation with actual noise level (corresponding to
the curves with no additional simulated noise in the figure, i.e. σ∗ = 0) is nearly
the same as for the CPA against the unprotected implementation. Note that for
each curve, we estimated the first-order success rate defined in [23], from a set
of 100 independent experiments. In fact, the slight difference between protected
and unprotected implementations can be explained by the postprocessing of the
traces after removing the RDIs, because of slight imperfections of the cycles cut.
Otherwise, the actual removing of the delays was close to 100% successful. As
a result, both implementations can be broken after approximately 100 measure-
ments. For comparison, the integration attack on the protected implementation
in [6] requires approximately 45 000 power traces to succeed. The time com-
plexity due to the Viterbi algorithm amounts to less than 10 minutes per power

trace, which is quite high but still acceptable as long as the number of traces to
process is not too high (note that the computing time can be optimized, e.g. by
decoding only the beginning of the trace instead of the whole trace). We conclude
that (1) the HMM method is much more efficient than the integration method to
attack the RDI countermeasure, and (2) with the actual noise level of an Atmel
8-bit microcontroller, the RDI countermeasure is completely reversible.

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

data complexity (number of traces)

C
P

A
su

cc
es

s
ra

te

σ∗ = 0

σ∗ = 0.025

σ∗ = 0.1

σ∗ = 0.2

Fig. 4. Success rate of a CPA attack in different scenarios. The plain lines correspond
to the attack on an unprotected implementation, the dashed lines correspond to the
attack on a protected implementation with RDI removed by the HMM method. σ∗ is
the standard deviation of the simulated Gaussian noise added to the traces, σ∗ = 0
corresponds to the real noise level. The delays are efficiently removed up to σ∗ = 0.1.

In view of the lack of security improvement of our RDI-protected implemen-
tation, we additionally investigated the impact of noise on the efficiency of the
HMM-based random delay removal. For this purpose, we added (before the di-
mensionality reduction step) a simulated random Gaussian noise with standard
deviation σ∗ to the (already noisy) traces, and we applied the HMM method to
the resulting traces. The corresponding signal-to-noise ratios are given in Table 2:
they correspond to the maximum ratio between the variance of the mean traces
corresponding to the 26 possible instruction cycles, and the noise variance, where
the maximum is taken over all the time samples in the traces, as defined in [16].
In addition, we also provided a Correct Classification Rate (CCR), defined as
the probability that an instruction cycle among the 26 possible ones in Table 1 is
correctly identified from its leakage. It essentially corresponds to the success rate
of a template-based SPA performed against the instruction cycles considered in-
dependently (the uniform probability without leakage is 1/26 ≈ 0.03). As can be
observed, our measurement noise can be increased such that the direct identifi-
cation of the random delays thanks to an SPA becomes unlikely. By contrast, it
turns out that when taking advantage of HMMs, it is still possible to efficiently
remove the delays with σ∗ = 0.1, which is one order of magnitude higher than

the actual noise we observed in our measurements (i.e. σ = 8× 10−3). In other
words, up to high noise levels, the adversary has more trouble estimating the
correlation coefficient of a CPA than removing the delays. This suggests that
Viterbi decoding allows removing RDIs jointly, even in situations where they
are hard to remove individually. More precisely, Figure 4 shows the success rates
of unprotected and protected implementations with σ∗ = 0.025, σ∗ = 0.1 and
σ∗ = 0.2. It confirms that removing the delays is still pretty accurate at σ∗ = 0.1
(the correct length is found for 95% of the delays in this case). However, when
σ∗ goes beyond 0.1, it becomes increasingly harder to correctly detect the de-
lay lengths. And by σ∗ = 0.2, the HMM method does not correctly identify
the delay lengths anymore. In conclusion, the RDI countermeasure has an im-
pact on security only when the noise level is high enough for a successful CPA
attack against the corresponding unprotected implementation to require more
than 10 000 traces. This unfortunately goes against the original goal of using
RDIs to emulate noise for small embedded (e.g. 8-bit) devices.

σ∗ = 0 σ∗ = 0.025 σ∗ = 0.1 σ∗ = 0.2

SNR 0.2 0.014 1.34× 10−3 2.44× 10−4

CCR 0.29 0.19 0.08 0.06

Table 2. SNR and CCR of target implementation with additive simulated noise σ∗.

