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Abstract. A generic DPA strategy is one which is able to recover se-
cret information from physically observable device leakage without any
a priori knowledge about the device's leakage characteristics. Here we
provide much-needed clari�cation on results emerging from the existing
literature, demonstrating precisely that such methods (strictly de�ned)
are inherently restricted to a very limited selection of target functions.
Continuing to search related techniques for a `silver bullet' generic at-
tack appears a bootless errand. However, we �nd that a minor relaxation
of the strict de�nition�the incorporation of some minimal non-device-
speci�c intuition�produces scope for generic-emulating strategies, able
to succeed against a far wider range of targets. We present stepwise re-
gression as an example of such, and demonstrate its e�ectiveness in a
variety of scenarios. We also give some evidence that its practical perfor-
mance matches that of `best bit' DoM attacks which we take as further
indication for the necessity of performing pro�led attacks in the context
of device evaluations.
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1 Introduction

Ever since Kocher et al. showed that di�erential power analysis (DPA) could be
successful even with very little information about the target implementation [16],
the research community has pursued `generic' methods�informally, techniques
able to recover secret information even in the total absence of knowledge about
the attacked device's data-dependent power consumption. Recent suggestions
include mutual information analysis (MIA) using an identity power model [12],
distinguishers based on the Kolmogorov�Smirnov (KS) two-sample test statistic
[30,35] and the Cramér�von Mises test [30], linear regression (LR)-based methods
which can be seen as a sort of on-the-�y pro�ling [9,24], and an innovative
approach using copulas [31].

However, all existing proposals share a common shortfall when applied to in-
jective target functions: in order to distinguish between hypotheses the attacker



must, after all, have some meaningful piece of knowledge by which to partition
the measurements (in the case of MIA and KS-based DPA) or select the ap-
propriate set of covariates (in the case of LR-based DPA) [31]. Unfortunately,
this dependence on prior knowledge has been under-appreciated because of the
apparent success of `arbitrary' work-arounds such as the practice of partition-
ing intermediate variables according to their 7 least signi�cant bits (sometimes
called the 7LSB model). However, it is shown in [34] that this strategy is far
from universally-applicable and only works to the extent that the seemingly in-
di�erent partition captures something meaningful about the leakage after all.
For example, noise on top of a typical CMOS Hamming weight consumption
distorts the trace measurements towards the 7LSB model su�ciently for MIA
to succeed, but this is not the case in general (i.e in arbitrary leakage scenar-
ios). Such attacks can no longer be considered `generic', a description which is
earned primarily by virtue of the non-reliance on a priori knowledge rather than
the chosen statistical methodology. The focus on de�ning universally-applicable
distinguishers indicates a confusion about the role of the distinguisher and that
of the power model in what has so far been only informally de�ned as `generic'
DPA. It also raises the fundamental question of whether truly `generic' tools
exist at all.

Establishing whether or not generic DPA attacks exist has fundamental con-
sequences for the process of cryptographic device evaluation. The presence of
generic attacks would imply that any device could potentially be attacked with-
out any information about its internal functioning or leakage characteristics.
Consequently, attacks based on pro�ling would only be `better' in terms of ef-
�ciency (number of power traces needed)�not in terms of applicability. The
absence of generic attacks would imply that there exist devices (leakage charac-
teristics) which can only be evaluated soundly by performing pro�led attacks�a
practice which is not commonly undertaken at present (see, e.g., [19] Appendix
F). In the following, we tackle this important question in the practically relevant
context of standard DPA as investigated, e.g., in [9,12,16,24,30,35]. That is, we
assume that the mean of the side-channel leakage distributions is key-dependent.

1.1 Our contribution

We �rst develop a theory of power models according to Stevens' `levels of mea-
surement' [28], enabling us to formally de�ne what constitutes a generic power
model. We show that di�erent distinguishers require di�erent types of power
model and derive the notion of a generic-compatible distinguisher accordingly.
The pairing of a generic-compatible distinguisher with the generic power model
we call a generic strategy. These de�nitions provide a basis for making conclusive
general statements about generic DPA. We show that the noninjectivity of the
target function is a prerequisite for any �rst-order generic strategy to succeed,
proving the absence of a universally-applicable generic distinguisher in the con-
text of �rst-order DPA! (Generic higher-order DPA can only be more di�cult,
so this conclusive statement naturally extends upwards). As a further �nding
we observe that noninjectivity alone is not su�cient for generic success, and



investigate additional requirements on the target function. It is already known
that there is an inverse relationship between performance against certain S-box
criteria and susceptibility to DPA [21]; we demonstrate a su�cient condition for
�rst-order generic success which is promoted (though not inevitably produced)
by the desirable S-box property of di�erential uniformity [20].

Having ruled out the possibility of a universally-applicable generic distin-
guisher, we investigate minimal relaxations on the generic criteria producing
theoretically plausible attack strategies. As a starting point we take the LR-based
distinguisher [9,24], which (we show) quali�es as generic-compatible but returns
more auxiliary information than other such methods when applied against an
injective target. Hence, even though the keys remain indistinguishable in the
ranking (as is consistent with the �rst half of this paper and with earlier studies
[31]), the hypothesis-dependent model estimates�i.e. the estimated coe�cients
in the polynomial expression for the leakage�contain additional clues about
the correct key. At this stage we introduce some `non-device-speci�c intuition'
regarding the simplicity of the leakage function relative to the cryptographic
target function (typically an S-box). This extremely minimal assumption (which
we will explain more formally in due course) allows us to exploit the model esti-
mates, which we propose to do using the techniques of stepwise regression. Such a
strategy is no longer strictly generic, but the general device-independent nature
of the extra assumption prompts us to coin the description generic emulating.
We verify that this proposed strategy truly is e�ective�even against injective
target functions such as the AES and PRESENT S-boxes, and even as the true
leakage becomes increasingly unusual or complex (high-degree polynomials, for
example). We also show that the proposed strategy is e�cient, albeit seemingly
no better in performance than di�erence-of-means (DoM) based attacks.

2 Preliminaries

2.1 Di�erential power analysis

We consider a `standard DPA attack' scenario as de�ned in [18], and brie�y
explain the underlying idea as well as introduce the necessary terminology here.
We assume that the power consumption T of a cryptographic device depends
on some internal value (or state) Fk∗(X) which we call the target : a function

Fk∗ : X → Z of some part of the known plaintext�a random variable X
R
∈ X�

which is dependent on some part of the secret key k∗ ∈ K. Consequently, we
have that T = L ◦ Fk∗(X) + ε, where L : Z → R describes the data-dependent
component and ε comprises the remaining power consumption which can be
modeled as independent random noise (this simplifying assumption is common
in the literature�see, again, [18]). The attacker has N power measurements
corresponding to encryptions of N known plaintexts xi ∈ X , i = 1, . . . , N and
wishes to recover the secret key k∗. The attacker can accurately compute the
internal values as they would be under each key hypothesis {Fk(xi)}Ni=1, k ∈ K
and uses whatever information he possesses about the true leakage function L
to construct a prediction model M : Z →M.



