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Abstract. Evaluating side-channel attacks and countermeasures requires
determining the amount of information leaked by a target device. For this
purpose, information extraction procedures published so far essentially
combine a “leakage model” with a “distinguisher”. Fair evaluations ide-
ally require exploiting a perfect leakage model (i.e. exactly corresponding
to the true leakage distribution) with a Bayesian distinguisher. But since
such perfect models are generally unknown, density estimation tech-
niques have to be used to approximate the leakage distribution. This
raises the fundamental problem that all security evaluations are poten-
tially biased by both estimation and assumption errors. Hence, the best
that we can hope is to be aware of these errors. In this paper, we provide
and implement methodological tools to solve this issue. Namely, we show
how sound statistical techniques allow both quantifying the leakage of a
chip, and certifying that the amount of information extracted is close to
the maximum value that would be obtained with a perfect model.

1 Introduction

Side-channel attacks aim to extract secret information from cryptographic im-
plementations. For this purpose, they essentially compare key-dependent leakage
models with actual measurements. As a result, models that accurately describe
the target implementation are beneficial to the attack’s efficiency.

In practice, this problem of model accuracy is directly reflected in the various
distinguishers that have been published in the literature. Taking prominent ex-
amples, non-profiled Correlation Power Analysis (CPA) usually takes advantage
of an a-priori (e.g. Hamming weight) leakage model [3]. By contrast, profiled
Template Attacks (TA) take advantage of an offline learning phase in order to
estimate the leakage model [5]. But even in the latter case, the profiling method
is frequently based on some assumptions on the leakage distribution (e.g. that
the noise is Gaussian). Furthermore, the model estimation can also be bounded
by practical constraints (e.g. in terms of number of measurements available in
the learning phase). Following these observations, the question “how good is my
leakage model?” has become a central one in the analysis of side-channel attacks.
In other words, whenever trying to quantify the security of an implementation,
the goal is to reflect the actual target - not the evaluators’ assumptions. There-
fore, the main challenge for the evaluator is to avoid being biased by an incorrect
model, possibly leading to a false sense of security (i.e. an insecure cryptographic
implementation that would look secure in front of one particular adversary).



More formally, the relation between accurate leakage models and fair security
analyses is also central in evaluation frameworks such as proposed at Eurocrypt
2009 [18]. In particular, this previous work established that the leakage of an
implementation (or the quality of a measurement setup) can be quantified by
measuring the Mutual Information (MI) between the secret cryptographic keys
manipulated by a device and the actual leakage produced by this device. Un-
fortunately, the design of unbiased and non-parametric estimators for the MI
is a notoriously hard problem. Yet, since the goal of side-channel attacks is to
use the “best available” models in order to recover information, a solution is to
estimate the MI based on these models. This idea has been precised by Renauld
et al. with the notion of Perceived Information (PI) - that is nothing else than
an estimation of the MI biased by the side-channel adversary’s model [15]. Intu-
itively, the MI captures the worst-case security level of an implementation, as it
corresponds to an (hypothetical) adversary who can perfectly profile the leakage
Probability Density Function (PDF). By contrast, the PI captures its practical
counterpart, where actual estimation procedures are used to profile the PDF.

Our contribution. The previous formal tools provide a sound basis for dis-
cussing the evaluation question “how good is my leakage model?”. The answer
to this question actually corresponds to the difference between the MI and the
PI. Nevertheless, we remain with the problem that the MI is generally unknown
(just as the actual leakage PDF), which makes it impossible to compute this dif-
ference directly. Interestingly, we show in this paper that it is possible to perform
sound(er) security analyses, where the approximations used by the side-channel
evaluators are quantified, and their impact on security is kept under control.

In this context, we start with the preliminary observation that understanding
these fair evaluation issues requires to clearly distinguish between estimation er-
rors and assumption errors, leading to three main contributions. First, we show
how cross–validation can be used in order to precisely gauge the convergence of
an estimated model. Doing so, we put forward that certain evaluation metrics
(e.g. Pearson’s correlation or PI) are better suited for this purpose. Second, we
propose a method for measuring assumption errors in side-channel attacks, tak-
ing advantage of the distance sampling technique introduced in [20]. We argue
that it allows detecting imperfect hypotheses without any knowledge of the true
leakage distribution1! Third, we combine these tools in order to determine the
probability that a model error is due to estimation or assumption issues. We
then discuss the (im)possibility to precisely (and generally) bound the result-
ing information loss. We also provide pragmatic guidelines for physical security
evaluators. For illustration, we apply these contributions to actual measurements
obtained from an AES implementation in an embedded microcontroller. As a re-
sult and for the first time, we are able to certify that the leakage of a chip (i.e.
its worst-case security level) is close to the one we are able to extract.

