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Abstract

We characterize the solutions of the equation
D(G(z,y), G(u,v)) = G(D(z,u), T(y,v)), (1)

where D, G and T are quasigroups. We also discuss the particular case when D =T.

1 Introduction and Notations

A quasigroup on a set @) is an operation (-) : @ X @ — @ such that for any a,b € @, there
are unique x,y such that a-x = b and y - a = b. In this paper, we use small letters for
elements of () and capital letters for quasigroups. We use greek letters for permutations on
Q. If x € @ and « is a permutation on @), we write a(z) for the image of x by or. We write
Ba for the composition of o and [, where « is applied first.

Two quasigroups @ and ® on a same set () are isotopic if there exist three permutations
a, 3,7 of @ such that for any z,y € Q, we have x @ y = (za @ yB)y~!. When (Q,+) is
an Abelian group and « is a permutation on (), we say that « is additive for + if for any
z,y € @, we have a(x + y) = a(z) + a(y). When « and f are two permutations on the
same set ), we say that o and  commute if for all z € @, we have af3(z) = fa(z).

Functional equations on quasigroups have been previously considered in [I, 2, B]. In [I],
Aczél, Belousov and Hosszu studied various quasigroup equations, including the generalized
bisymmetry equation:

A(B(z,y), C(u,v)) = D(E(z,u), F(y,v)).

They showed that for any solution of this equation, all the quasigroups A, B,C, D, E, F
are isotopic to the same Abelian group. Here, we show that the additional constraints
B =C =D, A= FE imply some additivity and commutativity properties.
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2 Our Results

Let G, D, T satisfying . From Theorem 3 in Aczél, Belousov, Hosszu [I], there exist an
Abelian group + and 6 permutations ¥, €, d, ¢, 3,7 such that:

G(z,y) = (@) +ely), D(z,y)=0d(x)+¢y), T(ry)=c (Bx)+7(). (2)
Let — be such that x +y = 2z < © = 2z — y, and let e be the neutral element of +.
Proposition 1 Let G, D, T be three quasigroups. These quasigroups satisfy
D(G(x,y), G(u,v)) = G(D(x,u), T(y, v))

if and only if there exist an Abelian group +, two constants ki, ke and four permutations
¥, 0,p, € such that the three permutations v, & and ¢ are additive for +, the permutation
commutes with both 6 and @, and:

where ks == d(ky) + @(k1) — k1 + ko — ¥ (ks).
When we additionally impose T' = D, we get:
Proposition 2 Let G, D be two quasigroups. These quasigroups satisfy:
D(G(z,y), G(u,v)) = G(D(x,u), D(y,v)) (3)

if and only if there exist an Abelian group +, two constants ki, ke and four permutations
w 5, O, €, all of them additive for +, such that both w and & commute with both 6 and Qp:

O(k1) 4 p(k1) + ko = (ko) + é(ka) + K,
and:

Gla,y) = )
D(e,y) = b(a)

3 Proof of Proposition

Proving that any G, D, T defined as in Proposition satisfy Equation is a straighforward
check. We now prove that any solution of Equation is as in Proposition .
From Equations and , we get:

6(v(z) + e(y)) + e(U(u) + €(v)) =P (d(z) + ¢(u)) + B(y) + 7(v). (4)
When x = 17 (e), Equation (4)) gives:

de(y) — Bly) = v (Y~ (e) + @(w)) +v(v) — P(U(u) + €(v)).



Since this equation must be satisfied for any y, u, v, the left and right terms must be equal
to a constant value ¢;. We deduce:

de(y) — By) = c1. (5)
Taking y = 871(e), we get:
c, = 63 (e).
Similarly when u = ¢~!(e), Equation (4]) gives:
pe(v) = v(v) = () + P~ (e)) + Bly) — d(d(x) + e(y)),

hence:
pe(v) = v(v) = e, (6)
where:
ca = ey (e).
Susbtituting Equations and @ in Equation (4)), we get:
0((x) + €(y) + e(P(u) + €(v) = Y(o(x) + (u)) + de(y) — c1 + e(v) — ca.

We deduce the following functional equation in ¢, ¥ and ¢ only:

0(p(x) +y) + (Y (u) +v) = P(0(x) + ¢(u)) + (y) + ¢(v) — 1 = ¢a. (7)

Taking v = e and z = §~1(e), we get:

Dp(u) — py(u) =8 (V67 (e) +y) — d(y) — ple) + 1 + ez,
which implies:
bo(u) — ph(u) = cs, (8)
where:
c3 = ey o (e).
Similarly substituting y = e and u = ¢~ !(e) in Equation (7)), we get:
bo(x) = 0v(z) = ¢ (Y™ (e) +v) — d(e) — p(v) + 1 + e,

which implies:

Vo(z) — 0y () = ca, (9)
where:

cy = Pop~to 7 e).
Equation may be re-written as:
S0 2)+ 07 y)+e (e (w) + ¢ (v) =v (06 (@) + e o H(w) +y+v—ci—co.
Using Equations and @I}, this leads to:

007 @) + 67 () T (¢ (W) + 97 (V) = ¢ (VT @+ a) YT (ut ) Fytu—a—o.

