
ICEBERG : an Involutional Cipher Efficient for
Block Encryption in Reconfigurable Hardware.

Francois-Xavier Standaert, Gilles Piret, Gael Rouvroy,
Jean-Jacques Quisquater, Jean-Didier Legat

UCL Crypto Group
Laboratoire de Microelectronique
Universite Catholique de Louvain

Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium
standaert,piret,rouvroy,quisquater,legat@dice.ucl.ac.be

Abstract. We present a fast involutional block cipher optimized for re-
configurable hardware implementations. ICEBERG uses 64-bit text blocks
and 128-bit keys. All components are involutional and allow very effi-
cient combinations of encryption/decryption. Hardware implementations
of ICEBERG allow to change the key at every clock cycle without any per-
formance loss and its round keys are derived “on-the-fly” in encryption
and decryption modes (no storage of round keys is needed). The result-
ing design offers better hardware efficiency than other recent 128-key-bit
block ciphers. Resistance against side-channel cryptanalysis was also con-
sidered as a design criteria for ICEBERG.

Keywords: block cipher design, efficient implementations, reconfigurable
hardware, side-channel resistance.

1 Introduction

In October 2000, NIST (National Institute of Standards and Technology) se-
lected Rijndael as the new Advanced Encryption Standard. The selection pro-
cess included performance evaluation on both software and hardware platforms.
However, as implementation versatility was a criteria for the selection of the
AES, it appeared that Rijndael is not optimal for reconfigurable hardware im-
plementations. Its highly expensive substitution boxes are a typical bottleneck
but the combination of encryption and decryption in hardware is probably as
critical.

In general, observing the AES candidates [1, 2], one may assess that the cri-
teria selected for their evaluation led to highly conservative designs although
the context of certain cryptanalysis may be considered as very unlikely (e.g.
more than 2100 chosen plaintexts). More recent designs of the NESSIE1 project
(e.g. Khazad [3], Misty [4]) provide an improved efficiency. They also allowed
interesting comparisons between Feistel networks (e.g. Misty) and substitution-
permutation networks, with respect to hardware efficiency. Although Khazad is

? This work has been funded by the Wallon region (Belgium) through the research
project TACTILS http : //www.dice.ucl.ac.be/crypto/TACTILS/T−home.html

1 NESSIE: New European Schemes for Signatures, Integrity, and Encryption. See
http://www.cryptonessie.org.

not a Feistel network, its structure is designed so that by choosing all components
to be involutions, the inverse operation of the cipher differs from the forward
operation in the key scheduling only. ICEBERG is also based on an involutional
structure but allows to derive the keys more efficiently than Khazad. Moreover,
the combination of encryption and decryption is improved due to a simplified
diffusion layer.

Reconfigurable hardware devices usually enable high performance encryption/
decryption solutions for real-time applications of multi-Gbps data streams. Video-
processing is the typical context where high throughput has to be provided at
low hardware cost. Although present encryption algorithms may provide very
high encryption rates, it is often at the cost of expensive designs. The main
feature of ICEBERG is that is has been defined in order to allow very efficient re-
configurable hardware implementations. An additional criteria was the simplic-
ity of the design. ICEBERG is scalable for different architectures (loop, unrolled,
pipeline) and FPGA2 technologies. As a consequence, ASIC3 implementations
are also efficient. All its components easily fit into 4-input lookup tables and its
key scheduling allows to derive the round keys “on-the-fly” in encryption and
decryption modes. This involves no storage requirements for the round keys. The
resulting design offers better hardware efficiency than other recent 128-key-bit
block ciphers. As a consequence, very low-cost hardware crypto-processors and
high throughput data encryption are potential applications of ICEBERG.

Finally, resistance against side-channel cryptanalysis was also considered as a
design criteria for ICEBERG. Small substitution tables are used in order to allow
efficient boolean masking. Moreover, the key agility offers the opportunity to
consider new encryption modes where the key is changed frequently in order to
make the averaging of side-channel traces unpractical.

This paper is structured as follows. Section 2 presents the design goals of ICEBERG
and section 3 gives its specifications. The security analysis of ICEBERG is in sec-
tion 4 and its performance analysis in section 5. Finally, conclusions are in section
6. Some tables and proofs are given in appendixes.

2 Design goals

Present reconfigurable components like FPGAs are usually made of reconfig-
urable logic blocks combined with fast access memories (RAM blocks) and high
speed arithmetic circuits [5, 6]. Basic logic blocks of FPGAs include a 4-input
function generator (called lookup table, LUT), carry logic and a storage element.

As reconfigurable components are divided into logic elements and storage el-
ements, an efficient implementation will be the result of a better compromise
between combinatorial logic used, sequential logic used and resulting perfor-
mances. These observations lead to different definitions of implementation effi-
ciency [7–12]:

2 FPGA : Field Programmable Gate Array.
3 ASIC : Application Specific Integrated Circuit.

1. In terms of performances, let the efficiency of a block cipher be the ratio
Throughput (Mbits/s)/Area (LUTs, RAM blocks).

2. In terms of resources, the efficiency is easily tested by computing the ratio
Nbr of LUTs/Nbr of registers: it should be close to one.

The general design goal of ICEBERG is to provide an efficient algorithm for re-
configurable hardware implementations meeting the usual security requirements
of block ciphers. More precisely, our design goals were:

1. Good security properties: ICEBERG has a resistance against known attacks
comparable to recently published block ciphers (AES, NESSIE).

2. Hardware implementation efficiency (as previously defined).
3. Hardware implementation versatility: ICEBERG is scalable for different archi-

tectures (loop, unrolled, pipeline) and FPGA technologies.
4. Resistance against side-channel cryptanalysis.