DPA is motivated by the intuition that the model predictions under the
correct key hypothesis should give more information about the true trace mea-
surements than the model predictions under an incorrect key hypothesis. A dis-
tinguisher D is some function which can be applied to the measurements and
the hypothesis-dependent predictions in order to quantify the correspondence be-
tween them. For a given such comparison statistic, D, the theoretic attack vector
is D = {D(L ◦ Fk∗(X) + ε,M ◦ Fk(X))}k∈K, and the estimated vector from a

practical instantiation of the attack is D̂N = {D̂N (L◦Fk∗(x)+e,M ◦Fk(x))}k∈K
(where x = {xi}Ni=1 are the known inputs and e = {ei}Ni=1 is the observed noise).
Then the attack is o-th order theoretically successful if #{k ∈ K : D[k∗] ≤
D[k]} ≤ o and o-th order successful if #{k ∈ K : D̂N [k∗] ≤ D̂N [k]} ≤ o.3

De�nition 1 A practical instantiation of a standard univariate DPA attack
computes, given a set of power traces T, a prediction model M , a set of inputs
X, and a comparison statistic D, the distinguishing vector D̂N = {D̂N (L ◦
Fk∗(x) + e,M ◦ Fk(x))}k∈K. A practical instantiation is said to be o-th order

successful if #{k ∈ K : D̂N [k∗] ≤ D̂N [k]} ≤ o.

2.2 Measuring DPA outcomes

Metrics to compare the e�ciency of DPA attacks include the (o-th order) success
rate and the guessing entropy of [27]�de�ned respectively as the probability of
o-th order success and the expected number of key hypotheses remaining to test
after a practical attack on a given number of traces. However, in the evaluation
of generic strategies, the question of asymptotic feasibility takes precedence over
that of e�ciency. By the law of large numbers 1

N

∑N
i=1 L ◦ Fk∗(x) + ei → L ◦

Fk∗(x) as N → ∞ (as long as the samples are independent and identically
distributed). We can therefore discuss feasibility from the perspective of the ideal
distinguishing vector DIDEAL = {D(L ◦ Fk∗(X),M ◦ Fk(X))}k∈K, noting that
this no longer depends on the noise but only on the hypothesis-dependent power
models relative to the true leakage. Indeed, averaging the trace measurements
conditioned on the inputs is a popular pre-processing step in practice as it strips
out irrelevant variance and reduces the dimensionality of the computations (see,
for example, [1]); it is a sound approach as long as the side-channel information
to be exploited originates in di�erences between the mean values of the leakage
distributions, which is the case in our standard DPA scenario.

For the purposes of evaluating the theoretic capabilities of generic emulating
and related strategies, we will focus on �rst-order asymptotic success, as captured
by the (ideal) nearest-rival distinguishing margin (see [33,34]):
NRMarg(DIDEAL) = DIDEAL[k

∗] − max{DIDEAL[k]|k 6= k∗}. In Sect. 4.6,
where we investigate the practical performance of our proposed generic emulating
distinguisher, we report success rates for attacks against simulated leakages.

3 Note that standard DPA attacks do not include collision-based attacks [25], which
exploit information from several leakage points per observation, and do not require
a power model at all.



2.3 Boolean vectorial functions

We are often interested in the special case that the key-indexed functions Fk can
be expressed as Fk(X) = F (k ∗ X) where F : Fn2 → Fm2 is an (n-m) Boolean
vectorial function and ∗ denotes the key combining operator (e.g., XOR). It
particularly pertains to the study of block ciphers, and their associated S-boxes.

Certain algebraic properties of such functions are known to be particularly
important to the cryptanalytic robustness of a cipher system. We (very) brie�y
recall those concepts that will play a role in our later analysis; for a good basic
introduction see [14] or, for a more comprehensive explanation, [6,7].

F is a�ne if it can be expressed as a linear map followed by a translation�
that is, if there exists a matrixM ∈ Fm×n2 and a vector v ∈ Fm2 such that F (x) =
Mx⊕v. Nonlinearity is de�ned as: NF = minu∈Fn

2 ,v∈Fm
2 \{0}

∑
x∈Fn

2
u·x⊕v ·F (x).

F is balanced if the preimages in F of all singleton subsets of Fm2 are uniformly
sized: that is, ∀y ∈ Fm2 , #{x ∈ Fn2 |F (x) = y} = 2n−m. This property applies to
many functions used in block ciphers, particularly S-boxes [36] where any bias
on the unobserved inputs is extremely undesirable.

Another desirable S-box property is di�erential uniformity [20]�that the
derivatives of F with respect to a ∈ Fn2 (de�ned as DaF (x) = F (x)⊕ F (x⊕ a))
be as uniform as possible. If there exists a vector a ∈ Fn2 such that DaF (x) is
constant over Fn2 then a is called a linear structure of F and (as per [10]) can be
exploited by a cryptanalyst. {a ∈ Fn2 |DaF = cst} is the linear space of F .

3 Clarifying generic DPA

What does it mean for an attack to be `generic'? The discussion in the litera-
ture has focused on appropriating, as distinguishers, statistics which `require few
distributional assumptions'�trawling the statistical literature for nonparamet-
ric, distribution-comparing procedures such as the Kullback-Leibler divergence
(a.k.a. Mutual Information Analysis) [12], the Kolmogorov�Smirnov [30,35] and
Cramér�von Mises [30] tests, and copulas [31]. However, the emphasis on �nding
`distribution-free' statistics for use as distinguishers somewhat distracts from the
essential de�ning feature of generic DPA which is that no assumptions have been
made about the device leakage. Clearly, the (fairly common) practice of combin-
ing such distinguishers with an informed prior model does not produce a generic
attack: we need to begin by establishing what constitutes a generic power model.

We �rst delineate the di�erent types of model used in DPA attacks, and
discuss which distinguishers are suitable in each instance. We can then de�ne
a generic power model, a generic-compatible distinguisher, and a generic DPA
strategy. These de�nitions form the basis for a number of propositions that clarify
the cases in which any generic strategy is bound to fail (we spell out necessary
conditions for success and discuss further the feasibility of generic DPA).

3.1 Delineating leakage assumptions

Firstly we must distinguish between assumptions about the data-dependent leak-
age, as captured by the power model, and assumptions about the distribution



of the noise�which in most cases play a less visible role, but can a�ect how
accurately or e�ciently certain statistics may be estimated. Fig. 1 visualises this
two-dimensional continuum, and indicates the suitability of popular distinguish-
ers as assumptions vary.
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Fig. 1: Types of leakage model and the assumptions required by common distin-
guishers.

