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Abstract. To defeat side-channel attacks, the implementation of block
cipher algorithms in embedded devices must include dedicated counter-
measures. To this end, security designers usually apply secret sharing
techniques and build masking schemes to securely operate an shared
data. The popularity of this approach can be explained by the fact that
it enables formal security proofs. The construction of masking schemes
thwarting higher-order side-channel attacks, which correspond to a pow-
erful adversary able to exploit the leakage of the different shares, has been
a hot topic during the last decade. Several solutions have been proposed,
usually at the cost of significant performance overheads. As a result, the
quest for efficient masked S-box implementations is still ongoing. In this
paper, we focus on the scheme proposed by Carlet et al at FSE 2012, and
latter improved by Roy and Vivek at CHES 2013. This scheme is today
the most efficient one to secure a generic S-box at any order. By exploit-
ing an idea introduced by Coron et al at FSE 2013, we show that Carlet
et al’s scheme can still be improved for S-boxes with input dimension
larger than four. We obtain this result thanks to a new definition for the
addition-chain exponentiation used during the masked S-box processing.
For the AES and DES S-boxes, we show that our improvement leads to
significant efficiency gains.

1 Introduction

Side-channel attacks (SCA) are a class of attacks, where the attacker has access
to some leakages about the internal state during the computation [16]. In prac-
tice, such scenario makes it possible to attack implementations that are believed
secure against classical (black-box) cryptanalyses. To defeat SCA, implemen-
tations of cryptographic algorithms must embed appropriate countermeasures.
This is actually mandatory for implementations dedicated to smart card pay-
ments, pay-TV applications or citizen authentication with e-Passports.

Securing block cipher implementations has been a long-standing issue for the
embedded systems industry. A sound approach is to use secret sharing [2, 24],
often called masking in the context of side-channel attacks [6]. The principle is
to split every sensitive variable1 x occurring during the computation into d+ 1

1 A variable is said to be sensitive in an SCA context if it functionally depends on
both a public variable and a secret whose size is small enough to enable exhaustive
search.



shares x0, . . . , xd in such a way that the following relation is satisfied for a group
operation ⊥:

x0 ⊥ x1 ⊥ · · · ⊥ xd = x . (1)

In the rest of the paper, we shall consider that ⊥ is the addition over some
field of characteristic 2 (i.e. ⊥ will be the bitwise addition ⊕). Usually, the d
shares x1, . . . , xd (called the masks) are randomly picked up and the last one
x0 (called the masked variable) is processed such that it satisfies (1). The full
tuple (xi)i is further called a dth-order encoding of x. When d random masks are
involved per sensitive variable, the masking is said to be of order d. It has been
shown that the complexity of mounting a successful side-channel attack against
a masked implementation increases exponentially with the masking order [6, 10,
19]. Starting from this observation, the design of efficient masking schemes for
different ciphers has become a foreground issue.

Higher-Order Masking Schemes. A higher-order secure (masking) scheme must
ensure that the final shares correspond to the expected ciphertext on the one
hand, and it must ensure the dth-order security property for the chosen order
d on the other hand. The latter property states that every tuple of d or less
intermediate variables is independent of any sensitive variable. When satisfied,
it guarantees that no attack exploiting information on less than d intermediate
results can succeed. As argued in several previous works (see e.g. [21] or [23]),
the main difficulty in designing higher-order secure schemes for block ciphers lies
in masking the S-box(es), which are the only internal primitives that perform
non-linear operations.

Masking and S-Boxes. Whereas many solutions have been proposed to deal with
the case of first-order masking (see e.g. [3, 18]), only few solutions exist for the
higher-order case. A scheme has been proposed by Schramm and Paar in [23]
which generalizes the (first-order) table re-computation method described in [18].
Although the authors apply their method in the particular case of an AES imple-
mentation, it is generic and can be applied to protect any S-box. Unfortunately,
this scheme has been shown to be vulnerable to a 3rd-order attack whatever the
chosen masking order [8]. In other words, it only provides 2nd-order security.
Further schemes were proposed by Rivain, Dottax and Prouff in [20] with formal
security proofs but still limited to 2nd-order security.