(10)
Since + is Abelian, we can swap x and y or u and v without changing the left-hand term of
Equation (10). We therefore obtain the following functional equation in ¢ only:

YW e®e)+ v (ud ) tyto=¢ W (YD) +v (v )+ +u.
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Replacing = by 1(z) — ¢4, u by ¥(u) — c3, y by ¥(y) — ¢4 and v by ¢(v) — c3, we get:
Uz +u) —(x) — o) = vy +v) —v(y) — ¥(v),
hence:
Y(r @ u) = () = P(u) = ¢, (11)
for a constant cs such that:
¢s =Ple+e) —le) —v(e) =e—v(e).
Using Equation , Equation becomes:

06 @)+ () + el (W) + 9T (V) =a+ytut vt e —dle) —a—e,

or:
0z +y) —0(x) = 6(y) = (u) + ¢(v) —p(u+v) + cs+ 3 — P(e) — c1 — ca. (12)

This implies:

6(z +y) —o(x) = d(y) = cs, (13)
where cg = e © §(e). On the other hand, Equation also implies:

p(u) + ¢(v) = p(u+v) = cr, (14)
where ¢; = p(e). Let now: )

Y =1 —1p(e)

Equation implies
d(x @ u) = Pz & u) —(e) = () + ¥(u) — 20(e) = P (z) + 9 (u), (15)

in other words @/AJ is additive for 4. Similarly, Equations and imply that §:=08-6 (e)
and ¢ := ¢ — ¢(e) are additive. Equation and the additivity of ¢ and ¢ now imply:

P () + Pple) + 1(e) = ¢i(u) + @e) + p(e) + cs.
For u = e, it follows that:
vep(e) +1(e) = pvo(e) + p(e), +es
hence Equation () eventually implies that:
P (u) = ¢ib(w),

in other words ’QZAJ and ¢ commute. Similarly, Equation @ implies that 1[) and 4 commute.

By Equations and @, we have:
B(x) +7(y) = de(x) — c1 + e(y) — 2 = be(x) + Ge(y) + d(e) + @le) — e1 — ca.

Defining k1 := ¢(e), ko := d(e) + p(e) and k3 := d(e) + ¢(e) — ¢1 — 2, we deduce from
Equation that:

Gla,y) = () +ely) + b
D(z,y) = o(z) +(y) + ko,
T(ay) = " (ela) +pely) + ks)



with 1@, 6 and ¢ with the properties required. Using the additivity of 5, ¢ and 1/;, we
compute:

D(G(z,y), Glu,0)) = § (D) +ely) + k1) + ¢ (bw) + e(0) + ky) + o,
= 0Y(x +6e( )+5(k;1) + @(u) + Qe(v) + P(k1) + k2,
and.:
G(D(w,u), T(y,v)) = & (3(z) + @(w) + k2) + (ely) + Pe(v) + ks) + ki,
= po(x) +d(u) + P (ka) + oe(y) + Pe(v) + ks + k1.
Since ¢) commutes with both ¢ and 4§, we deduce:

G(D(x,u), T(y,v)) = d(x)+
= D(G(z,y),

~ ~

(u) + w(kg) + 0e(y) + @e(v) + ks + ki,
Equation then implies:

=0(k1) +@(k1) — k1 + ko — @Zj(kz)

This concludes the proof of Proposition [I]

4 Proof of Proposition

Proving that any G, D, T defined as in Proposition [2| satisfy Equation (3] is a straighfor-
ward check. We now prove that any solution of Equation is as in Proposition By
Proposition [I}, we have:

G(z,y) = (@) +ly) + ki,  Dlx,y) =0(x) + 4y) + ks

for permutations w, , 0, € such that w, 5 and @ are additive for +, and moreover w commutes
with both & and . By symmetry of D and G in Equation (3)), ¢ must also be distributive for
+ and it must commute with both ¢ and . As in the proof of Proposition (1, we compute:

D(G(w,y), G(u,v)) = 60(x) + Se(y) + 6 (k1) + po(u) + pe(v) + (k1) + ka.
Similarly, we have:
G(D(w,y), D(u,v)) = $d(x) +vp(w) + §(ks) + € (y) + ep(v) + é(ka) + k.
Equation (3] then leads to:
O(ky) + @(ky) + ko = th(ks) + (k) + k1.

This concludes the proof of Proposition 2]
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