Assumptions about the noise range from fully characterised distributions as
exploited (e.g.) by Bayesian template attacks, down to no knowledge whatsoever,
when the robustness of nonparametric statistics such as mutual information
and the Kolmogorov�Smirnov test may come in handy. Fortunately, the often
reasonable assumption of approximate normality opens up a broad range of
(semi-)parametric options, which are to be preferred as they are inherently less
costly to estimate.

We now consider the nature of the power model, with which this paper is
primarily concerned. Previous studies have talked about `good' power models, in
an arbitrary sense, and most have missed the very material distinction between
di�erent levels of model. As hinted towards in [2,11], the widely-accepted `lev-
els of measurement'�ratio, interval, ordinal, nominal�laid out by Stevens [28]
present a natural framework for delineation. It is important to understand the
appropriate (type-speci�c) notion of accuracy for a given model, and to select
a compatible distinguisher; that is, one which (implicitly) interprets the model
according to the correct type.

The type of power model exploited by pro�led attacks (e.g. Bayesian tem-
plates [8] and stochastic pro�ling [24]) amounts to a direct approximation of the
actual power consumed by processing the data, in contribution to the overall
consumption. This requirement is the most demanding possible, expressed as
M ≈ L (c.f. the `ratio scale' of [28]). The outcome of an attack will depend on
how accurately the templates approximate the actual data-dependent consump-
tion (as well as the noise distribution). The error sum-of-squares is a natural
way of quantifying the appropriate notion of accuracy.

Less demanding is the requirement that the attacker has a power model which
is a good approximation for L up to proportionality : M ≈ αL (c.f. the `interval
scale' of [28]). Pearson's correlation coe�cient provides a natural way to quantify
accuracy and can be directly adapted for use as a distinguisher [4] (a popular



strategy since, as a simple, moment-based statistic, it can usually be estimated
very e�ciently with respect to the number of trace measurements required).

Less demanding again is the requirement that M approximates L up to or-
dinality : {z|M(z) < M(z′)} ≈ {z|L(z) < L(z′)} ∀z′ ∈ Z (c.f. the `ordinal scale'
of [28]). Such a model could be exploited via a variant of correlation DPA us-
ing Spearman's rank correlation coe�cient, as proposed in [2]. And, again, the
accuracy of the model can be quanti�ed via the rank correlation itself.

The least demanding requirement to place on a model is that it approximates
the leakage function up to nominality only: {z|M(z) = M(z′)} ≈ {z|L(z) =
L(z′)} ∀z′ ∈ Z (c.f. the `nominal scale' of [28]). As ever, such a model must be
paired with a statistic which interprets the values appropriately: that is to say,
as arbitrary labels only. In fact, these correspond to the `partition-based' distin-
guishers of [26]. Typical examples include statistics which are used to compare
arbitrary distributions, such as MI [12] and the KS test statistic [30,35]. Kocher
et al.'s original Di�erence-of-Means (DoM) test [16] also falls into this category,
but is limited in how much information it is able to exploit as it is only able
to operate with a two-way partition model. To produce this partition, either
the value of a single bit is used (in which case the other bits act as algorithmic
noise, increasing the data complexity of the attack), or combinations of multiple
bits are used, which results in discarded traces (instances not �tting into either
category).

Appropriate notions of accuracy for a nominal model are drawn from classi-
�cation theory. Precision is the probability that items grouped according to the
model really do belong together, whilst recall is the probability that items which
belong together are identi�ed as such (see, e.g. [17]).4

Precision(M) = P(L(z) = L(z′)|M(z) =M(z′)),

Recall(M) = P(M(z) =M(z′)|L(z) = L(z′)).

3.2 De�ning `genericity'

We are now in a position to discuss the generic power model: what, in prac-
tice, does it mean to make no assumptions about the data-dependent leak-
age? Essentially, that we do no more than to assign a distinct label to each
value in the range of the target function. These labels can be seen to corre-
spond to the key-dependent equivalence classes produced by the preimages of
Fk: [x]k = F−1k [Fk(x)] ∀x ∈ X .

De�nition 2 The generic power model associated with key hypothesis k ∈ K is
the nominal mapping to the equivalence classes induced by the key-hypothesised
target function Fk.

4 The classi�cation theory literature more frequently states these de�nitions in terms of
ratios of counts�practically convenient but less directly translatable across contexts.
See [13] for a more explicit probabilistic interpretation; though in our case we are,
of course, averaging over multiple classes.



The `identity' power model emphasised in previous literature is �ne for this
purpose as long as it is understood that the mapping is simply a convenient
labelling system and should be interpreted nominally only. It is clear, then, that
the generic-compatible distinguishers are precisely those (described in Sect. 3.1
above) which interpret hypothesis-dependent predictions as an approximation
up to nominality of the data-dependent leakage.

De�nition 3 A distinguisher is generic-compatible if it is built from a statistic
which operates on nominal scale measurements.

This provides valuable clari�cation on previous work such as [3], which demon-
strated successful attacks against Hamming weight leakage using correlation
DPA with an `identity' power model. The authors rightly remarked that this
was possible precisely because, over F4

2, the identity is su�ciently accurate as
a proportional approximation of the Hamming weight to produce a successful
correlation attack. Far from operating generically, the identity mapping in such
a strategy is interpreted as an interval scale model�not a perfect approxima-
tion but adequate in the speci�c case that L can be well-approximated by the
Hamming weight. And even in this restricted case it is not, of course, invariant
to permutation of the `identity' labels.

De�nitions 2 and 3 combine towards a natural notion of a `generic strategy':

De�nition 4 A generic strategy performs a standard univariate DPA attack
using the generic power model paired with a generic-compatible distinguisher.

However, as previous work on `partition-based' distinguishers (separately,
e.g. [12,31,35], and collectively [26]) has consistently noted, not all (indeed, not
many) scenarios are suited to a generic strategy.

3.3 Conditions for a generic strategy to succeed

All distinguishers operate by identifying the key hypotheses producing the most
accurate model predictions for the actual measurements, according to the ap-
propriate notion of accuracy for the model type (some are able to perform this
comparison more e�ectively or from fewer trace measurements). In the generic
setting each key hypothesis k ∈ K gives rise to a modelMk s.t.M

−1
k [z] = F−1k [z]

∀z ∈ Fk(X ), and it is the comparative nominal accuracy which will determine
key-recovery success. We can therefore explore the conditions necessary for a
successful attack�independently of any particular distinguisher�by reasoning
directly about the accuracy of Fk∗ and Fk, ∀k ∈ K\{k∗} as nominal approxima-
tions for L◦Fk∗ . Recall the precision and recall measures introduced in Sect. 3.1
(with E to denote expectation):

Precision(Mk) = P(L ◦ Fk∗(x) = L ◦ Fk∗(x′)|Fk(x) = Fk(x
′))

= Ex∈X
[
#F−1k∗ [L−1[L ◦ Fk∗(x)]] ∩ F−1k [Fk(x)]