1 By contrast, the direct solution for quantifying the PI/MI distance would be to
compute a statistical (e.g. Kullback-Leibler) distance between the adversary’s model
and the actual leakages. But it requires knowing the true leakage distribution.



These results have implications for the certification of any cryptographic
product against side-channel attacks - as they provide solutions to guarantee that
the evaluation made by laboratories is based in sound assumptions. They could
also be used to improve the comparison of measurement setups such as envisioned
by the DPA contest v3 [6]. Namely, this contest suggests comparing the quality
of side-channel measurements with a CPA based on an a-priori leakage model.
But this implies that the best traces are those that best comply with this a-
priori, independent of their true informativeness. Using the PI to compare the
setups would already allow each participant to choose his leakage assumptions.
And using the cross–validation and distance sampling techniques described in
this work would allow determining how relevant these assumptions are.

Notations. We use capital letters for random variables, small caps for their
realizations, sans serif fonts for functions and calligraphic letters for sets.

2 Background

2.1 Measurement setups

Our experiments are based on measurements of an AES Furious implementation2

run by an 8-bit Atmel AVR (AtMega 644p) microcontroller at a 20 MHz clock
frequency. Since the goal of this paper is to analyze leakage informativeness and
model imperfections, we compared traces from three different setups. First, we
considered two types of “power-like” measurements. For this purpose, we moni-
tored the voltage variations across both a 22 Ω resistor and a 2 µH inductance
introduced in the supply circuit of our target chip. Second, we captured the elec-
tromagnetic radiation of our target implementation, using a Rohde & Schwarz
(RS H 400-1) probe - with up to 3 GHz bandwidth - and a 20 dB low-noise am-
plifier. Measurements were taken without depackaging the chip, hence providing
no localization capabilities. Acquisitions were performed using a Tektronix TDS
7104 oscilloscope running at 625 MHz and providing 8-bit samples. In practice,
our evaluations focused on the leakage of the first AES master key byte (but
would apply identically to any other enumerable target). Leakage traces were
produced according to the following procedure. Let x and s be our target input
plaintext byte and subkey, and y = x ⊕ s. For each of the 256 values of y, we
generated 1000 encryption traces, where the rest of the plaintext and key was
random (i.e. we generated 256 000 traces in total, with plaintexts of the shape
p = x||r1|| . . . ||r15, keys of the shape k = s||r16|| . . . ||r30, and the ri’s denoting
uniformly random bytes). In order to reduce the memory cost of our evalua-
tions, we only stored the leakage corresponding to the 2 first AES rounds (as
the dependencies in our target byte y = x ⊕ s typically vanish after the first
round, because of the strong diffusion properties of the AES). In the following,
we will denote the 1000 encryption traces obtained from a plaintext p including
the target byte x under a key k including the subkey s as: AESks(px) liy (with

2 Available at http://point-at-infinity.org/avraes/.



i ∈ [1; 1000]). Furthermore, we will refer to the traces produced with the resistor,
inductance and EM probe as lr,iy , ll,iy and lem,iy . Eventually, whenever accessing

the points of these traces, we will use the notation liy(j) (with j ∈ [1; 10 000],
typically). These subscripts and superscripts will omitted when not necessary.

2.2 Evaluation metrics

In this subsection, we recall a few evaluation metrics that have been introduced
in previous works on side-channel attacks and countermeasures.

Correlation coefficient (non-profiled). In view of the popularity of the CPA
distinguisher in the literature, a natural candidate evaluation metric is Pear-
son’s correlation coefficient. In a non-profiled setting, an a-priori (e.g. Hamming
weight) model is used for computing the metric. The evaluator then estimates
the correlation between his measured leakages and the modeled leakages of a
target intermediate value. In our AES example and targeting an S-box output,
it would lead to ρ̂(LY ,model(Sbox(Y ))), where the “hat” notation is used to
denote the estimation of a statistic. In practice, this estimation is performed by
sampling (i.e. measuring) Nt “test” traces from the leakage distribution LY . In
the following, we will denote the set of these Nt test traces as LtY .