To the best of our knowledge, four approaches currently exist which enable
the design of dth-order secure masking schemes for any arbitrary chosen d. One
is due to Genelle et al and consists in mixing additive and multiplicative shar-
ings (namely to use alternatively (1) for ⊥= ⊕ and ⊥= ×). This scheme is
primarily dedicated to the AES algorithm and seems difficult to generalize ef-
ficiently to other block ciphers where the S-box is not affinely equivalent to a
power function. The second one is due to Prouff and Roche and it relies on so-
lutions developed in secure multi-party computation [1]. It is much less efficient
than the other schemes (see e.g. [12]) but, contrary to them, remains secure
even in presence of hardware glitches [17]. The third approach has been recently



proposed by Coron in [7]. The core idea is to represent the S-box by several
look-up tables which are regenerated from fresh random masks and the S-box
truth table, each time a new S-box processing must be done. It extends the table
re-computation technique introduced in the original paper by Kocher et al [16].
The security of Coron’s scheme against higher-order SCA is formally proved un-
der the assumption that the variable shares leak independently. Its asymptotic
timing complexity is quadratic in the number of shares and can be applied to
any S-box. However, the RAM memory consumption to secure (at order d) an
S-box with input (resp. output) dimension n (resp. m) is m(d+ 1)2n bits, which
can quickly exceed the memory capacity of the hosted device.

The three methods recalled in previous paragraph have important limitations
which strongly impact their practicability: the first method is hardly generaliz-
able to any S-box and the two other ones have a large extra cost (in terms of
either processing or memory complexity). Actually, when the S-box to secure
is not a power function and has input/output dimensions close to 8, the fourth
approach is the most practical one when d is greater than or equal to 3. This
approach, proposed in [5], generalizes the study conducted in [21] for power
functions. The core idea is to split the S-box processing into a sequence of field
multiplications and F2-linear operations, and then to secure both operations in-
dependently. The complexity of the masking schemes for the multiplication and
a F2-linear operation2 is O(d2) and O(d) respectively. Moreover, the constant
terms in these complexities are (usually) significantly greater for the multipli-
cation than for the F2-linear operations. Based on this observation, the authors
of [5] propose to look for S-box representations that minimize the number of
field multiplications which are not F2-linear3 (this kind of multiplication shall
be called non-linear in this paper). This led them to introduce the notion of S-
box masking complexity, which corresponds to the minimal number of non-linear
multiplications needed to evaluate the S-box. This complexity is evaluated for
any power function defined in F2n with n ≤ 10 (in particular, the complexity of
x ∈ F28 7→ x254, which is the non-linear part of the AES S-box, is shown to be
equal to 4). Tight upper bounds on the masking complexity are also given for
any random S-box. The work of Carlet et al has been further improved by Roy
and Vivek in [22], where it is in particular shown that the masking complexity
of the DES S-boxes is lower-bounded by 3. The authors of [22] also present a
method that requires 7 non-linear multiplications. Another improvement of [5]
has been proposed in [9], where it is shown that it is possible to improve the
processing of the non-linear multiplications with the particular form x × g(x)

2 A function f is F2-linear if it satisfies f(x ⊕ y) = f(x) ⊕ f(y) for any pair (x, y)
of elements in its domain. This property must not be confused with linearity of a
function which is defined such that f(ax ⊕ by) = af(x) ⊕ bf(y). A linear function
is F2-linear but the converse is false in general (the homogeneity of degree 1 must
indeed be also satisfied for the converse to be true).

3 A multiplication over a field of characteristic 2 is F2-linear if it corresponds to a
squaring.



with g being F2-linear. This type of multiplication is called bilinear in the rest
of the paper4.