#F−1k [Fk(x)]

]



Recall(Mk) = P(Fk(x) = Fk(x
′)|L ◦ Fk∗(x) = L ◦ Fk∗(x′))

= Ex∈X
[
#F−1k∗ [L−1[L ◦ Fk∗(x)]] ∩ F−1k [Fk(x)]

#F−1k∗ [L−1[L ◦ Fk∗(x)]]

]
Trivially, the precision of the generic model under the correct hypothesis

is always maximal (the leakage preimage must contain the function preimage).
By contrast, the recall depends additionally on the true leakage function, so
that even under the correct hypothesis we do not get perfect recall unless it
happens that L is also injective. The ability of a strategy to reject an incorrect
alternative requires the corresponding model to be of inferior quality; whether
this is so depends on features of Fk and L. An immediate and quite restrictive
pre-requisite arises from the inherent nature of the generic power model:

Proposition 1. No generic strategy is able to distinguish the correct key k∗

from an alternative hypothesis k if Fk∗ and Fk are injective.

Proof. If Fk∗ , Fk are injective then ∀x ∈ X , F−1k [Fk(x)] = F−1k∗ [Fk∗(x)] = {x}.
Each hypothesis produces models of equivalent nominal accuracy�no generic-
compatible distinguisher can separate the candidates.

Indeed, all of the known generic-compatible distinguishers, from the seminal
CHES '08 paper on MIA [12] to the recent copula-based method presented at
Crypto '11 [31], have individually been shown to fail whenever the composition
of the target function and the power model is injective; the same observation
was made for the entire class of `partition-based' distinguishers described in
[26]. The authors duly noted that some restriction was required on the power
model in order for these distinguishers to operate against an injective target,
but left as an open question the existence (or demonstrable non-existence) of an
as-yet undiscovered method which would somehow circumvent this requirement.
Demonstrating that the limitation is attributable directly to the generic power
model rules out this possibility.

Noninjectivity is therefore a necessary condition, but not, as we next estab-
lish, a su�cient one. In the general case it is rather di�cult to formulate useful,
concrete observations so we will henceforth narrow down to the restricted but
highly relevant case that F is a balanced (n-m) function and k is introduced by
key addition (as described in Sect. 2.3). It then becomes fairly straightforward
to draw out such function characteristics as will obstruct a generic strategy.

Proposition 2. Suppose F is a balanced, non-injective (n-m) function, with k
introduced by (XOR) key addition, i.e. Fk(x) = F (x⊕ k). Then:
(a) If F is a�ne then no generic strategy is able to distinguish the correct key

k∗ from any k ∈ K \ {k∗}.
(b) If a ∈ Fn2 is a linear structure of F then no generic strategy is able to

distinguish between k∗ and k∗ ⊕ a.
(c) If, for some a ∈ Fn2 we have that DaF (x) depends on x only via F (x), then

no generic strategy is able to distinguish between k∗ and k∗ ⊕ a.



The proof of Proposition 2 can be found in Appendix A. Part (a) arises from
the fact that all key hypotheses produce indistinguishably `good' models for the
leakage; the distinguishing vector produced by such an attack would be �at and
maximal across all hypotheses.

The implication of 2(b) is that k∗ ⊕ a cannot be rejected if the derivative of
F with respect to a is constant over the domain of F , i.e #DaF (Fn2 ) = 1. In
such a case we would expect a practical attack to exhibit a ghost peak at k∗ ⊕ a
[4]; [21], notes a corresponding phenomenon for correlation DPA.

Part (c) can be otherwise expressed as the fact that k∗⊕a cannot be rejected
if the derivative of F with respect to a is constant over each singleton preimage of
F , i.e. #DaF (F

−1[F (x)]) = 1 ∀x ∈ Fn2 . We have actually observed this property
in the fourth DES S-box, for the key-o�set a = 47(10) = 101111(2): consequently,
k∗ ⊕ 47 produces a `ghost peak' in the distinguishing vector, with a nonetheless
substantial margin between these two and the remaining hypotheses�a good ex-
ample of an attack scenario with a low �rst-order, but high second-order, success
rate [27]. Our observation is consistent with (and illuminates) past works such
as [5] which recognised the unusual operation of DPA distinguishers confronted
with this particular S-box/o�set combination.

Thus emerges a minimal requirement for k∗ to be distinguished from k:

Proposition 3. Suppose F is a balanced, noninjective (n-m) function, with k
introduced by (XOR) key-addition. A necessary condition for a generic strategy
to distinguish k∗ from k is: ∃x ∈ Fn2 such that #Dk∗⊕kF (F

−1[F (x)]) 6= 1. If L
is injective then this becomes a su�cient condition.

This is informally expressed as the requirement that there is at least one
(singleton) preimage over which the derivative with respect to k∗ ⊕ k is not
constant. The proof follows from our reasoning in support of Proposition 2 and
can be found in Appendix A along with a toy example to demonstrate that we
can no longer claim su�ciency if L is noninjective.

Recall from Sect. 2.3 the idea that the derivatives of an S-box should ide-
ally be close to uniform�thus maximising entropy; a�ne functions or functions
with non-null linear spaces represent the extreme in terms of cryptanalytic vul-
nerability. The pursuit of such a design goal would not guarantee the minimal
condition above, as even a perfectly balanced derivative could be so arranged as
to be constant over the singleton preimages (which are of cardinality 2n−m since
F is also balanced). However, it would certainly seem to increase the chance
that the condition be met for a given key-o�set, as the more �nely DaF parti-
tions Fn2 , the fewer the possible re�nements into 2m (balanced) parts. Therefore,
among the (already restricted) class of noninjective S-boxes we would expect
ghost peaks and indistinguishable keys to be a rarity�even more so as the size
of the S-box increases.

4 Introducing generic-emulating DPA

Most existing generic-compatible distinguishers return only some sort of `classi-
�cation accuracy', leading them to fail against injective targets. But, on exam-



ination of the literature, LR-based attacks emerge as an interesting candidate
for generic DPA: they can be used with a full basis of polynomial terms (equiv-
alent, we shall show, to a generic power model), but possess additional features
that may possibly be exploited. In particular, further to the distinguishing vec-
tor of goodness-of-�t values, LR-based DPA also returns the estimated model
coe�cients, which di�er by key hypothesis. In this section we explore how the
coe�cients may be interpreted in the light of some simple, non-device-speci�c
intuition to reveal the correct key, and show that the process can be automated
straightforwardly using LR in a stepwise mode.

We begin by introducing (standard) LR-based DPA, explaining the mech-
anism by which it distinguishes the correct key, and demonstrating that it
is among the class of generic-compatible distinguishers. We then present the
`generic-emulating' stepwise linear regression- (SLR-) inspired variant which ex-
ploits the non-device-speci�c intuition to successfully attack injective targets
even with `no' (other) prior knowledge. We �nally demonstrate the e�ectiveness
of these distinguishers against well-known (injective and noninjective) S-boxes,
as the level of prior knowledge available varies from `complete' to `none'.