4.5 RDI improvements

The HMM method is very efficient against the RDI countermeasure presented
in [6, 7], in part due to the very regular pattern of the delays. It is thus natural to
think about possible methods to make the delays and actual AES computations
harder to tell apart. In this section, we discuss some proposals that could be
considered in order to achieve this goal. One straightforward idea is to use de-
lays with no regular pattern, e.g. delays made of random instructions. However,
implementing the RDI countermeasure in this case will still require (1) a specific
deterministic header containing the instructions needed to determine the delay
length, and (2) a loop ensuring that the delay stops after a given counter has
reached 0. Using the hardware interrupts of the Atmel microcontrollers would
not help in this respect, as dealing with these interrupts also gives rise to (4 or
5) very distinguishable cycles. In addition, even if the delays had a perfectly ran-
dom pattern, the AES operations would still have to be processed, and could be
identified with the Viterbi algorithm. For illustration, we ran experiments with
hypothetical simulated traces, where the delays only consisted in random instruc-
tions instead of dummy loops. That is, these simulated traces do not contain any
identifiable header or tail. We recall that this context is unrealistic as such head-
ers and tails are needed to implement the countermeasure and generally provide
useful information to the adversary. But even this minimum leakage could be
efficiently exploited. Namely, while the Viterbi algorithm was not always able to
accurately predict the instructions processed during the delays, it was still able
to correctly identify the position of the AES instructions. Hence, as illustrated in

Appendix, Figure 5, such an idea is not sufficient to prevent successful attacks.
Yet, one can notice that it reduces the noise robustness of the HMM crypt-
analysis. Another proposal is to use delays that look like the surrounding AES
instructions. But this solution again faces the issue that the headers and tails
are still distinguishable, leading to similarly efficient attacks. Besides, an extreme
solution is to duplicate every AES computation n times, with one execution on
real data and the rest on dummy data. This way, the HMM method provides no
information on where are the delays, as the delays are totally indistinguishable
from the AES computations. Unfortunately, this countermeasure provides little
security at high cost: instead of attacking one time sample, the adversary will
have to integrate over n. Eventually, we conjecture that solutions to improve
the time-randomization of cryptographic implementations should combine RDIs
with other ideas, e.g. shuffling [13] or clock jitter. We leave the analysis of these
combined scenarios as an interesting scope for further research.

4.6 A non-profiled version of the HMM method

The previous sections assumed that the adversary can perform a profiling phase
on a test device. Although justified in a security evaluation context, this assump-
tion may not always be verified in practice. In the following, we finally show that
even in a non-profiled context, it is possible to perform efficient HMM-based at-
tacks against an RDI-protected implementation, by exploiting “on-the-fly” char-
acterization of the target device, with a single leakage trace. The key observation
is that the encryption process cannot start with random instructions. Even if a
delay is inserted at the beginning of the code, there are always some determinis-
tic instructions in the delay header, where the length of the delay is determined.
In our case, the AES encryption starts with 40 deterministic cycles before the
first dummy loops take place. These deterministic cycles do not include all of the
26 instruction cycles for which we need a template, but only the first 12 of them
(in Table 1). Moreover, these 40 cycles are not enough to estimate very accurate
templates for all these 12 instruction cycles. Nevertheless, we can build 12 tem-
plates from these first 40 cycles and artificially increase their (noise) variance, as
we know that they are not perfectly accurate. For the remaining 14 templates,
we use a unique default template, built from the average of the cycles after the
first 40. As a result, we have 26 emission probability functions ei that we can
plug into a first HMM: HMM0. Using the Viterbi algorithm on the leakage trace
l with the model HMM0 gives the most probable sequence of states, according to
our (admittedly bad estimations of the) emission probability functions. For the
actual noise level we measured experimentally, between 50% and 70% of the ob-
servations are associated to the correct instruction cycle after this first iteration
of the Viterbi algorithm. Next, from this predicted sequence of states, we can
estimate new, more accurate templates (and emission probability functions) for
the 26 instruction cycles. Plugging these new templates into a second HMM (i.e.
HMM1), we can process the same power trace l again, hence obtaining a better
classification of the trace cyles. By iterating this procedure at most 10 times,
we get a correct estimation of the templates and a perfect identification of the

delay lengths. It is thus possible to perform the profiling phase “on-the-fly”, by
using iterations of the Viterbi algorithm on the same power trace, provided that
we have some information to start with (e.g. the 12 not so accurate templates in
our experiment). As illustrated in Appendix, Figure 5, this non-profiled version
of the attack is robust to noise addition, up to quite low SNRs.