Our Contribution. In this paper we refine the notion of S-box masking com-
plexity introduced in [5] and further studied in [22]. We still link it to the min-
imum number of non-linear multiplications needed to evaluate the S-box, but
we don’t include bilinear multiplications in this counting. We justify this choice
thanks to the analysis in [9] which shows that the complexity of the latter mul-
tiplications is between that of general non-linear multiplications (costly) and
that of F2-linear multiplications (cheap). For all exponentiations in F2n , with
n ∈ {4, 6, 8}, we give the new masking complexities and we afterwards illustrate,
for the AES and DES S-boxes, the effective gain obtained by using the corre-
sponding new addition-chain exponentiation [11]. This works raises the need for
new polynomial evaluation algorithms minimizing the number of multiplications
which are neither linear nor bilinear. It could also be of interest to study whether
specialized (efficient) schemes cannot be dedicated to the secure processing of
other types of non-linear multiplications (which are not linear or bilinear but
have some helpful properties).

2 Existing Schemes for Elementary operations

In this section, it is assumed that the S-box to protect manipulates data of
bit-length n (typically n ∈ {4, 8, 16}). Depending on the kind of operation to
process, these data can be viewed as elements of the vector space Fn2 defined over
the field (F2,⊕,&), where ⊕ is the XOR operation and & the AND operator. Or,
they can be defined as elements of the field F2n

∼= (F2[X]/p(X),⊕,×), where
p(X) is an irreducible polynomial of degree n and × denotes the polynomial
multiplication modulo p(X).

As recalled in the previous section, the most efficient solution which today ex-
ists to secure an S-box against higher-order SCA is to rewrite it as a polynomial
function over F2n and to split its evaluation as a sequence of F2-linear opera-
tions and multiplications. Indeed, whatever d, dth-order secure schemes exist for
these two types of operations. We recall them hereafter. Note that, some mask
refreshing must sometimes be done between different calls to these algorithms in
order to guaranty the security of the whole process. Since, mask refreshing has
a minor impact on the efficiency improvement proposed in this paper we do not
recall here the mask refreshing algorithm and we exclude it from the description
of the S-box secure evaluation procedures in Section 3 (for more details about
this point we suggest the reading of [9, 21]).

4 We chose this term because the multiplication y × g(x), viewed as a function over
F2n × F2n , is indeed F2-bilinear when g is F2-linear. For such a function g, it may
be checked that the algebraic degree [4, Chapter 9] of x 7→ x × g(x), viewed as a
vectorial function, is quadratic.



F2-linear operation. To securely process a F2-linear function g on a data x
encoded by the tuple (xi)i, we just need to evaluate the function on each share
xi separately. The sharing (g(xi))i is indeed an encoding of g(x).

Algorithm 1 Secure evaluation of a F2-linear function g

Require: Shares (xi)i satisfying ⊕ixi = x.
Ensure: Shares (yi)i satisfying ⊕iyi = g(x).
1: for i from 0 to d do
2: yi ← g(xi)
3: end for

In particular, Algorithm 1 can be applied to secure the Frobenius endomor-
phism over the field F2n (i.e. the squaring in characteristic 2) as this operation
is F2-linear.

Multiplication. To securely process the multiplication between two sensitive vari-
ables x and y encoded by (xi)i and (yi)i respectively, the following algorithm
has been proposed in [13] (and generalized in [21]).

Algorithm 2 Multiplication of two masked secrets x and y

Require: Shares (xi)i and (yi)i satisfying ⊕ixi = x and ⊕iyi = y
Ensure: Shares (wi)i satisfying ⊕iwi = x× y
1: for i from 0 to d do
2: for j from i+ 1 to d do
3: ri,j ∈R F2n

4: ri,j ← (ri,j ⊕ xi × yj)⊕ xj × yi
5: end for
6: end for
7: for i from 0 to d do
8: wi ← xi × yi
9: for j from 0 to d, j 6= i do

10: wi ← wi ⊕ ri,j
11: end for
12: end for

Remark 1. The order of the XORs operations in Step 4 must be respected for the
security guarantee to hold.