4.1 Introduction to linear regression-based DPA

The motivation for an LR-based approach begins with the observation that L :
Fm2 → R can be viewed as a pseudo-Boolean vectorial function with a unique
expression in numerical normal form [6]. That is to say, there exists coe�cients
αu ∈ R such that L(z) =

∑
u∈Fm

2
αuz

u, ∀z ∈ Fm2 (zu denotes the monomial∏m
i=1 z

ui
i where zi is the ith bit of z). Finding those coe�cients amounts to

�nding a power model for L in polynomial function of the coordinate functions
of F . As �rst observed in [24], and demonstrated in [9], linear regression can
be adapted to non-pro�led key-recovery: the true leakage function is estimated
`on-the-�y' and recovered synchronously with the true key.

Appendix B provides background on linear regression; in short, the LR-based
attack uses ordinary least squares to estimate, for each k ∈ K, the parameters
of the model Lk∗(X) + ε = α0 +

∑
u∈U Fk(X)uαu where U ⊆ Fm2 \ {0}. The

distinguishing vector comprises the R2 measure of �t from each of these models:
DLR(k) = ρ(Lk∗(X) + ε, α̂k,0 +

∑
u∈U Fk(X)uα̂k,u)

2 (where ρ denotes Pearson's
correlation coe�cient). It can be viewed as a generalisation of correlation DPA,
where the power modelM is known a priori : Dρ(k) = ρ(Lk∗(X)+ε,M ◦Fk(X)).
In each case, the value of k which produces the largest distinguisher value is
selected as the key guess.

4.2 Linear regression is generic-compatible

In the way the distinguisher is naturally presented, the attacker's prior knowledge
is contained within U ; it is not immediately obvious exactly what is the power
model, or where it �ts alongside the various types presented in Sect. 3.1. In fact,
each u ∈ U could be seen to represent a separate power model which divides the



traces into two nominal classes: {x ∈ Fn2 |Fk(x)u = 1} and {x ∈ Fn2 |Fk(x)u = 0}.5
Intuitively, as long as the power consumption really does di�er systematically
according to the bit-interaction term represented by u, then this `approximation'
has low precision but high recall under the correct key hypothesis, and loses
accuracy under an incorrect hypothesis as long as the function F is such that
changes to the input produce nonuniform changes to the output. In fact, this is
the mechanism by which the original di�erence-of-means DPA [16] operates!

So the linear regression distinguisher could be viewed as an extension of
di�erence-of-means DPA�a means of exploiting multiple (overlapping) nominal
approximations, each of low precision (and therefore weak as standalone models)
but in conjunction providing a re�ned description of the leakage.

Intuitively, the generic instantiation should correspond to U = Fm2 \ {0}
(i.e., imposing no restrictions on the leakage form). But our previous reasoning
about the operation of generic strategies supposed a single power model (Fk,
interpreted nominally) and it is hard to see how we might begin to reason about
the impact of multiple power models. Fortunately, in the U = Fm2 \ {0} case
only, the operation of the distinguisher can be re-framed in terms of the generic
power model as de�ned above, so that all of our prior reasoning applies.

Proposition 4. The linear regression-based DPA attack with a full set of co-
variates U = Fm2 \ {0} constitutes a generic strategy.

We sketch a proof as follows: If Mk is an arbitrary labelling on Fk, we
can always map bijectively to Fm2 to acquire an arbitrary permutation of the
function outputs M ′k(x) = p ◦ Fk(x). For each u ∈ Fm2 , the associated mono-
mial M ′k(x)

u has a unique expression in numerical normal form M ′k(x)
u =∑

v∈Fm
2
bvFk(x)

v, bv ∈ R [6]. So the system of equations relating to an incor-

rect hypothesis k can be re-written in function of Fk(x) by substituting in these
expressions, expanding out and collecting up the terms. We end up with di�er-
ent values of αu, u ∈ Fm2 whenever we reparametrise in this way, but, crucially,
the terms in the equation collectively explain the measured traces equally well�
and it is in this sense that linear regression DPA is invariant to re-labelling and
therefore can be discussed alongside other generic-compatible strategies (though
it is not usually used in this way�particularly as meaningful restrictions on U
contribute to e�ciency gains in the estimation stage).

As we would expect from Sect. 3, LR-based DPA fails against injective tar-
gets when used generically (i.e. with U = Fm2 \ {0}). This failure can be better
understood when we consider that the data-dependent part of the power con-
sumption can be expressed as a system of 2n equations (in function of Fk(x))
with 2n unknowns. Because this system is fully-determined and consistent un-
der any key hypothesis it always has a perfect solution, so as to produce a �at
distinguishing vector of maximal R2s.6

5 Note that the labeling is irrelevant since they are represented in the regression equa-
tion by dummy variables: the 1/0 assignment is arbitrary and will impact only the
estimated coe�cients, not the R2.

6 In the case of noninjective targets, the system is overdetermined (2n equations, 2m

unknowns). Provided the target satis�es the criteria in Sect. 3.3 then this system



4.3 Exploiting non-device-speci�c intuition

The unique opportunity presented by generic LR arises from the fact that it
produces, not just the distinguishing vector of R2 values (which are unable
to discriminate between hypotheses when the target is injective), but also the
hypothesis-dependent sets of estimated coe�cients. When k = k∗ these give the
correct expression for L in function of the output bits; the rest of the time, they
give an expression for L ◦ Fk ◦ F−1k∗ . If, then, the attacker was able to recognise
the correct expression, he would be able to identify the secret key.

Thus motivated, we examine the correct and incorrect expressions for L in
the case that the target function is an injective S-box (of size 8 bits in the case
of AES, or 4 bits in the case of PRESENT) and that the true form of the leakage

is the Hamming weight: L(z) =
∑m
i=0 z

2i . Fig. 2 shows the coe�cients, in the
polynomial expression for L, on the covariates as produced by the true key k∗

(in black) and on those as produced under an incorrect hypothesis k′ (in grey).
The high nonlinearity of the S-box functions ensure that, when viewed as a
polynomial in Fk(X) rather than Fk∗(X), the leakage function L is also highly
nonlinear in form.
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Fig. 2: Coe�cients, in the �tted expression for L, on the covariates as predicted
under the correct and an alternative hypothesis.