Correlation coefficient (profiled). In order to avoid possible biases due to an
incorrect a-priori choice of leakage model, a natural solution is to extend the pre-
vious proposal to a profiled setting. In this case, the evaluator will start by build-
ing a model from Np “profiling” traces. We denoted this step as ˆmodelρ ← LpY
(with LpY ⊥⊥ LtY ). In practice, it is easily obtained by computing the sample mean
values of the leakage points corresponding to the target intermediate values.

Signal-to-Noise Ratio (SNR). Yet another solution put forward by Mangard
is to compute the SNR of the measurements [13], defined as:

ˆSNR =
v̂ary(Êi(L

i
y))

Êy(v̂ari(Liy))
,

where Ê and v̂ar denote the sample mean and variance of the leakage variable,
that are estimated from the Nt traces in LtY (like the correlation coefficient).

Perceived information. Eventually, as mentioned in introduction the PI can
be used for evaluating the leakage of a cryptographic implementation. Its sample
definition (that is most useful in evaluations of actual devices) is given by:

P̂I(S;X,L) = H[S]−
∑
s∈S

Pr[s]
∑
x∈X

Pr[x]
∑
liy∈Lt

Y

Prchip[l
i
y|s, x]. log2 P̂rmodel[s|x, liy],

where P̂rmodel ← LpY . As already observed in several works, the sum over s is
redundant whenever the target operations used in the attack follows a group
operation (which is typically the case of a block cipher key addition).



Under the assumption that the model is properly estimated, it is shown in [12]
that the three latter metrics are essentially equivalent in the context of standard
univariate side-channel attacks (i.e. exploiting a single leakage point liy(j) at a
time). By contrast, only the PI naturally extends to multivariate attacks [19]. It
can be interpreted as the amount of information leakage that will be exploited
by an adversary using an estimated model. So just as the MI is a good predictor
for the success rate of an ideal TA exploiting the perfect model Prchip, the PI
is a good predictor for the success rate of an actual TA exploiting the “best
available” model P̂rmodel obtained through the profiling of a target device.

2.3 PDF estimation methods

Computing metrics such as the PI defined in the previous section requires one
to build a probabilistic leakage model P̂rmodel for the leakage behavior of the
device. We now describe a few techniques that can be applied for this purpose.

Gaussian templates. The seminal TA in [5] relies on an approximation of the
leakages using a set of normal distributions. That is, it assumes that each inter-
mediate computation generates samples according to a Gaussian distribution. In
our typical scenario where the targets follow a key addition, we consequently use:
P̂rmodel[ly|s, x] ≈ P̂rmodel[ly|s ⊕ x] ∼ N (µy, σ

2
y). This approach simply requires

estimating the sample means and variances for each value of y = x ⊕ s (and
mean vectors / covariance matrices in case of multivariate attacks).

Regression-based models. To reduce the data complexity of the profiling, an
alternative approach proposed by Schindler et al. is to exploit Linear Regres-
sion (LR) [16]. In this case, a stochastic model θ̂(y) is used to approximate the
leakage function and built from a linear basis g(y) = {g0(y), ..., gB−1(y)} cho-
sen by the adversary/evaluator (usually gi(y) are monomials in the bits of y).

Evaluating ˆθ(y) boils down to estimating the coefficients αi such that the vec-

tor θ̂(y) =
∑
j αjgj(y) is a least-square approximation of the measured leakages

Ly. In general, an interesting feature of such models is that they allow trading
profiling efforts for online attack complexity, by adapting the basis g(y). That
is, a simpler model with fewer parameters will converge for smaller values of Np,
but a more complex model can potentially approximate the real leakage func-
tion more accurately. Compared to Gaussian templates, another feature of this
approach is that only a single variance (or covariance matrix) is estimated for
capturing the noise (i.e. it relies on an assumption of homoscedastic errors).

Histograms and Kernels. See appendix A.

3 Estimation errors and cross–validation

Estimating the PI from a leaking implementation essentially holds in two steps.
First, a model has to be estimated from a set of profiling traces LpY : P̂rmodel ←
LpY . Second, a set of test traces LtY is used to estimate the perceived informa-
tion, corresponding to actual leakage samples of the device (i.e. following the



true distribution Prchip[l
i
y|s, x]). As a result, two main model errors can arise.