5 Conclusions

The investigations in this paper confirm that protections against side-channel
attacks based on time-randomizations are challenging to evaluate, as they may
easily provide a false sense of security, whenever they are reversible with the
appropriate signal processing / statistical / modeling tools. The case of RDIs is a
good illustration of this concern: we show that their implementation in a low-cost
microcontroller can be completely reversed and that making them effective is a
non-trivial task (e.g. software-based improvements are unlikely to be sufficient).
Hence, the study of other time-randomization techniques such as shuffling [13], or
the combination of RDIs with other hiding countermeasures against side-channel
attacks, are interesting research problems. Besides, RDIs are also considered as a
solution to prevent fault attacks. In this setting, it is an interesting open question
to determine whether the HMM-based cryptanalysis could be applied “on-the-
fly” during a fault attack, in order to help adversaries to insert faults precisely,
e.g. in the sensitive computations of randomized implementations.

Acknowledgements. F. Durvaux is a PhD student funded by the Walloon re-
gion MIPSs project. M. Renauld is a PhD student funded by the Walloon region
SCEPTIC project. F.-X. Standaert is an associate researcher of the Belgian fund
for scientific research (FNRS-F.R.S.). L. van Oldeneel is a PhD student funded
by the 7th framework European project TAMPRES. N. Veyrat-Charvillon is a
postdoctoral researcher funded by the ERC project 280141 (acronym CRASH).

References

1. http://point-at-infinity.org/avraes/.

2. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis
with a Leakage Model. In Marc Joye and Jean-Jacques Quisquater, editors, CHES,
volume 3156 of LNCS, pages 16–29. Springer, 2004.

3. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Michael J. Wiener,
editor, CRYPTO, volume 1666 of LNCS, pages 398–412. Springer, 1999.

4. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of
LNCS, pages 13–28. Springer, 2002.

5. Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential Power
Analysis in the Presence of Hardware Countermeasures. In Çetin Koç and Christof
Paar, editors, CHES, volume 1965 of LNCS, pages 252–263. Springer, 2000.

6. Jean-Sébastien Coron and Ilya Kizhvatov. An Efficient Method for Random Delay
Generation in Embedded Software. In Christophe Clavier and Kris Gaj, editors,
CHES, volume 5747 of LNCS, pages 156–170. Springer, 2009.

7. Jean-Sébastien Coron and Ilya Kizhvatov. Analysis and Improvement of the Ran-
dom Delay Countermeasure of CHES 2009. In Stefan Mangard and François-Xavier
Standaert, editors, CHES, volume 6225 of LNCS, pages 95–109. Springer, 2010.

8. Rémy Daudigny, Hervé Ledig, Frédéric Muller, and Frédéric Valette. SCARE of
the DES. In John Ioannidis, Angelos D. Keromytis, and Moti Yung, editors, ACNS,
volume 3531 of LNCS, pages 393–406, 2005.

9. Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Standaert.
Univariate side channel attacks and leakage modeling. J. Cryptographic Engineer-
ing, 1(2):123–144, 2011.

10. Thomas Eisenbarth, Christof Paar, and Björn Weghenkel. Building a Side Channel
Based Disassembler. Transactions on Computational Science, 10:78–99, 2010.

11. Sylvain Guilley, Karim Khalfallah, Victor Lomné, and Jean-Luc Danger. Formal
Framework for the Evaluation of Waveform Resynchronization Algorithms. In
Claudio Agostino Ardagna and Jianying Zhou, editors, WISTP, volume 6633 of
LNCS, pages 100–115. Springer, 2011.

12. Sylvain Guilley, Laurent Sauvage, Julien Micolod, Denis Réal, and Frédéric Valette.
Defeating Any Secret Cryptography with SCARE Attacks. In Michel Abdalla and
Paulo S. L. M. Barreto, editors, LATINCRYPT, volume 6212 of LNCS, pages
273–293. Springer, 2010.

13. Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES Smart Card
Implementation Resistant to Power Analysis Attacks. In Jianying Zhou, Moti
Yung, and Feng Bao, editors, ACNS, volume 3989 of LNCS, pages 239–252, 2006.