In the face of such evidence an attacker would be justi�ed in favouring hy-
pothesis k∗ over k: intuitively, it seems more likely (especially given the known
high nonlinearity of F ) that the `simpler' expression (i.e. the one corresponding
to the black circles in Fig. 2) is the correct one. To exploit the extra information
represented by the coe�cients, we therefore need to trust this intuition (which
implicitly also assumes that Mk = Fk). This takes us a step away from the
generic strategy�but since the intuition is not speci�c to any particular device
it appears to be a very small step. That is, we just need to assume that the
leakage function is `su�ciently simple' compared to the target function. This is
justi�ed for a wide range of devices manufactured in CMOS technologies, in-
cluding advanced 65-nanometer processes [23]. In fact, even for protected logic
styles such as introduced by Tiri and Verbauwhede [29], it turns out that ensur-
ing a complex (e.g. highly nonlinear) leakage function is a challenging task [22].

is only consistent under the correct key hypothesis (thus only then does it have a
perfect solution�there are only 2m linearly independent equations).



Besides, the results in Sect. 4.5 will also demonstrate that this `simplicity con-
straint' on the leakage function can be quite relaxed.

Of course, comparing graphs is not ideal from a practical perspective, besides
which the true leakage function may not always have so simple a form as to be
visibly discernible: we would like to encapsulate the underlying reasoning into an
automated and systematic procedure for testing hypotheses. In the next section
we introduce a learning technique from data mining which uses our non-device-
speci�c intuition about `what the leakage should look like' to produce, in a
wide range of leakage scenarios, asymptotically successful key recovery against
injective targets even when provided with the full set of covariates U = Fm2 \{0}.
Such a strategy, whilst not generic, may reasonably be described as generic-
emulating.

4.4 A stepwise regression-based distinguisher

Stepwise regression [15] is a model-building tool whereby potential explanatory
variables are iteratively added and removed depending on whether they con-
tribute su�cient explanatory power to meet certain threshold criteria (see Ap-
pendix C for full details). The resulting regression model should therefore exclude
`unimportant' terms whilst retaining all of the `signi�cant' terms. In the context
of LR-based DPA this equates to testing each of the multiple binary models
represented by u ∈ U separately (conditioned on the current model) and then
privileging those which appear most meaningful.

Under a correct key hypothesis, and beginning with a full basis U = Fn2 \ {0}
we would expect to obtain a `good' regression model which explains most of
the variance in L, although with some minor terms absent if they do not meet
our threshold criteria for statistical signi�cance. The example depicted in Fig. 2
above justi�es the hope that the model produced under an incorrect hypothesis
might be `less good': with the explanatory power being so much more dispersed,
the contribution of any individual term decreases. These small contributions are
prejudiced against in the model building process (depending on the threshold
criteria) but their actual contributions are real and so, therefore, is the loss in
excluding them. If the aggregate loss is su�cient then the resulting R2 will be
enough reduced relative to the true key R2 to distinguish between the two.

We therefore explore next whether stepwise linear regression (SLR) can in-
deed be used as a `generic-emulating' distinguisher, i.e. as generic compatible
distinguisher that only uses the additional non-device-speci�c intuition as intro-
duced in this paper.

4.5 Theoretic distinguishing margins for SLR-based DPA

Fig. 3 shows the distinguishing margins achieved (asymptotically) against AES,
PRESENT and DES S-boxes by our proposed generic-emulating SLR-based dis-
tinguisher (labelled `GenEm SLR'). The strategy is e�ective against all three
targets and remains so even as the degree of the leakage polynomial increases.



For comparison, we also show the margins for several related strategies. The
optimal strategy is a correlation DPA with a known power model; as expected,
this has the largest margins in all scenarios (the margins we report are for the
squared correlation coe�cients, so as to be directly comparable to the R2-based
margins reported for the LR variants). Generic LR-based DPA only succeeds
against the (noninjective) DES S-box, where it can be seen to underperform rel-
ative to generic-emulating SLR. LR with an appropriately restricted basis (i.e.
comprising terms up to and including the true order of the leakage function, la-
belled `MaxDeg LR') succeeds (and outperforms generic-emulating SLR) against
low-degree leakage but decreases in e�ectiveness as the degree increases, even-
tually coinciding with generic LR. Restricting the initial basis for SLR (again,
up to the degree of the true leakage, labelled `MaxDeg SLR') likewise produces
increased distinguishing margins in low-degree settings, but of course can no
longer be considered generic-emulating.7

The DoM distinguisher is considered sub-optimal as it only exploits the leak-
age of a single bit, but is generally seen as the `best' an attacker can do without
prior knowledge on the power model�a sort of `last resort'. Therefore, it is an
important baseline comparison for our proposed strategy. Since the DoM dis-
tinguisher is SCA-equivalent to correlation DPA with a single-bit power model
(see [9])8, what we actually report (labelled `Best DoM') are the margins pro-
duced by the squared correlation coe�cients for the best out of every possible
single-bit partition (again, so as to place it on a like-for-like scale with our other
distinguishers).

As can be seen from Fig. 3, the bit-by-bit DoM strategy does (on average)
distinguish the key once an appropriate bit has been identi�ed. However, it
achieves this by smaller margins than the generic emulating SLR-based distin-
guisher, at least in the case of the AES and DES S-boxes. This is in line with our
expectation that it is more informative to exploit the entire intermediate value
than it is to exploit a single bit only. In the case of PRESENT, DoM and SLR
appear close, with a slight advantage to DoM. We conjecture that this is due to
the smallness of the S-box, which limits the attainable degree of cryptographic
nonlinearity�the particular feature which SLR exploits.

It is perhaps surprising to note that the example attacks above succeed even
when the leakage degree is maximal. The success of generic-emulating SLR rests
on the comparative `complexity' (in some sense) of L ◦ Fk ◦ F−1k∗ relative to L.
Evidently, high polynomial degree is not a relevant criteria on L for predicting
attack failure. We have constructed example failure cases (e.g. random permuta-
tions over {0, . . . , 2m−1}, indicating that SLR fails if L has a high cryptographic
nonlinearity when interpreted as a function over Fm2 ), but we leave as an open
question the precise properties of L which will cause failures in general.

7 The asymptotic outcomes appear to be reliably consistent over the 500 repeated
experiments�see Appendix D for more information.

8 That is, the distinguishing vectors are exactly proportional so that the relative mar-
gins are identical. The result also matches that resulting from LR-based DPA with
a single bit term in the regression equation, as should be obvious from Sect. 4.2.
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Fig. 3: Median distinguishing margins of attacks against AES, PRESENT and
DES S-boxes as the leakage degree increases (500 experiments with uniformly
random coe�cients between -10 and 10).