First, the number of traces in the profiling set may be too low to estimate the
model properly. This corresponds to the estimation errors that we analyze in this
section. Second, the model P̂rmodel may not be able to predict the distribution
of samples in the test set, even after intensive profiling. This corresponds to the
assumption errors that will be analyzed in the next section. In both cases, such
model errors will be reflected by a divergence between the PI and MI.

In order to verify that estimations in a security evaluation are sufficiently
accurate, the standard solution is to exploit cross–validation. In general, this
technique allows gauging how well a predictive (here leakage) model performs in
practice [10]. In the rest of the paper, we use 10-fold cross–validations for illus-
tration (which is commonly used in the literature [9]). What this means is that

the set of acquired traces LY is first split into ten (non overlapping) sets L(i)
Y of

approximately the same size. Let us define the profiling sets Lp,(j)Y =
⋃
i 6=j L

(i)
Y

and the test sets Lt,(j)Y = LY \ Lp,(j)Y . The sample PI is then repeatedly com-
puted ten times for 1 ≤ j ≤ 10 as follows. First, we build a model from a profiling

set: P̂r
(j)

model ← L
p,(j)
Y . Then we estimate P̂I

(j)
(S;X,L) with the associated test

set Lt,(j)Y . Cross–validation protects us from obtaining too large PI values due
to over-fitting, since the test computations are always performed with an inde-
pendent data set. Finally, the 10 outputs can be averaged to get an unbiased
estimate, and their spread characterizes the accuracy of the result3.

3.1 Experimental results

As a starting point, we represented illustrative traces corresponding to our three
measurement setups in Appendix B, Figure 8, 9, 10. The figures further contain
the SNRs and correlation coefficients of a CPA using Hamming weight leakage
model and targeting the S-box output. While insufficient for fair security evalua-
tions as stated below, these metrics are interesting preliminary steps, since they
indicate the parts of the traces where useful information lies. In the following,
we extract a number of illustrative figures from meaningful samples.

From a methodological point of view, the impact of cross–validation is best
represented with the box plot of Figure 1: it contains the PI of point 2605 in
the resistor-based traces, estimated with Gaussian templates and a stochastic
model using a 17-element linear basis for the bits of the S-box input and output.
This point is the most informative one in our experiments (across all measure-
ments and estimation procedures we tried). Results show that the PI estimated
with Gaussian templates is higher - hence suggesting that the basis used in our
regression-based profiling was not fully reflective of the chip activity for this

3 Cross–validation can also apply to profiled CPA, by building models ˆmodelρ ← Lp,(j)Y ,

and testing them with the remaining Lt,(j)Y traces. By contrast, it does not apply to
the SNR for which the computation does not include an a posteriori testing phase.
We focus on the PI because of its possible extension to multivariate statistics.



Fig. 1. Perceived information estimated from Gaussian templates and LR-based mod-
els, with cross–validation (target point 2605 from the resistor-based measurements).

sample. More importantly, we observe that the estimation converges quickly (as
the spread of our 10 PI estimates decreases quickly with the number of traces).
As expected, this convergence is faster for regression-based profiling, reflecting
the smaller number of parameters to estimate in this case. Note that we also per-
formed this cross–validation for the Kernel-based PDF estimation described in
Appendix A (see Appendix B, Figure 11 for the results). Both the expected value
of the PI and its spread suggest that these two density estimation techniques
provide equally satisfying results in our implementation context.

A natural next step is to analyze the quantity of information given by al-
ternative leakage points. An example is given in Figure 2 (where we only plot
the expected value of the PI). The left part of the figure corresponds exactly to
the most informative point of Figure 1. The right part of the figure is computed
with a later sample (time 4978) that (we assumed) corresponds to the computa-
tion of the S-box output. Interestingly, we observe that while this second point
is less informative, it is more accurately explained by a stochastic model using
the S-box output bits as a basis, hence confirming our expectations. Eventu-
ally, we also investigated the additional information gathered when performing
multivariate attacks in Appendix B, Figure 12. For this purpose, we considered
both a couple of points (2605 and 4978) coming from the same setup in the left
part of the figure, and a single point (2605) coming from two different setups
in the right part of the figure. This experiment clearly suggests that combining
information from different operations leads to more PI than combining informa-
tion from different setups. It naturally fits with the intuition that two different
block cipher operations (corresponding to different intermediate values) lead to
more information leakage (i.e. less correlation) than the same operation mea-



Fig. 2. PI for different PDF estimation techniques and two leakage (resistor-based)
points. Left: most informative one (2605), right: other point of interest (4978).

sured with two different (yet similar) measurement setups. Many variations of
such evaluations are possible (for more samples, estimation procedures, . . . ). For
simplicity, we will limit our discussion to the previous examples, and use them
to further discuss the critical question of assumption errors in the next section.