Starting from Lagrange’s interpolation formula, [5] and [22] introduce S-box
evaluation techniques which are only based on Algorithms 1 and 2 (and a third
algorithm used to refresh the sharings when the input sharings correspond to
dependent variables). Because the complexity of the dth-order secure multiplica-
tion is quadratic, whereas that of an F2-linear function is linear, the polynomial



evaluation strategies try to minimize the number of calls to Algorithm 2. How-
ever, Coron et al have recently shown that multiplications of the form x× g(x),
with g being F2-linear, can be securely evaluated more efficiently than standard
multiplications [9]. This observation naturally raises the following new question:
can we improve the complexities of the S-box evaluation strategies in [5, 22] by
replacing, as much as possible, standard multiplications by multiplications in the
form x× g(x). Before dealing with this question, let us first recall the particular
multiplication proposed in [9].

Multiplications of the form x × g(x), with g F2-linear. To securely process this
type of multiplication, the following algorithm is proposed in [9].

Algorithm 3 Secure evaluation of a product of h(x) = x× g(x)

Require: shares (xi)i satisfying ⊕ixi = x.
Ensure: shares (yi)i satisfying ⊕iyi = h(x).
1: for i from 0 to d do
2: for j from i+ 1 to d do
3: ri,j ∈R F2n

4: r′i,j ∈R F2n

5: t← ri,j
6: t← t⊕ h(xi ⊕ r′i,j)
7: t← t⊕ h(xj ⊕ r′i,j)
8: t← t⊕ h((xi ⊕ r′i,j)⊕ xj)
9: t← t⊕ h(r′i,j)

10: rj,i ← t
11: end for
12: end for
13: for i from 0 to d do
14: yi ← h(xi)
15: for j from 0 to d, j 6= i do
16: yi ← yi ⊕ ri,j
17: end for
18: end for

Notation. In the particular case where g is an exponentiation by a power of 2,
say g(x) = x2

s

, the function h is denoted by hs+1.

The complexity of Algorithm 3 is still quadratic but, for many typical applica-
tion contexts, the constant terms are much smaller than in Algorithm 2. Indeed,
the processing of h can be tabulated on standard embedded processors as long
as n 6 10, whereas the field multiplications × occurring in Algorithm 2 cannot
if n > 5. In the following, functions/operations which can be evaluated thanks
to Algorithm 1 or Algorithm 2 will be said to be of Type-I or Type-III re-
spectively. Functions of the form x× g(x) with g F2-linear will be said to be of



Type-II. Table 1 summarizes the cost of the three algorithms in term of XORs,
field multiplications and look-up table accesses (referred to as LUT access).

Table 1. Cost of different algorithms.

XOR Multiplication LUT access

Algorithm 1 0 0 d+ 1
Algorithm 2 2d2 + 2d d2 + 2d+ 1 0
Algorithm 3 5d2 + 5d 0 2d2 + 3d+ 1

In most of classical architectures, a memory access (or a XOR) can be done
in 1 or 2 CPU clock cycles, whereas the processing of a field multiplication with
the CPU instructions set only requires between 20 and 40 cycles (we recall some
classical field multiplication algorithms in Appendix A). This explains why the
replacing of Type-III operations by Type-II ones leads to a significant efficiency
improvement when n ∈ [5; 10]. Based on this observation, we propose in the
next section new sequences of operations that lead to practically more efficient
processing of power functions than the state of the art solutions [5, 22].