3 Specifications
3.1 Block and Key Size

Let n be the block bit-size and k be the key bit-size. The state X is represented
as a n-bit vector where X(i) (0 ≤ i < n) represents the ith bit from the right.
Alternatively, X can be represented as an array of n

4 4-bit blocks, where Xj

is the jth block from the right. ICEBERG operates on 64-bit blocks and uses a
128-bit key. It is an involutional iterative block cipher based on the repetition
of R identical key-dependent round functions.

3.2 The Non-Linear Layer γ

Function γ consists of the successive application of non-linear substitution boxes
and bit permutations (i.e. wire crossings).

Substitution layers S0, S1: The substitution layers Sj consists of the parallel
application of substitution boxes sj to the blocks of the state.

Sj : Z16
24 → Z16

24 : x → y = Sj(x) ⇔ yi = sj(xi) 0 ≤ i ≤ 15 (1)

Tables of S-boxes s0, s1 are given in appendix B.

Bit permutation layer P8: The permutation layer P8 consists of the parallel
application of 8 permutations p8 to the state, where p8 consists of bit permuta-
tions on 8-bit blocks of data. Table of p8 is given in appendix B.

P8 : Z8
28 → Z8

28 : x → y = P8(x) ⇔ y(8i + j) = x(8i + p8(j))
0 ≤ i ≤ 7, 0 ≤ j ≤ 7 (2)

Based on previous descriptions, the non-linear layer γ can be expressed as:

γ : Z64
2 → Z64

2 : γ ≡ S0 ◦ P8 ◦ S1 ◦ P8 ◦ S0 (3)

For cryptanalytic and software implementation purposes, γ may also be viewed
as a unique layer consisting of the application of 8 identical 8 × 8 S-boxes for
which the table is given in appendix B.

3.3 The Key Addition Layer σK

The affine key addition σK consists of the bitwise exclusive or (XOR, ⊕) of a
key vector K.

σK : Z64
2 → Z64

2 : x → y = σK(x) ⇔ y(i) = x(i)⊕K(i) 0 ≤ i ≤ 63 (4)

3.4 The Linear Layer εK

Function εK consists of the successive application of binary matrix multiplica-
tions and wire crossing layers, combined with the key addition layer for efficiency
purposes. We describe it as:

εK : Z64
2 → Z64

2 : εK ≡ P64 ◦ P4 ◦ σK ◦M ◦ P64 (5)

where M , P64, and P4 are defined as follows:

Matrix multiplication layer M : The matrix multiplication layer M is based
on the parallel application of a simple involutional matrix multiplication.

Let V ∈ Z4×4
2 be a binary involutional (i.e. such that V 2 = In) matrix:

V =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

M is then defined as:

M : Z16
24 → Z16

24 : x → y = M(x) ⇔ yi = V · xi 0 ≤ i ≤ 15 (6)

We define diffusion boxes D as performing multiplication by V . Table of D is
given in appendix B.

Bit permutation layer P64: Permutation P64 performs bit permutations
on 64-bit blocks of data.

P64 : Z64
2 → Z64

2 : x → y = P64(x) ⇔ y(i) = x(P64(i)) 0 ≤ i ≤ 63 (7)

Table of permutation P64 is given in appendix B.

Bit permutation layer P4: The permutation layer P4 consists of the parallel
application of 16 permutations p4 to the state. p4 consists of bit permutations
on 4-bit blocks of data. Table of p4 is given in appendix B.

P4 : Z16
24 → Z16

24 : x → y = P4(x) ⇔ yi(j) = xi(p4(j))
0 ≤ i ≤ 15, 0 ≤ j ≤ 3 (8)

The purpose of permutation P4 is to efficiently distinguish encryption from
decryption. It will become clearer in section 3.8 and appendix A.

3.5 The Round Function ρK

Finally, the whole round function can be expressed as:

ρK : Z64
2 → Z64

2 : ρK ≡ εK ◦ γ (9)

It is illustrated in Figure 1.

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1

P8

D D D D D D D D D D D D D D D D

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

Non-Linear Layer

Diffusion +
Key addition

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

P64

P64

P8 P8 P8 P8 P8 P8 P8

P8 P8 P8 P8 P8 P8 P8 P8

P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4

Fig. 1. The round function ρK .

3.6 The Key Schedule

The key scheduling process consists of key expansion and key selection.

The key expansion: This process expands the cipher key K ∈ Z128
2 into a

sequence of keys K0,K1, ...,KR also ∈ Z128
2 . We set the initial key K0 = K.

Then we expand K0 by a simple key round function βC so that:
Ki+1 = βC(Ki) (10)

Where 0 ≤ i ≤ R and C ∈ Z2 is a round constant discussed in section 3.9.

The key round βC is pictured in Figure 2. It consists of the application of
non-linear substitution boxes, shift operations and bit permutations:

βC : Z128
2 → Z128

2 : βC ≡ τC ◦ P128 ◦ S′ ◦ P128 ◦ τC (11)

where τC , S′, and P128 are defined as follows:

– Shift layer τC : The shift layer τC consists of the application of a variable
shift operator to the bytes of the key : shift left if C = 1, shift right if C = 0.

τC : Z128
2 → Z128

2 : x → y = τC(x) ⇔
if C = 0 : y(i) = x((i + 8) mod 128) 0 ≤ i ≤ 127
if C = 1 : y(i) = x((i− 8) mod 128) 0 ≤ i ≤ 127 (12)

– Substitution layer S′: The substitution layer S′ consists of the parallel
application of substitution boxes s0 to the blocks of the key.