4 Assumption errors and distance sampling

Looking at Figures 1 and 2, we can conclude that our estimation of the PI is
reasonably accurate and that Gaussian templates are able to extract a given
amount of information from the measurements. Nevertheless, such pictures still
do not provide any clue about the closeness between our estimated PI and the
(true, unknown) MI. As previously mentioned in introduction, evaluating the
deviation between the PI and MI is generally hard. In theory, the standard
approach for evaluating such a deviation would be to compute a statistical (e.g.

Kullback-Leibler) distance D̂KL(P̂rmodel,Prchip). But this requires knowing the
(unknown) distribution Prchip, leading to an obvious chicken and egg problem.

Since standard probabilistic distances cannot be computed, an alternative
solution that we will apply is to confront the test samples output by the device
with estimated samples produced with the evaluator’s model. In order to check
their coherence, we essentially need a goodness-of-fit test. While several such
tests exist in the literature for unidimensional distributions (e.g. Kolmogorov–



Smirnov [4] or Cramér–von–Mises [1]), much fewer solutions exist that gener-
alize to multivariate statistics. Since we additionally need a test that applies
to any distribution, possibly dealing with correlated leakage points, a natural
proposal is to exploit statistics based on spacings (or interpoint distance) [14].
The basic idea of such a test is to reduce the dimensionality of the problem by
comparing the distributions of distances between pairs of points, consequently
simplifying it into a one-dimensional goodness-of-fit test again. It exploits the
fact that two multidimensional distributions F and G are equal if and only if the
variables X ∼ F and Y ∼ G generate identical distributions for the distances
D(X1,X2), D(Y1,Y2) and D(X3,Y3) [2, 11]. In our evaluation context, we can
simply check if the distance between pairs of simulated samples (generated with
a profiled model) and the distance between simulated and actual samples behave
differently. If the model estimated during the profiling phase of a side-channel
attack is accurate, then the distance distributions should be close. Otherwise,
there will be a discrepancy that the test will be able to detect, as we now detail.

The first step of our test for the detection of incorrect assumptions is to
compute the simulated distance cumulative distribution as follows:

fsim(d, s, x) = Pr
[
L1
y − L2

y ≤ d
∣∣∣L1
y, L

2
y ∼ P̂rmodel[Ly|s, x]

]
.

Since the evaluator has an analytical expression for P̂rmodel, this cumulative dis-
tribution is easily obtained. Next, we compute the sampled distance cumulative
distribution from the test sample set LtY as follows:

ĝNt
(d, s, x) = Pr

[
liy − ljy ≤ d

∣∣∣{liy}1≤i≤Nt
∼ P̂rmodel[Ly|s, x],

{
ljy
}
1≤j≤Nt

= LtY
]
.

Eventually, we need to detect how similar fsim and gNt
are, which is made easy

since these cumulative distributions are now univariate. Hence, we can compute
the distance between them by estimating the Cramér–von–Mises divergence:

ˆCvM(fsim, ĝNt
) =

∫ ∞
−∞

[fsim(x)− ĝNt
(x)]

2
dx.

As the number of samples in the estimation increases, this divergence should
gradually tend towards zero provided the model assumptions are correct.

4.1 Experimental results

As in the previous section, we applied cross–validation in order to compute the
Cramér–von–Mises divergence between the distance distributions. That is, for
each of the 256 target intermediate values, we generated 10 different estimates

ĝ
(j)
Nt

(d, s, x) and computed ˆCvM
(j)

(fsim, ĝNt
) from them. An exemplary evalua-

tion is given in Figure 3 for the same leakage point and estimation methods
as in Figure 1. For simplicity, we plotted a picture containing the 256 (av-
erage) estimates at once4. It shows that Gaussian templates better converge

4 It is also possible to investigate the quality of the model for any given y = x⊕ s.



Fig. 3. Cramér–von–Mises divergence between simulated and sampled distributions,
with cross–validation (target point 2605 from the resistor-based measurements). Left:
Gaussian templates, right: LR-based estimation (S-box input and output bits).

towards a small divergence of the distance distributions. It is also noticeable
that regression-based models lead to more outliers, corresponding to values y for
which the leakage Ly is better approximated. Figure 4 additionally provides the
quantiles of the Cramér–von–Mises divergence for both univariate and bivariate
distributions (i.e. corresponding to the PIs in Appendix B, Figure 12). Interest-
ingly, we observe that the better accuracy of Gaussian templates compared to
regression-based models decreases when considering the second leakage point.
This perfectly fits the intuition that we add a dimension that is better explained
by a linear basis (as it corresponds to the right point in Figure 2). Note that any
incorrect assumption would eventually lead the CvM divergence to saturate.