3 New Proposal for Power Functions Evaluation

Considering the fact that the processing of power functions in the form x1+2s

(which corresponds to the Type-II operation x×x2s) is more efficient than that of
other power functions, we followed an approach close to [5] in order to exhibit the
most efficient processing for any power function defined in F2n for n ≤ 8. Namely,
for every power function x 7→ xα, we exhibit by exhaustive search a sequence of
operations of types I, II and III, which minimizes first the number of Type III
operations, and then the number of Type II operations. This amounts to find,
for each exponent α, the shortest addition chain5 [15] with the supplementary
constraint that multiplications by 2t, for any integer t, or additions in the form
v + 2tv are for free. We recall that an addition chain for α ∈ N is an increasing
sequence of integers v0, ..., vs such that v0 = 1, vs = α and for any j 6= 0 there
exist two indices i < j and k < j (not necessary different) s.t. vj = vi + vk. The
length of such a sequence is defined as the total number of additions (including
multiplications by 2) needed to get vs = α from v0 = 1, with only operations
between elements of the sequence. The definition of length used in [5, 22] excludes
multiplications by 2. For the reasons discussed previously, we extend the classical
definition of the addition chain by adding the operation v 7→ (1 + 2t)v for any
integer t. We moreover assume that this operation is also excluded from the
sequence length definition (it indeed corresponds to the function ht+1 : xv 7→
x(1+2t)v). The corresponding new length definition is referred to as extended

5 In the context of exponentiation processing, these chains are sometimes also referred
to as addition-chain exponentiation (see for instance [11]).



length in the following. Our purpose is to minimize it. This point is the main
(and important) difference with the (shortest) sequences investigated in [5]. Our
results are given6 in Table 2 for n = 8, where the exponents are grouped into
classes. Each class, say Cj , corresponds to the set of exponents which can be
obtained by multiplying j by a power of 2 (modulo 2n − 1).

Table 2. Smallest cost to process xα with operations of types II and III.

# Type-II # Type-III Exponent α

0 0 C0 = {0},C1 = {1, 2, 4, 8, 16, 32, 64, 128}
1 0 C3 = {3, 6, 12, 24, 48, 96, 192, 129},

C5 = {5, 10, 20, 40, 80, 160, 65, 130},
C9 = {9, 18, 36, 72, 144, 33, 66, 132}, C17 =
{17, 34, 68, 136}

2 0 C15 = {15, 30, 60, 120, 240, 225, 195, 135},
C21 = {21, 42, 84, 168, 81, 162, 69, 138},
C25 = {25, 50, 100, 200, 145, 35, 70, 140},
C27 = {27, 54, 108, 216, 177, 99, 198, 141},
C45 = {45, 90, 180, 105, 210, 165, 75, 150},
C51 = {51, 102, 204, 153}, C85 = {85, 170}

3 0 C63 = {63, 126, 252, 249, 243, 231, 207, 159},
C95 = {95, 190, 125, 250, 245, 235, 215, 175},
C111 = {111, 222, 189, 123, 246, 237, 219, 183}

4 0 C39 = {39, 78, 156, 57, 114, 228, 201, 147},
C55 = {55, 110, 220, 185, 115, 230, 205, 155},
C87 = {87, 174, 93, 186, 117, 234, 213, 171}

1 1 C7 = {7, 14, 28, 56, 112, 224, 193, 131},
C11 = {11, 22, 44, 88, 176, 97, 194, 133},
C13 = {13, 26, 52, 104, 208, 161, 67, 134},
C19 = {19, 38, 76, 152, 49, 98, 196, 137},
C37 = {37, 74, 148, 41, 82, 164, 73, 146}

2 1 C23 = {23, 46, 92, 184, 113, 226, 197, 139},
C29 = {29, 58, 116, 232, 209, 163, 71, 142},
C31 = {31, 62, 124, 248, 241, 227, 199, 143},
C43 = {43, 86, 172, 89, 178, 101, 202, 149},
C47 = {47, 94, 188, 121, 242, 229, 203, 151},
C53 = {53, 106, 212, 169, 83, 166, 77, 154},
C59 = {59, 118, 236, 217, 179, 103, 206, 157},
C61 = {61, 122, 244, 233, 211, 167, 79, 158},
C91 = {91, 182, 109, 218, 181, 107, 214, 173},
C119 = {119, 238, 221, 187}

3 1 C127 = {127, 254, 253, 251, 247, 239, 223, 191}

Remark 2. As the cost of Type-I operations is negligible compared to the cost
of operations of types II and III, we chose to not give them in Table 2.