S′ : Z32
24 → Z32

24 : x → y = S′(x) ⇔ yi = s′0(xi) 0 ≤ i ≤ 31 (13)

Table of S-box s0 is given in appendix B.

– Bit permutations layer P128: P128 performs bit permutation on 128-bit
blocks of data.

P128 : Z128
2 → Z128

2 : x → y = P128(x) ⇔ y(i) = x(P128(i))
0 ≤ i ≤ 127 (14)

Table of P128 is given in appendix B.

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

SHIFT

P128

P128

Left/Right

SHIFT Left/Right

Fig. 2. The key round βC .

The key selection: From every 128-bit vector Ki, we first apply a simple
compression function E that selects 64 bits corresponding to key bytes of Ki

having odd indices. We denote the resulting key as K64i. Then we apply a
key selection layer (φ) that consists of the parallel application of a selection
function X to the blocks of the key.

φsel : Z16
24 → Z16

24 : K64i → RKi
sel = φsel(K64i) ⇔

RKi
sel,j = Xsel(K64i

j) 0 ≤ j ≤ 15 (15)

The selection function X takes 4-bit inputs and a selection bit sel:

Xsel : Z24 → Z24 : x → y = Xsel(x) ⇔

y(0) = (x(0)⊕ x(1)⊕ x(2)) · sel ∨ (x(0)⊕ x(1)) · sel
y(1) = (x(1)⊕ x(2)) · sel ∨ x(1) · sel
y(2) = (x(2)⊕ x(3)⊕ x(0)) · sel ∨ (x(2)⊕ x(3)) · sel
y(3) = (x(3)⊕ x(0)) · sel ∨ x(3) · sel

(16)

This selection process is represented in Figure 3. As a result, we obtain a 64-bit
round key denoted by RKi

1 if sel = 1 and RKi
0 if sel = 0.

1

0⊕

⊕
x(2)

x(1)

x(0)

sel

y(0)
1

0

⊕
x(2)

x(1)

sel

y(1)

1

0⊕

⊕
x(0)

x(2)

x(3)

sel

y(2)
1

0

⊕
x(0)

x(3)

sel

y(3)

Fig. 3. The key selection function Xsel.

3.7 Encryption Process

ICEBERG is defined for the cipher key K, as the transformation ICEBERG[K] =
αR[RK0

1 , RK1
1 ,.. .,RKR

0] applied to the plaintext where:

αR[RK0
1 , RK1

1 , ..., RKR
0] = σRKR

0
◦ γ ◦ (©R−1

r=1 ρRKr
1
) ◦ σRK0

1
(17)

The standard number of rounds is R = 16.

3.8 Decryption Process

We now show that ICEBERG is an involutional cipher in the sense that the only
difference between encryption and decryption is in the key schedule. We will
need the following theorem, proven in appendix A:

Theorem 1. For any K64 ∈ Z16
24 : ε−1

RK0
= εRK1 , where RK0 = φ0(K64) and

RK1 = φ1(K64).

Then, the decryption process can be obtained as follows. We start from the
encryption process:

αR[RK0
1 , RK1

1 , ..., RKR
0] = σRKR

0
◦ γ ◦ (©R−1

r=1 εRKr
1
◦ γ) ◦ σRK0

1

Then we have for decryption:

α−1
R [RK0

1 , RK1
1 , ..., RKR

0] = σRK0
1
◦ (©1

r=R−1γ ◦ ε−1
RKr

1
) ◦ γ ◦ σRKR

0

⇔ α−1
R [RK0

1 , RK1
1 , ..., RKR

0] = σRK0
1
◦ γ ◦ (©1

r=R−1ε
−1
RKr

1
◦ γ) ◦ σRKR

0
(18)

Finally the above theorem leads to:

α−1
R [RK0

1 , RK1
0 , ..., RKR

0] = σRK0
1
◦ γ ◦ (©1

r=R−1εRKr
0
◦ γ) ◦ σRKR

0

3.9 Round Constants

ICEBERG is an involutional cipher in the sense that the only difference between
encryption and decryption is in the key schedule. Moreover, if properly cho-
sen, the round constants allow to compute keys “on-the-fly” in encryption and
decryption modes. Basically, we would like round keys to satisfy:

K0 = KR

K1 = KR−1

K2 = KR−2

... (19)

This involves that R is even. Then, if the first half of round constants (i.e. until
round 8) is 0 (shift left) and the second half is 1 (shift right), the resulting round
keys will satisfy Equation (19).

As a consequence, the only difference between encryption and decryption is the
selection function φ of the key bits, as ε−1

RK1
≡ εRK0 .

4 Security Analysis

4.1 Design Properties of the Components

S-Boxes: The non-linear layer γ may be viewed as made out of the parallel
application of 8 copies of the same 8 × 8 S-box. We designed this S-box such
that it has the following properties:

– It is an involution.
– Its δ-parameter4 is 2−5.
– Its λ-parameter5 is 2−2.
– Its nonlinear order ν is maximum, namely 7.

For efficiency purposes, the s-box was generated from a fixed permutation p8
and small 4 × 4 s-boxes s0 and s1 that perfectly fits into 4-input LUTs. The
generation of the s-boxes is detailed in Appendix C.