4.6 Practical success rate evaluation

The above analysis shows the AES S-box to be the most interesting scenario (of
the three) for generic-emulating SLR : its large size ensures su�ciently high cryp-
tographic nonlinearity (by contrast with PRESENT), and its injectivity means
that it is not vulnerable to generic attacks (by contrast with DES). Therefore,
in order to establish its e�ectiveness in practice, we performed experimental at-
tacks against AES with (arbitrarily generated) degree-8 polynomial leakages�
the most challenging of the leakage forms considered above. Fig. 4 shows the
success rate as the number of traces increases, as compared with the success
rates of DoM in the best case (the strongest of all 8 possible one-bit attacks)
and the average case (the outcome of a single, randomly-chosen one-bit attack).
In practice, an attacker does not know the best bit to attack, and so is in this
latter scenario, where success is by no means guaranteed and the SLR strategy
is far more likely to recover the key from a given number of traces. However,
by trying each bit in turn (or all in parallel) an attacker can greatly improve
their chances, and indeed the best DoM is consistently more data e�cient than
generic-emulating SLR despite the fact that the latter exploits the leaked infor-
mation far more comprehensively. This is because of the increased estimation
costs incurred by stepwise regression, which requires �tting a model with up to
28 unknown coe�cients, whilst DoM amounts to the estimation of two means.9

5 Conclusion

Implementers and evaluators routinely perform DPA attacks against devices
to identify vulnerabilities. Yet the current state of the art, e.g. [19] Appendix
F, is often based on incomplete understanding of the myriad attack methods
and how they relate. Practitioners are rightly concerned about the increasingly
unmanageable amount of work required for a thorough evaluation, e.g. [32]�but
testing only a subset of methods risks overestimating security if the best possible
strategy is omitted.

9 It is well-recognised that the data complexity of di�erent statistical estimators varies
widely; the subsequent gap between the theoretic and practical capabilities of DPA
distinguishers is discussed in more detail in [33].
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Fig. 4: Success rates as the number of traces increases, for DoM and SLR attacks
against the AES S-box with high degree leakage (500 experiments with uniformly
random coe�cients between -10 and 10).

The non-existence of universally-applicable generic attacks�as shown in the
�rst part of this paper�implies that pro�led attacks are necessary in security
evaluations. It also leads to questions about the existence of `almost generic'
methods that would connect worst-case security evaluations with (more real-
istic) non-pro�led adversaries, as addressed in the second part of the paper.
In the absence of a viable power model a usual strategy is to `revert' back to
single-bit models, e.g. using Kocher et al.'s DoM-based methods. However, us-
ing our non-device-speci�c intuition, we were able to de�ne a novel tweak on
the LR-based method that works in a generic-emulating manner and, for large
enough (i.e. nonlinear enough) S-boxes, produces outcomes comparable to those
attainable by single-bit strategies (based on the `most leaky' bit). The practical
advantage of generic-emulating SLR is unclear because of the substantial esti-
mation costs involved; however, it greatly improves over the success rates of a
randomly-selected DoM and is not too far behind the `best' DoM, which looks
to remain the most practically-e�ective known non-pro�led distinguisher for use
against unknown leakage distributions, by virtue of the minimal data complexity
associated with estimating sample means.
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A Conditions for a generic strategy to succeed

Here we provide simple proofs for the claims stated in Sect. 3.3. For conciseness
we �rst prove Proposition 2 part (c) and then show that parts (a) and (b) are
covered as special cases.

Proof. (Of 2(c)). Ultimately, k∗ is indistinguishable from k if F−1k [Fk(x)] ⊆
F−1k∗ [L−1[L ◦ Fk∗(x)]] ∀x ∈ Fn2 as this implies that Fk is just as accurate a
model for L ◦ Fk∗ as Fk∗ (that is Precision(Fk) = Precision(Fk∗) = 1 and
Recall(Fk) = Recall(Fk∗) as follows directly from the formulae).

It is su�cient to show that ∀x ∈ Fn2 , x′ ∈ F−1k [Fk(x)] ⇒ x′ ∈ F−1k∗ [Fk∗(x)],
since, trivially, F−1k∗ [Fk∗(x)] ⊆ F−1k∗ [L−1[L ◦ Fk∗(x)]].

If DaF (x) depends on x only via F (x) we can write DaF (x) = c(F (x)) for
some function c : Fm2 → Fm2 .

It thus follows that Fk∗(x) = F (x⊕ k∗ ⊕ a⊕ a) = DaF (x⊕ k∗ ⊕ a)⊕ F (x⊕
k∗ ⊕ a) = c(F (x⊕ k∗ ⊕ a))⊕ F (x⊕ k∗ ⊕ a) = c(Fk∗⊕a(x))⊕ Fk∗⊕a(x).

So if x′ ∈ F−1k∗⊕a[Fk∗⊕a(x)] then:

Fk∗(x
′) = c(Fk∗⊕a(x

′))⊕ Fk∗⊕a(x′)
= c(Fk∗⊕a(x))⊕ Fk∗⊕a(x)
= Fk∗(x).

I.e. x′ ∈ F−1k∗ [Fk∗(x)] and thus F−1k∗⊕a[Fk∗⊕a(x)] ⊆ F−1k∗ [Fk∗(x)] ⊆ F−1k∗ [L−1[L ◦
Fk∗(x)]].

Part (b) follows trivially once we notice that, if a ∈ Fn2 is a linear structure
of F , we can replace c(F (x)) in the above argument with c for some c ∈ Fm2
constant over all x.

Part (a) follows from the observation that if F is a�ne, the linear space of
F is the whole of Fn2 so that k∗ is indistinguishable from k = k′ ⊕ a for all
a ∈ Fn2 \ {0} (and thus for all k ∈ K \ {k∗} ⊆ Fn2 ) by the same argument.

Proof. (Of Proposition 3). That the condition is necessary follows directly from
Proposition 2(c). Now suppose that, additionally, L is injective.

Choose x′ ∈ Fn2 such that #Dk∗⊕kF (F
−1[F (x′ ⊕ k)]) 6= 1�which can be

re-written as #Dk∗⊕kF (F
−1
k [Fk(x

′)]) 6= 1.
Thus ∃x′′ ∈ F−1k [Fk(x

′)] such that:

Dk∗⊕kF (x
′ ⊕ k) 6= Dk∗⊕kF (x

′′ ⊕ k)
⇒ F (x′ ⊕ k ⊕ k∗ ⊕ k)⊕ F (x′ ⊕ k) 6= F (x′′ ⊕ k ⊕ k∗ ⊕ k)⊕ F (x′′ ⊕ k)
⇒ F (x′ ⊕ k∗)⊕ F (x′ ⊕ k) 6= F (x′′ ⊕ k∗)⊕ F (x′′ ⊕ k)
⇒ Fk∗(x

′)⊕ Fk(x′) 6= Fk∗(x
′′)⊕ Fk(x′′)

⇒ Fk∗(x
′) 6= Fk∗(x

′′) (since x′′ ∈ F−1k [Fk(x
′)])

⇒ x′′ 6∈ F−1k∗ [Fk∗(x
′)]

⇒ F−1k∗ [Fk∗(x
′)] 6= F−1k [Fk(x

′)]



Now we look at what this does to the precision and recall of Fk as a nominal
model for Fk∗ , beginning with the summands in the numerator of both expres-
sions:

#F−1k∗ [L−1[L ◦ Fk∗(x)]] ∩ F−1k [Fk(x)] = #F−1k∗ [Fk∗(x)] ∩ F−1k [Fk(x)]{
< 2n−m, if x = x′

≤ 2n−m, if x 6= x′.