6 Tables for the cases n = 4, 6 are given in Appendix B.



Remark 3. The costs given in Table 2 have been obtained by first minimizing the
global number of Type-II and Type-III operations, and then by minimizing the
number of Type-III multiplications. It can be noticed that other minimization
strategies could be applied. For instance, if the goal is to minimize the number
of Type-III multiplications, then it can be checked that x254 can be evaluated
without such operation: first process x63, then (x+x63)3 = x189+x127+x65+x3,
end eventually process x189, x65 and x3, and subtract them to (x+ x63)3 to get
x254 = (x127)2 (which gives a processing without Type-III operations and 9
Type-II operations).

For the exponentiation x 7→ x254 (the non-linear part of the AES S-box),
we found the extended addition chain (1, 2, 5, 25, 125, 127, 254) whose extended
length is 1. This sequence indeed requires only 1 operation of Type-III(+) (to
get 127), 2 operations of Type-I (×) (to get and 2 and 254) and 3 operations of
Type-II (×(1 + 22)) (to get 5, 25 and 125)). It may moreover be observed that
the sequence involves the same operation v 7→ (1 + 2t)v (for t = 2) each time,
which reduces the memory required to implement the solution.

The extended addition chain used for the AES S-box is represented in Figure 1.

1

2

5 25 125

127 254

Type-II

Type-II Type-II

Type-III

Type-III

Type-I Type-I

Fig. 1. AES S-box extended addition chain.

Algorithm 4 shows how to use the extended addition chain to calculate invert
in the field F28 .

For DES, we take advantage of the S-box representation proposed in [22]. In
that paper it has been shown that all DES S-boxes can be calculated with 7
non-linear multiplications. They indeed can be represented by a polynomial of
the form:

PDES(x) = (x36 + p1(x))× (((x18 + p2(x))× p3(x)) + (x9 + p4(x)))

+ ((x18 + p5(x))× p6(x) + (x9 + p7(x))),



Algorithm 4 Exponentiation to the 254

Require: x.
Ensure: y = x254.
y ← x2 Type-I
x← x× x4 Type-II
x← x× x4 Type-II
x← x× x4 Type-II
y ← y × x Type-III
y ← y2 Type-I

where the polynomials pi(x) are of degree at most 9, and can be obtained
by successive Euclidean polynomial divisions. Hence, only monomials of degree
lower than 9 plus x18 and x36 are required to calculate any DES S-box. To com-
pute these powers, we found an extended addition chain of extended length 1.
It is represented in Figure 2 allows to calculate monomials x, x2, x3, x4, x5, x6,
x7, x8, x9, x18 and x36, where it can be checked that only 3 Type-II operations
and 1 Type-III operation are needed.

1

2

3

5

4 8

6

7

9 18 36

Type-I

Type-I Type-I

Type-I Type-I

Type-I

Type-II Type-II

Type-II

Type-III

Type-III

Fig. 2. DES monomials extended addition chain.

Eventually, once monomials are calculated, we can evaluate the different
polynomials pi(x). Then, 3 more operations of Type-III are required to calculate
PDES. These 3 multiplications are the 3 polynomial multiplications in PDES. As a
result, any of the DES S-boxes can be computed using 4 Type-III operations and
3 of Type-II operations. Full description of computation of DES S-boxes is given
in Algorithm 5.