The bit permutations: P64 and P128 were designed such as to disturb as
much as possible the bit alignment inside bytes, in order to provide resistance
against some attacks. A remarkable property of P64 and P128 is that 2 bits
from the same byte are always mapped to 2 bits belonging to different bytes. p8
is involutional and allows to generate good substitution boxes. Finally, p4 allows
the selection function Xsel to be implemented in one LUT.
4 δ equals the probability of the best differential approximation.
5 We define the bias of a linear approximation that holds with probability p as ε =
|p − 1/2|. The λ-parameter of a S-box is equal to 2 times the bias of its best linear
approximation.

The Diffusion Layer: Due to the fact that we attached much importance to
hardware implementation aspects in the design of the diffusion layer, it is not
optimal. More precisely, it is easy to see that its byte branch number is 4, as the
bit branch number of p4◦σK ◦D is 4, and because of the remarkable property of
P64 we have just mentioned. The diffusion boxes D were designed so that their
combination with the key addition layer σK can be done inside one LUT.

The key round: The key round has been chosen for its efficiency properties,
as well as in order to provide resistance against key schedule cryptanalysis and
slide attacks:

1. Non periodicity is provided by the shift operation τC .
2. Non linearity is provided by non-linear S-boxes.
3. Good diffusion properties are provided by the combination of shifts, S-boxes

and bit permutations.

Moreover, the shift layer τC is used in order to allow the property (19) to be
respected. The selection function Xsel is necessary to prove the property of
Appendix A and is designed such that it fits into a single LUT.

4.2 Strength Against Known Attacks

Linear and Differential Cryptanalysis: From the properties of the S-box
and the diffusion layer, we can compute that a differential characteristic [13]
over 2 rounds of ICEBERG has probability at most (2−5)4 = 2−20. Also, a lin-
ear characteristic [14] over these 2 rounds has input-output correlation at most
(2−2)4 = 2−8. Therefore loose bounds can be computed for the full cipher (16
rounds):

– The probability of the best differential characteristic is smaller than 2−160.
– The input-output correlation of the best linear characteristic is smaller than

2−64.

The security margin is very likely big enough to prevent variants of differential
and linear attacks, such as boomerang [15] and rectangle [16] attacks, multiple
linear cryptanalysis [17], non-linear approximations of outer rounds [18],... Note
also that the security margin of ICEBERG against linear and differential crypt-
analysis is comparable to the one of Khazad. This is probably more than it is
necessary, as resistance against structural attacks [19, 20] was probably more
determinant in the choice of the number of rounds of Khazad (8), than security
margins against linear and differential cryptanalysis.

Truncated and Impossible Differentials: Truncated differentials were in-
troduced in [21], and impossible differentials in [22, 23]. They typically apply to
ciphers operating on well-aligned data blocks (often bytes), such as Khazad or
the AES (and many others). However our cipher does not enter in this cate-
gory because of the P64 layer, which makes it very difficult to attack this way.
Therefore such an attack on the full 16-round cipher seems very unlikely.

Square Attacks: Like truncated differential attacks, square attacks [19] gen-
erally apply to ciphers operating on well-aligned data blocks. Therefore the P64
layer should prevent them efficiently, at least on more than a few rounds. More
precisely, consider a batch of 256m(m ∈ {1...7}) plaintexts, such that 8 − m
bytes remain constant for all of them (these bytes are said passive), while the
concatenation of the m other bytes takes every possible value (it is said active).
This property is preserved by the γ layer. On the contrary, the P64 layer makes
all bytes garbled (i.e. not active nor passive), which prevents pushing a basic
”square characteristic” further. The same type of argument could be applied to
truncated differential attacks.

Interpolation Attacks: Interpolation attacks [24] are made possible when
the S-box has a simple algebraic structure, allowing to express the cipher as
a sufficiently simple polynomial or rational expression. The diffusion layer also
has a role with this respect. As the S-box of ICEBERG has no simple algebraic
expression, it prevents interpolation attacks for more than a few rounds of our
cipher.

Higher Order Differential Cryptanalysis: It was introduced by Knudsen
in [21], and relies on finding high order differentials being a constant for the
whole cipher. But as the nonlinear order of the S-box we use is maximal, namely
7, we can expect that the maximal value of 63 for the non-linear order of the
cipher is reached after a few rounds of ICEBERG.

Slide Attacks: Slide attacks [25, 26] work against ciphers using a periodic key
schedule. Although the sequence of subkeys produced by the key schedule of
ICEBERG is not periodic, it has a particular structure, namely:

(K0,K1, ..., K7,K8,K7, ..., K0)

The key schedule of the GOST cipher has some similarities with the one of
ICEBERG. Vulnerability of some variants and reduced-round versions of GOST
against slide attacks is examined in [26]. However none of the attacks presented
there seems to be applicable to our cipher.

Related-Key Attacks: The first related-key attack has been described in [27],
and is the related-key counterpart of the slide attack. Let us examine a slightly
simplified version of ICEBERG, where the initial key addition σRK0

1
is replaced

by a normal round ρRK0
1
, and the final σRKR

0
◦ γ is also replaced by a normal

round ρRKR
0
. Then if 2 keys K and K∗ are such that K1=K∗0, and 2 plaintexts

P and P ∗ are such that P ∗ = ρRK0
1
(P), encryption of P under K and of P ∗

under K∗ will process the same way (with a difference of 1 round) during 8
rounds. However then round keys, and hence computation, will differ; therefore
such a related key attack does not work against our key schedule. Forgetting
the simplification we made on the first and last round of ICEBERG, a related-
key attack becomes even more difficult. Differential related-key attacks [28] are
also very unlikely to be applicable to ICEBERG, due to the good diffusion and
nonlinearity of its key schedule.