5 Estimation vs. assumption errors

From an evaluator’s point of view, assumption errors are naturally the most
damaging (since estimation errors can be made arbitrarily small by measuring
more). In this respect, an important problem that we answer in this section is to
determine whether a model error comes from estimation or assumption issues.
For this purpose, the first statistic we need to evaluate is the sampled simulated
distance cumulative distribution (for a given number of test traces Nt). This is
the estimated counterpart of the distribution fsim defined in Section 4:

f̂Nt

sim(d, s, x) = Pr
[
liy − ljy ≤ d

∣∣∣{liy, ljy}1≤i6=j≤Nt
∼ P̂rmodel[Ly|s, x]

]
.



Fig. 4. Median, min and max of the CvM divergence btw. simulated and sampled dis-
tributions for Gaussian templates and LR-based models (resistor-based measurements).
Left: univariate attack (sample 2605), right: bivariate attack (samples 2605 and 4978).

From this definition, our main interest is to know, for a given divergence between
fsim and f̂Nt

sim, what is the probability that this divergence would be observed
for the chosen amount of test traces Nt. This probability is directly given by the
following cumulative divergence distribution:

D̂ivNt
(x) = Pr

[
ˆCvM(fsim, f̂

Nt

sim) ≤ x
]
.

How to exploit this distribution is then illustrated in Figure 5. For each model

P̂r
(j)

model estimated during cross–validation, we build the corresponding D̂iv
(j)

Nt
’s

(i.e. the cumulative distributions in the figure). The cross–validation addition-

ally provides (for each cumulative distribution) a value for ˆCvM
(j)

(fsim, ĝNt
)

estimated from the actual leakage samples in the test set: they correspond to
the small circles below the X axis in the figure. Eventually, we just derive:

D̂iv
(j)

Nt

(
ˆCvM

(j)
(fsim, ĝNt

)
)
.

Computing this statistic is simply obtained by projecting the circles towards the
Y axis in the figure. Large values indicate that there is a small probability that
the observed samples follow the simulated distributions. More precisely, they
correspond to large p-values when testing the hypothesis that the estimated
model is incorrect. Thanks to cross–validation, we can obtain 10 such values,



D̂ivNt(x)

ˆCvM(fsim, ĝNt)
0

1

Fig. 5. Model divergence estimation.

leading to answers laid on a [0; 1] interval, indicating the accuracy of each esti-
mated model. Values grouped towards the top of the interval indicate that the
assumptions used to estimate these models are likely incorrect.

An illustration of this method is given in Figure 6 for different Gaussian tem-
plates and regression-based profiling efforts, in function of the number of traces
in the cross–validation set. It clearly exhibits that as this number of traces in-
creases (hence, the estimation errors decrease), the regression approach suffers
from assumption errors with high probability. Actually, the intermediate values
for which these errors occur first are the ones already detected in the previ-
ous section, for which the leakage variable Ly cannot be precisely approximated
given our choice of basis. By contrast, no such errors are detected for the Gaus-
sian templates (up to the amount of traces measured in our experiments). This
process can be further systematized to all intermediate values, as in Figure 7. It
allows an evaluator to determine the number of measurements necessary for the
assumption errors to become significant in front of estimation ones.

0 1

GT1000(y = 0)

0 1

LR100(y = 0)

0 1

LR1000(y = 0)

0 1

GT1000(y = 4)

0 1

LR100(y = 4)

0 1

LR1000(y = 4)

0 1

GT1000(y = 215)

0 1

LR100(y = 215)

0 1

LR1000(y = 215)

Fig. 6. Probability of assumption errors (p-values) for Gaussian templates (GT) and
regression-based models (LR) corresponding to different target intermediate values y,
in function of Nt (in subscript). Resistor-based measurements, sample 2605.



Fig. 7. Probability of assumption errors for Gaussian templates (left) and regression-
based models with a 17-element basis (right) corresponding to all the target interme-
diate values y, in function of Nt. Resistor-based measurements, sample 2605.