14. James Irwin, Dan Page, and Nigel P. Smart. Instruction Stream Mutation for
Non-Deterministic Processors. In ASAP, pages 286–295. IEEE, 2002.

15. Chris Karlof and David Wagner. Hidden Markov Model Cryptoanalysis. In Walter
et al. [29], pages 17–34.

16. Stefan Mangard. Hardware Countermeasures against DPA ? A Statistical Analysis
of Their Effectiveness. In Tatsuaki Okamoto, editor, CT-RSA, volume 2964 of
LNCS, pages 222–235. Springer, 2004.

17. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007.

18. Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. One for All
- All for One: Unifying Standard DPA Attacks. IET Information Security, 5 (2),
2011:100–110.

19. Sei Nagashima, Naofumi Homma, Yuichi Imai, Takafumi Aoki, and Akashi Satoh.
DPA Using Phase-Based Waveform Matching against Random-Delay Countermea-
sure. In ISCAS, pages 1807–1810. IEEE, 2007.

20. Denis Réal, Vivien Dubois, Anne-Marie Guilloux, Frédéric Valette, and M’hamed
Drissi. SCARE of an Unknown Hardware Feistel Implementation. In Gilles Gri-
maud and François-Xavier Standaert, editors, CARDIS, volume 5189 of LNCS,
pages 218–227. Springer, 2008.

21. Werner Schindler, Kerstin Lemke, and Christof Paar. A Stochastic Model for Dif-
ferential Side Channel Cryptanalysis. In Josyula R. Rao and Berk Sunar, editors,
CHES, volume 3659 of LNCS, pages 30–46. Springer, 2005.

22. François-Xavier Standaert and Cédric Archambeau. Using Subspace-Based Tem-
plate Attacks to Compare and Combine Power and Electromagnetic Information
Leakages. In Elisabeth Oswald and Pankaj Rohatgi, editors, CHES, volume 5154
of LNCS, pages 411–425. Springer, 2008.

23. François-Xavier Standaert, Tal Malkin, and Moti Yung. A Unified Framework
for the Analysis of Side-Channel Key Recovery Attacks. In Antoine Joux, editor,
EUROCRYPT, volume 5479 of LNCS, pages 443–461. Springer, 2009.

24. François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt
Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard. The World Is
Not Enough: Another Look on Second-Order DPA. In Masayuki Abe, editor,
ASIACRYPT, volume 6477 of LNCS, pages 112–129. Springer, 2010.

25. Daehyun Strobel and Christof Paar. An Efficient Method for Eliminating Random
Delays in Power Traces of Embedded Software. In Howon Kim, editor, ICISC,
volume 7259 of LNCS, pages 48–60. Springer, 2011.

26. Kris Tiri and Ingrid Verbauwhede. Securing Encryption Algorithms against DPA
at the Logic Level: Next Generation Smart Card Technology. In Walter et al. [29],
pages 125–136.

27. Michael Tunstall and Olivier Benôıt. Efficient Use of Random Delays in Embedded
Software. In Damien Sauveron, Constantinos Markantonakis, Angelos Bilas, and
Jean-Jacques Quisquater, editors, WISTP, volume 4462 of LNCS, pages 27–38.
Springer, 2007.

28. Jasper G. J. van Woudenberg, Marc F. Witteman, and Bram Bakker. Improving
Differential Power Analysis by Elastic Alignment. In Aggelos Kiayias, editor, CT-
RSA, volume 6558 of LNCS, pages 104–119. Springer, 2011.

29. Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors. CHES 2003, 5th
International Workshop, Cologne, Germany, September 8-10, 2003, Proceedings,
volume 2779 of LNCS. Springer, 2003.

A Additional figures

100 101 102 103
0

0.2

0.4

0.6

0.8

1

data complexity (number of traces)

C
P

A
su

cc
es

s
ra

te

σ∗ = 0

σ∗ = 0.025

Fig. 5. Success rate of a CPA attack against traces processed using the HMM method
in different scenarios. The plain lines correspond to the attack on a protected imple-
mentation with the CHES version of the RDI. The dashed lines correspond to the
attack against the hypothetical (simulated) implementation of Section 4.5. The dotted
lines correspond to the non-profiled version of the attack described in Section 4.6.