Weak keys: The design properties of the key round prevent ICEBERG from
having weak keys. The only remarkable property of the key round is in the
selection function Xsel where some symbols are independent of the selection
bit. Namely, hexadecimal input symbols 0, 2, 8, A become 0, C, 3, F regardless of
sel = 0 or sel = 1. However, this point is very unlikely to be an exploitable
weakness.

Biryukov’s observations on Involutional Ciphers: Observations of Biryukov
on Khazad and Anubis [29] remain valid for ICEBERG. However this study could
at best threaten 5 rounds of our cipher, while it is made out of 16 rounds.

Side-channel cryptanalysis: Although cryptosystem designers frequently as-
sume that secret parameters will be manipulated in closed reliable computing
environments, Kocher et al. stressed in 1998 [30] that actual computers and
microchips leak information correlated to the data handled. Side-channel at-
tacks based on time, power and electromagnetic measurements were successfully
applied to smart card implementations of block ciphers. Protecting implementa-
tions against side-channel attacks is usually difficult and expensive. Masking all
the data with random boolean values is suggested in several papers [31, 32] and
the use of small substitution tables allows to implement this efficiently, although
it is still an expensive solution.

The key agility provided by ICEBERG (changing the key at every plaintext block
is for free) also offers interesting opportunities to prevent most side-channel at-
tacks by defining new encryption modes where the key is changed sufficiently
often. As most side-channel attacks need to collect several leakage traces to re-
move the noise from useful information, changing the key frequently, even in
a well chosen deterministic way (e.g. LFSR-based), would make most attacks
somewhat unpractical. Actually, only template attacks [33] allow to extract in-
formation from a single sample but the context is also more specific as they
require that an adversary has access to an experimental device (identical to the
device attacked) that he can program to his choosing.

5 Performance analysis

ICEBERG has been designed in order to allow very efficient reconfigurable hard-
ware implementations, as defined in section 2. For this purpose, we applied the
following design rules:

1. All components easily fit into 4-input LUTs. Practically, ICEBERG is made
of the parallel application of 4-input-bit transforms combined with bit per-
mutations or shifts.

2. All components are involutional so that encryption and decryption can be
made with the same hardware. The only difference between encryption and
decryption is in the selection bit of φsel.

3. The key expansion allows to derive round keys “on-the-fly” in encryption
and decryption modes. There is no need to store the round keys and the key
can be changed in one clock cycle.

4. The scheduling of the algorithm is balanced so that the round and key round
can be made in the same number of clock cycles.

5. The non-linear layer can be efficiently implemented into the RAM blocks
available in most modern FPGAs.

5.1 Hardware implementations

As all components easily fit into 4-input LUTs, we can directly evaluate the
hardware cost of ICEBERG:

Component HW cost (LUTs) Component HW cost (LUTs)

S0, S1 64 τC 128

γ 192 S′ 128

εK 64 Key round βC 384

Round ρK 256 φsel 64

Complete round + key round 704

As a comparison, Khazad needs 576 LUTs for its round and 768 LUTs for its
key round [11], with a more expensive encryption/decryption structure. AES Ri-
jndael is even more critical as its round needs 2608 LUTs and its key round 768
LUTs [12]. Although comparisons between hardware implementations are made
difficult by their high dependency on the design methodology, we may reasonably
expect to have ICEBERG encryption/decryption for the cost of Khazad encryp-
tion only and half the cost of Rijndael encryption, with comparable encryption
rates.

Moreover, the parallel nature of ICEBERG allows to implement every possible
throughput/area tradeoff as well as very efficient pipeline. The maximum pipeline
can be obtained by inserting registers after every LUT which allows to reach an
optimal ratio Nbr of LUTs/Nbr of registers = 1. Loop and unrolled archi-
tectures are easily implementable with LUT-based or RAM-based substitution
boxes. As a consequence, ICEBERG offers various and efficient implementation
opportunities. Its regular structure makes the classical design optimizations eas-
ily reachable. Software efficiency is not a design goal of ICEBERG. It is briefly
discussed in Appendix D.

6 Conclusion

This paper presented the platform-specific encryption algorithm ICEBERG and
the rationale behind its design. ICEBERG is based on a fast involutional structure
in order to provide very efficient hardware implementation opportunities. We
showed the specificity of this type of platform in block cipher design. We also
underlined that the overall structure of a cipher is important for efficiency pur-
poses (for example, in designing rounds and key rounds that can be made in the
same number of clock cycles, or in allowing “on the fly” key derivation in both
encryption and decryption modes). We believe ICEBERG to be as secure as AES
and NESSIE candidates and much more efficient for reconfigurable hardware im-
plementations. ICEBERG also offers free opportunities to defeat most side-channel
attacks by using adequate encryption modes.

Acknowledgements

The authors are grateful to Paulo Barreto for providing valuable comments and
help during the design of ICEBERG.

References

1. NIST Home page, http://csrc.nist.gov/CryptoToolkit/aes/.
2. J.Daemen, V.Rijmen, The Block Cipher Rijndael, Smart Card Research and Appli-

cations, pp 288-296, Springer-Verlag, LNCS 1820, 2000.
3. P.Barreto, V.Rijmen, The KHAZAD Legacy-Level Block Cipher, Submission to

NESSIE project, available from http://www.cosic.esat.kuleuven.ac.be/nessie/
4. M.Matsui, Supporting Document of MISTY1, , Submission to NESSIE project, avail-

able from http://www.cosic.esat.kuleuven.ac.be/nessie/
5. Xilinx: Virtex 2 FPGAs Data Sheet, http://www.xilinx.com.
6. Altera: Stratix 1.5V FPGAs Data Sheet, http://www.altera.com.
7. M.McLoone and J.V.McCanny, High Performance Single Ship FPGA Rijndael Al-

gorithm Implementations, in the proceedings of CHES 2001: The Third Interna-
tional CHES Workshop, Lecture Notes In Computer Science, LNCS2162, pp 65-76,
Springer-Verlag.