6 Pragmatic evaluation guidelines & conclusions

Interestingly, most assumptions will eventually be detected as incorrect when
the number of traces in a side-channel evaluation increases5. As detailed in in-
troduction, it directly raises the question whether the information loss due to
such assumption errors can be bounded? Intuitively, the “threshold” value for
which they are detected by our test provides a measure of their “amplitude”
(since errors that are detected earlier should be larger in some sense). In the
long version of this paper [7], we discuss whether this intuition can be exploited
quantitatively and answer negatively. In this section, we conclude by arguing
that our results still lead to qualitatively interesting outcomes, and describe
how they can be exploited in the fair evaluation of side-channel attacks.

In this respect, first note that the maximum number of measurements in an
evaluation is usually determined by practical constraints (i.e. how much time is
allowed for the evaluation). Given this limit, estimation and assumption errors
can be analyzed separately, leading to quantified results such as in Figures 1
and 3. These steps allow ensuring that the statistical evaluation has converged.
Next, one should always test the hypothesis that the leakage model is incorrect,
as described in Section 5. Depending on whether assumption errors are detected
“early” or “late”, the evaluator should be able to decide whether more refined
PDF estimation techniques should be incorporated in his analyses. As discussed
in [7], Section 6, the precise definition of “early” and “late” is hard to formalize
in terms of information loss. Yet, later is always better and such a process will
at least guarantee that if no such errors are detected given some measurement

5 Non-parametric PDF estimation methods (e.g. as described in Appendix A) could be
viewed as an exception to this fact, assuming that the sets of profiling traces LpY and
test traces LtY come from the same distribution. Yet, this assumption may turn out
to be contradicted in practice because of technological mismatches [8, 15], in which
case the detection of assumption errors remains critical even with such tools.



capabilities, an improved model will not lead to significantly improved attacks
(since the evaluator will essentially not be able to distinguish the models with this
amount of measurements). That is, the proposed methodology can provide an
answer to the pragmatic question: “for an amount of measurements performed by
a laboratory, is it worth spending time to refine the leakage model exploited in the
evaluation?”. In other words, it can be used to guarantee that the security level
suggested by a side-channel analysis is close to the worst-case, and this guarantee
is indeed conditional to number of measurement available for this purpose.
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A Histograms and kernels

The estimation methods of Section 2.3 make the assumption that the non-
deterministic part of the leakage behaves according to a normal distribution.
This may not always be correct, in which case one needs to use other tech-
niques. For illustration, we considered two non-parametric solutions for density
estimation, namely histograms and kernels. These allow one to finely characterize
the non-deterministic part of the leakage. First, histogram estimation performs
a partition of the samples by grouping them into bins. More precisely, each bin
contains the samples of which the value falls into a certain range. The respective
ranges of the bins have equal width and form a partition of the range between
the extreme values of the samples. Using this method, one approximates a prob-
ability by dividing the number of samples that fall within a bin by the total
number of samples. The optimal choice for the bin width h is an issue in statis-
tical theory, as different bin sizes can have great impact on the estimation. In
our case, we were able to tune this bin width according to the sensitivity of the
oscilloscope. Second, kernel density estimation is a generalization of histograms.
Instead of bundling samples together in bins, it adds (for each observed sample)
a small kernel centered on the value of the leakage to the estimated PDF. The
resulting estimation is a sum of small “bumps” that is much smoother than the
corresponding histogram, which can be desirable when estimating a continuous
distribution. In such cases it usually provides faster convergence towards the
true distribution. Similarly to histograms, the most important parameter is the
bandwidth h. In our case, we used the modified rule of thumb estimator in [17].



B Additional figures

Fig. 8. Resistor-based measurements.

Fig. 9. Inductance-based measurements.



Fig. 10. Electromagnetic measurements.

Fig. 11. Perceived information quantiles estimated from Gaussian templates and Ker-
nels, with cross–validation (target point 2605 from the resistor-based measurements).



Fig. 12. PI for univariate and multivariate leakage models. Left: two points (2605,
4978) coming from the resistor-based measurements. Right: multi-channel attack ex-
ploiting the same point (2605) from resistor- and inductance-based measurements.

Fig. 13. Resistor-based measurements, sample 2605. Quantiles for the PI estimates
obtained from the LR-based profiling (left) and Gaussian templates in Figure 1.