By the balancedness of F and the injectivity of L the denominator summands
in the precision and recall expressions always take the value 2n−m. In this case,
then, we get that Precision(Fk∗) = Recall(Fk∗) = 1 whilst Precision(Fk) =
Recall(Fk) < 1, so that a su�ciently sensitive generic-compatible distinguisher
will be able to reject the hypothesis k.

It only remains to show that su�ciency cannot be claimed when L is nonin-
jective, which we do with a simple illustrative example:

De�ne F : F3
2 → F2

2 and L : F2
2 → {1, 2} such that:

F (x) =


0, x ∈ {0, 3}
1, x ∈ {1, 2}
2, x ∈ {4, 5}
3, x ∈ {6, 7},

L(z) =

{
1, z ∈ {0, 1}
2, z ∈ {2, 3}.

So F0(x) = F (x⊕ 0) = F (x)

and F4(x) = F (x⊕ 4) =


0, x ∈ {4, 7}
1, x ∈ {5, 6}
2, x ∈ {0, 1}
3, x ∈ {2, 3}.

Then (for example) F−10 [F0(0)] = {0, 3} 6= {0, 1} = F−14 [F4(0)], but nonethe-
less F−10 [L−1[L ◦ F0(0)]] = {0, 1, 2, 3} = F−14 [L−1[L ◦ F4(0)]] ⊃ F−14 [F4(0)] and
in fact it can be checked that F−14 [F4(x)] ⊂ F−10 [L−1[L◦F0(x)]] ∀x ∈ F3

2 so that
Precision(M4) = Precision(M0) = 1 and Recall(M4) = Recall(M0), implying
that key candidates 0 and 4 cannot be distinguished from one another.

B Linear regression

Linear regression is a statistical method for modelling the relationship between a
single dependent variable Y and one or more explanatory variables Z. It operates
by �nding a least-squares solution β̂ to the system of linear equations Y = Zβ+ε,
where Y is an N -dimensional vector of measured outcomes, Z is an N -by-p
matrix of p measured `covariates', β is the p-dimensional vector of unknown



parameters, and ε is the noise or error term, that is, all remaining variation in Y
which is not caused by Z. Once the model has been estimated, the goodness-of-
�t can be measured (for example) by the `coe�cient of determination', R2, which
quanti�es the proportion of variance explained by the model: R2 = 1 − SSerror

SStotal
,

where SStotal =
∑N
i=1(Yi−

1
N

∑N
i=1 Yi)

2 is the total sum of squares and SSerror =∑N
i=1(Yi − Ziβ̂)2 is the error sum of squares.
In the case that Z includes a constant term (the associated parameter es-

timate is called the intercept), the coe�cient of determination is the square
of the correlation coe�cient between the outcomes and their predicted values:
R2 = ρ(Zβ̂, Y )2. It is appealing as an attack distinguisher by virtue of this
close relationship with correlation, coupled with the fact that it requires far less
knowledge about the true form of the leakage to succeed. In correlation DPA the
attacker has prior knowledge of a power model M and the distinguishing vector
takes the form Dρ(k) = ρ(Lk∗(X) + ε,M ◦ Fk(X)). In linear regression DPA
the challenge is to simultaneously recover the true power model along with the
correct key as follows:

� Model the measured traces in function of the predicted coordinate function
outputs and such higher-order interactions as you believe to be in�uential.

� Estimate the parameters and compute the resulting R2 under each possible
key hypothesis.

� If the largest R2 is produced by the predictions relating to the correct key
hypothesis then the attack has succeeded.

The LR-based distinguishing vector is thus: DLR(k) = ρ(Lk∗(X) + ε, α̂k,0 +∑
u∈U Fk(X)uα̂k,u)

2, where ρ is Pearson's correlation coe�cient, de�ned for two

random variables A, B as ρ(A,B) = Cov(A,B)√
Var(A)Var(B)

.

C Stepwise regression

The inputs to the procedure are an N × 1 vector Y containing observations
of the dependent variable, p N × 1 vectors {Zi}pi=1 for each of the candidate
explanatory variables, a set of indices indicating terms to be included regardless
of explanatory power Ifix ⊂ {1, . . . , p} and a set of indices indicating additional
terms to include in the initial model Iinitial ⊆ {1, . . . , p} (s.t. Ifix ∩ Iinitial = ∅).

1. Set Iin = Iinitial. Set Itest = {1, . . . , p} \ {Iin ∪ Ifix}.
2. For all j ∈ Itest �t the model Y = β0 +

∑
i∈Ifix∪Iin βiZi + βjZj + ε using

least-squares regression and obtain the p-value on Zj (call it pvalj).
3. If minj∈Itest pvalj ≤ pvaladd then set Iin = Iin ∪ argminj∈Itestpvalj , Itest =
Itest \ argminj∈Itestpvalj and repeat from step 2.

4. Else �t the model Y = β0+
∑
i∈Ifix∪Iin βiZi+ε using least-squares regression

and obtain {pvali}i∈Iin .
5. If maxi∈Iin pvali ≥ pvalrem then set Iin = Iin \ argmaxi∈Itestpvali, Itest =
Itest ∪ argmaxi∈Itestpvali and return to step 2.



6. Else return Iin.

Note that the p-values on included terms change when other terms are added
or removed�hence the need for an iterative procedure that re-tests the signif-
icance of included terms to identify candidates for removal. The threshold p-
values for model entry and removal, pvaladd and pvalrem, are user-determined
and will in�uence the resulting model. The terms included in the initial model
will also in�uence the result. The MatLab defaults are pvaladd = 0.05, pvalrem =
0.1 and Iinitial = Ifix = ∅.

D Variability of measured outcomes

The asymptotic outcomes reported in Sect. 4.5 are based on 500 di�erent leakage
functions constructed to have uniformly random coe�cients between -10 and 10.
Fig. 3 displays the medians but provide a reliable indication of the behaviour
over the whole sample as the variance is moderate, at least in the case of AES
and DES S-boxes. By way of illustration, Fig. 5 below shows the 1st percentiles
of the measured outcomes observed. Successful outcomes against AES and DES
are preserved (although diminished); there are more failure cases against the
PRESENT S-box, which we conjecture is due to its smaller size, which restricts
the degree of cryptographic nonlinearity attainable. It should, of course, be noted
that these attacks use �xed stepwise inclusion/exclusion thresholds, and that the
failure cases may respond to more sensitive tuning.
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Fig. 5: First percentile of the distinguishing margins of attacks against AES,
PRESENT and DES S-boxes as the actual degree of the leakage polynomial in-
creases (500 experiments with uniformly random coe�cients between -10 and
10).
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