8. V.Fischer and M.Drutarovsky, Two Methods of Rijndael Implementation in Re-
configurable Hardware, in the proceedings of CHES 2001: The Third Interna-
tional CHES Workshop, Lecture Notes In Computer Science, LNCS2162, pp 65-76,
Springer-Verlag.

9. A.Satoh et al, A Compact Rijndael Hardware Architecture with S-Box Optimization,
Advances in Cryptology - ASIACRYPT 2001, LNCS 2248, pp239-254, Springer-
Verlag.

10. Helion Technology, High Performance AES (Rijndael) Cores for XILINX FPGA,
http : //www.heliontech.com.

11. F.X.Standaert,G.Rouvroy,J.J.Quisquater,J.D.Legat, Efficient FPGA Implementa-
tions of Block Ciphers KHAZAD and MISTY1, in the proceedings of the Third
NESSIE Workshop, November 6-7 2002, Munich, Germany.

12. F.X.Standaert,G.Rouvroy,J.J.Quisquater,J.D.Legat, A Methodology to Implement
Block Ciphers in Reconfigurable Hardware and its Application to Fast and Compact
AES Rijndael, in the proceedings of FPGA 2003: the Field Programmable Logic
Array Conference, February 23-25 2003, Monterey, California.

13. E.Biham, A.Shamir, Differential cryptanalysis of DES-like cryptosystems (Ex-
tended abstract), Proceedings of Crypto 90, pp 2-21, Springer-Verlag, LNCS 537,
1990.

14. M.Matsui, Linear cryptanalysis method for DES cipher, Proceedings of EuroCrypt
93, pp 386-397, Springer-Verlag, LNCS 765, 1993.

15. D.Wagner, The Boomerang Attack, Proceedings of FSE 99, pp 156-170, Springer-
Verlag, LNCS 1636, 1999.

16. E.Biham, O.Dunkelman, N.Keller, The rectangle Attack - Rectangling the Serpent,
Proceedings of Eurocrypt 2001, pp 340-357, Springer-Verlag, LNCS 2045, 2001.

17. B.S.Kaliski, M.J.B.Robshaw, Linear Cryptanalysis using Multiple Approximations,
Proceedings of Crypto 94, pp.26-39, Springer-Verlag, LNCS 0839, 1994.

18. L.Knudsen, M.J.B.Robshaw, Non-Linear Approximations in Linear Cryptanalysis,
Proceedings of Eurocrypt 96, pp 224-236, Springer-Verlag, LNCS 1070, 1996.

19. J.Daemen, L.Knudsen, V.Rijmen, The Block Cipher SQUARE, Proceedings of FSE
1997, pp 149-165, Springer-Verlag, LNCS 1267, 1999.

20. N.Ferguson, J.Kelsey, S.Lucks, and al., Improved Cryptanalysis of Rijndael, Pro-
ceedings of FSE 2000, pp 213-230, Springer-Verlag, LNCS 1978, 2000.

21. L.Knudsen, Truncated and Higher Order Differentials, Proceedings of FSE 94, pp
196-211, Springer-Verlag, LNCS 1008, 1995.

22. E.Biham, A.Biryukov and A.Shamir, Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials, Proceedings of Eurocrypt 99, pp 12-23,
Springer-Verlag, LNCS 1592, 1999.

23. E.Biham, A.Biryukov and A.Shamir, Miss in the Middle Attacks on IDEA, Khufu,
and Khafre, Proceedings of FSE 99, pp 124-138, Springer-Verlag, LNCS 1636, 1999.

24. T.Jakobsen and L.Knudsen, The Interpolation Attack on Block Ciphers, Proceed-
ings of FSE 97, pp 28-40, Springer-Verlag, LNCS 1267, 1997.

25. A.Biryukov, D.Wagner, Slide Attacks, Proceedings of FSE’99, pp 245-259, Springer
Verlag, LNCS 1636, 1999.

26. A.Biryukov, D.Wagner, Advanced Slide Attacks, Proceedings of Eurocrypt 00, pp
589-606, Springer Verlag, LNCS 1807, 2000.

27. E.Biham, New Type of Cryptanalytic Attacks Using Related Key, Proceedings of
Eurocrypt 93, pp 229-246, Springer-Verlag, LNCS 765, 1994.

28. J.Kelsey, B.Schneier, D.Wagner, Related-Key Cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA, Proceedings of AusCrypt’92, pp
196-208, Springer-Verlag, LNCS 718, 1993.

29. A.Biryukov, Analysis of Involutional Ciphers: Khazad and Anubis, Proceedings of
FSE 2003, Springer-Verlag, to appear.

30. P.Kocher, J.Jaffe, B.Jun, Differential Power Analysis, in the proceedings of
CRYPTO 99, Lecture Notes in Computer Science 1666, pp 398-412, Springer-Verlag.

31. L.Goubin,J.Patarin, DES and Differential Power Analysis: The Duplication
Method, in the proceedings of CHES 1999, Lecture Notes in Computer Science 1717,
pp 158-172, Springer-Verlag.

32. S.Chari et al., Towards Sound Approaches to Counteract Power-Analysis Attacks,
in the proceedings of CRYPTO 1999, Lecture Notes in Computer Science 1666, pp
398-412, Springer-Verlag.

33. S.Chari, J.Rao, P.Rohatgi, Template Attacks, in the proceedings of CHES 2002,
Lecture Notes in Computer Science 2523, pp 13-28, Springer-Verlag.

34. A.Pfitzmann,R.Aβmann, More Efficient Software Implementations of (General-
ized) DES, Institut fur Rechnerent und Fehlertoleranz, Univ.Karlsruhe, Interner
Bericht 18/90.

35. E.Biham, A Fast New DES Implementation in Software, Technion - Computer
Science Department, Technical Report CS0891 - 1997.

36. A.M.Youssef, S.E.Tavares, H.Heys, A New Class of Substitution-Permutation Net-
works, Proceedings of Selected Areas in Cryptography (SAC 96), pp 132-147, 1996.

37. H.M. Heys, S.E. Tavares, Known Plaintext Cryptanalysis of Tree-Structured Block
Ciphers, Electronics Letters, Vol. 31, pp 784-785, May 1995.

38. L.Knudsen, Block Ciphers - Analysis, Design and Applications, Doctoral Disserta-
tion, DAIMI PB 485, Aarhus University, Denmark, 1994.

39. J.Daemen, Cipher and Hash Function Design, Doctoral Dissertation, March 1995,
KULeuven.

40. V.Rijmen, Cryptanalysis and Design of Iterated Block Ciphers, Doctoral Disserta-
tion, October 1997, KULeuven.

A Proof of theorem 1.

We have to prove that P4◦σRK1 ◦M ≡
M ◦ σRK0 ◦ P4. Inputs and outputs of
every transform are represented in Fig-
ure 4. We simply write down relations
between them. First we encrypt with
RK1:

M

P4

Encryption Decryption

a

b

c

d

e

f

g

M

P4

d

1RK 0RK

Fig. 4. Theorem 1.

b0 = a1 ⊕ a2 ⊕ a3

b1 = a0 ⊕ a2 ⊕ a3

b2 = a0 ⊕ a1 ⊕ a3

b3 = a0 ⊕ a1 ⊕ a2

c0 = a1 ⊕ a2 ⊕ a3 ⊕ k0 ⊕ k1 ⊕ k2

c1 = a0 ⊕ a2 ⊕ a3 ⊕ k1 ⊕ k2

c2 = a0 ⊕ a1 ⊕ a3 ⊕ k2 ⊕ k3 ⊕ k0

c3 = a0 ⊕ a1 ⊕ a2 ⊕ k3 ⊕ k0

d0 = a0 ⊕ a2 ⊕ a3 ⊕ k1 ⊕ k2

d1 = a1 ⊕ a2 ⊕ a3 ⊕ k0 ⊕ k1 ⊕ k2

d2 = a0 ⊕ a1 ⊕ a2 ⊕ k3 ⊕ k0

d3 = a0 ⊕ a1 ⊕ a3 ⊕ k2 ⊕ k3 ⊕ k0

Then, when we decrypt with RK0:

e0 = d1 ⊕ d2 ⊕ d3 = a1 ⊕ k0 ⊕ k1

e1 = d0 ⊕ d2 ⊕ d3 = a0 ⊕ k1

e2 = d0 ⊕ d1 ⊕ d3 = a3 ⊕ k2 ⊕ k3

e3 = d0 ⊕ d1 ⊕ d2 = a2 ⊕ k3

From (16), we have:

f0 = a1

f1 = a0

f2 = a3

f3 = a2

And finally, permutation P4 finishes the
decryption:

g0 = a0

g1 = a1

g2 = a2

g3 = a3

Remark that permutation P4 allows the
selection function Xsel to be efficiently
implemented in LUTs as it has at most
4 inputs: 3 key bits and a selection bit.

B Tables.

0 1 2 3

1 0 3 2

Table 1. p4.

0 1 2 3 4 5 6 7

0 1 4 5 2 3 6 7

Table 2. p8.

0 1 2 3 4 5 6 7 8 9 a b c d e f

d 7 3 2 9 a c 1 f 4 5 e 6 0 b 8

Table 3. s0.

0 1 2 3 4 5 6 7 8 9 a b c d e f

4 a f c 0 d 9 b e 6 1 7 3 5 8 2

Table 4. s1.

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 e d 3 b 5 6 8 7 9 a 4 c 2 1 f

Table 5. D.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 24 c1 38 30 e7 57 df 20 3e 99 1a 34 ca d6 52 fd

10 40 6c d3 3d 4a 59 f8 77 fb 61 0a 56 b9 d2 fc f1

20 07 f5 93 cd 00 b6 62 a7 63 fe 44 bd 5f 92 6b 68

30 03 4e a2 97 0b 60 83 a3 02 e5 45 67 f4 13 08 8b

40 10 ce be b4 2a 3a 96 84 c8 9f 14 c0 c4 6f 31 d9

50 ab ae 0e 64 7c da 1b 05 a8 15 a5 90 94 85 71 2c

60 35 19 26 28 53 e2 7f 3b 2f a9 cc 2e 11 76 ed 4d

70 87 5e c2 c7 80 b0 6d 17 b2 ff e4 b7 54 9d b8 66

80 74 9c db 36 47 5d de 70 d5 91 aa 3f c9 d8 f3 f2

90 5b 89 2d 22 5c e1 46 33 e6 09 bc e8 81 7d e9 49

a0 e0 b1 32 37 ea 5a f6 27 58 69 8a 50 ba dd 51 f9

b0 75 a1 78 d0 43 f7 25 7b 7e 1c ac d4 9a 2b 42 e3

c0 4b 01 72 d7 4c fa eb 73 48 8c 0c f0 6a 23 41 ec

d0 b3 ef 1d 12 bb 88 0d c3 8d 4f 55 82 ee ad 86 06

e0 a0 95 65 bf 7a 39 98 04 9b 9e a4 c6 cf 6e dc d1

f0 cb 1f 8f 8e 3c 21 a6 b5 16 af c5 18 1e 0f 29 79

Table 6. 8 x 8 substitution box.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 23 25 38 42 53 59 22 9 26 32 1 47 51 61

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

24 37 18 41 55 58 8 2 16 3 10 27 33 46 48 62

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

11 28 60 49 36 17 4 43 50 19 5 39 56 45 29 13

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

30 35 40 14 57 6 54 20 44 52 21 7 34 15 31 63

Table 7. P64.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

76 110 83 127 67 114 92 97 98 65 121 106 78 112 91 82

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

71 101 89 126 72 107 81 118 90 124 73 88 64 104 100 85

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

109 87 75 113 120 66 103 115 122 108 95 69 74 116 80 102

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

84 96 125 68 93 105 119 79 123 86 70 117 111 77 99 94

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

28 9 37 4 51 43 58 16 20 26 44 34 0 61 12 55

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

46 22 15 2 48 31 57 33 27 18 24 14 6 52 63 42

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

49 7 8 62 30 17 47 38 29 53 11 21 41 32 1 60

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

13 35 5 39 45 59 23 54 36 10 40 56 25 50 19 3

Table 8. P128.

C Generation of the ICEBERG S-box [3]

As P8 is fixed, the only part of the ICEBERG S-box structure still unspecified
consists of the s0 and s1 involutions, which are generated pseudo-randomly in a
verifiable way.

The searching algorithm starts with two copies of a simple involution without
fixed points (namely, the negation mapping u 7→ ū = u ⊕ 0xF), and pseudo-
randomly derives from each of them a sequence of 4 × 4 substitution boxes
(“mini-boxes”) with the optimal values δ = 1/4, λ = 1/2, and ν = 3. At each
step, in alternation, only one of the sequences is extended with a new mini-box.
The most recently generated mini-box from each sequence is taken, and the pair
is combined according to the ICEBERG S-box shuffle structure; finally, the result-
ing 8× 8 S-box, if free of fixed points, is tested for the design criteria regarding
δ, λ, and ν.

Given a mini-box at any point during the search, a new one is derived from
it by choosing two pairs of mutually inverse values and swapping them, keeping
the result an involution without fixed points; this is repeated until the running
mini-box has optimal values of δ, λ, and ν.

The pseudo-random number generator is implemented using the AES cipher
Rijndael in counter mode, with a fixed key consisting of 128 zero bits and an
initial counter value consisting of 128 zero bits.

The following pseudo-code fragment illustrates the computation of the chains
of mini-boxes and the resulting S-box:

procedure ShuffleStructure(s0, s1)
for w ← 0 to 255 do

u0 ← s0[w À 4]; v0 ← s0[w & 0x0F];
u1 ← (u0 & 0xC) | ((v0 & 0xC) À 2); v1 ← (v0 & 0x3) | ((u0 & 0x3) ¿ 2);
u0 ← s1[u1]; v0 ← s1[v1];
u1 ← (u0 & 0xC) | ((v0 & 0xC) À 2); v1 ← (v0 & 0x3) | ((u0 & 0x3) ¿ 2);
S[w] ← (s0[u1] ¿ 4) | s0[v1];

end for
return S;

end procedure

procedure SearchRandomSBox()
// initialize mini-boxes to the negation involution:
for u ← 0 to 255 do

s0[u] ← ū; s1[u] ← ū;
end for
// look for S-box conforming to the design criteria:
repeat

// swap mini-boxes (update the “older” one only)
s0 ↔ s1;
// randomly generate a “good” GF(24) involution free of fixed points:

repeat
repeat

// randomly select x and y such that
// x 6= y and s1[x] 6= y (this implies s1[y] 6= x):
z ← RandomByte(); x ← z À 4; y ← z & 0x0F;

until x 6= y ∧ s1[x] 6= y;
// swap entries:
u ← s1[x]; v ← s1[y];
s1[x] ← v; s1[u] ← y;
s1[y] ← u; s1[v] ← x;

until δ(s1) = 1/4 ∧ λ(s1) = 1/2 ∧ ν(s1) = 3;
// build S-box from the mini-boxes:
S ← ShuffleStructure(s0, s1);
// test the design criteria:

until #FixedPoints(S) = 0 ∨ δ(S) 6 2−5 ∧ λ(S) 6 2−2 ∧ ν(S) = 7;
return S;

end procedure

D Software implementations

Software efficiency is not a design goal of ICEBERG. Nevertheless, its round func-
tion may be implemented using a table lookup approach as it is suggested in [34]
and is therefore comparable to the one of Khazad. The key expansion of ICEBERG
is actually its most critical part as a lookup table implementation requires sep-
arate tables for transforms τC ◦ P128 and transforms S′ ◦ P128 ◦ τC . Note that
ICEBERG is also susceptible to be implemented in bitslice mode as suggested in
[35].

If a software-efficient key schedule is wanted, an alternative key round based
on a small Feistel structure can be used, illustrated in Figure 5. We just use a

P64 S

6464

Fig. 5. A modified ρK .

conditional switch of the two 64-bit vectors so that we can encrypt during half
the rounds and decrypt afterwards in order to satisfy Equation (19). This will
only slightly affect hardware performances (an additional multiplexor is neces-
sary to select the round keys).