Remark 4. Remark that having an optimal representation of a polynomial that
has exponents in different classes (as for the DES S-boxes) is quite challenging,
which explains the poorer efficiency compared to the AES S-box. Quite naturally,



Algorithm 5 DES S-boxes

Require: x1, pi,j coefficients of polynomial pi.
Ensure: p2 = PDES(x).
x2 ← x21 Type-I
x4 ← x22 Type-I
x8 ← x24 Type-I
x3 ← x1 × x21 Type-II
x6 ← x23 Type-I
x9 ← x1 × x81 Type-II
x18 ← x29 Type-I
x36 ← x218 Type-I
x5 ← x1 × x41 Type-II
x7 ← x2 × x5 Type-III
p1 ←

∑
p1,jxj

p2 ←
∑
p2,jxj

p3 ←
∑
p3,jxj

p4 ←
∑
p4,jxj

p5 ←
∑
p5,jxj

p6 ←
∑
p6,jxj

p7 ←
∑
p7,jxj

p2 ← p2 + x18
p2 ← p2 × p3 Type-III
p2 ← p2 + x9
p2 ← p2 + p4
p1 ← p1 + x36
p2 ← p2 × p1 Type-III
p5 ← p5 + x18
p5 ← p5 × p6 Type-III
p5 ← p5 + x9
p5 ← p5 + p7
p2 ← p2 + p5



we expect that further research should allow improving this (since smaller S-
boxes should generally be easier to mask).

4 Efficiency Comparisons & Simulations

In this section, we compare, for different orders d = 1, 2, 3, the efficiency of our
new extended addition chain with that of previous techniques to securely process
the AES S-box and the first DES S-box (similar results can be obtained for the
other ones).

For the AES S-box, we implemented the schemes proposed in [21] and [9]. We
also implemented the scheme in [14], which follows a Tower Fields approach to
improve the timing complexities. Essentially, it consists in using the isomorphism
between F28 and (F24)2 to have processing only in F24 where the multiplication
can be tabulated. Since our approach, described in the previous section, is advan-
tageous when the field multiplication cannot be tabulated, we did not consider
to combine it with Tower Fields approach.

The implementations are done in C and compile for ATMEGA644p micro-
controller thanks to the compiler avr gcc with optimisation flag -o2. We also did
some implementations directly in assembler for the same micro-controller.

For the AES the results are given in Table 3.

Table 3. Secure AES S-box for ATMEGA644p.

Solution [C] d = 1 [C] d = 2 [C] d = 3 [Assembly] d = 1

Addition chain [21] 753 1999 3702 623
Addition chain + Tower Fields [14] 897 1805 3077 565
Addition chain + Type-II op.[9] 540 1376 2554 431
Extended addition chain 488 1227 2319 338

For the DES the results are given in Table 4.

Table 4. Secure DES S-box for ATMEGA644p.

Solution C d = 1 C d = 2 C d = 3

Addition chain [22] 2001 4646 8182
Extended addition chain 1623 3574 7413

In Table 5, we compare, on ATMEGA644p, the practical costs of the Type-II
and Type-III multiplications. For d = 1, it can be seen that Type-II multiplica-
tions are around 2.5 (when implemented in Assembly) or 2.4 (when implemented
in C) faster than Type-III multiplications. This means that, on ATMEGA644p,
replacing N Type-III multiplications by N ′ Type-II multiplications leads to a



global efficiency gain as long as N ′/N ≤ 2.4. This ratio becomes 2.8 for d = 2
and 2.3 for d = 3.

Table 5. Costs comparison (in cycles) for Type-II and Type-III operations over F28 .

Operation C d = 1 C d = 2 C d = 3 [Assembly] d = 1

Type-III 146 430 802 136
Type-II 61 152 344 54

As already pointed out, the interest of exchanging Type-III multiplications
by Type-II ones is only advantageous when the field (Type-III) multiplications
cannot been tabulated (i.e. when n ≥ 5). Hence, for the 4-bit PRESENT S-box,
our approach does not lead to practical efficiency improvement.

Conclusion

By exploiting an idea introduced by Coron et al at FSE 2013, we have shown
in this paper that Carlet et al’s masking scheme can be improved when the S-
box dimensions are too large to allow the tabulation of field multiplications. For
this purpose, we introduced a new type of addition-chain exponentiation which
combine three operations (multiplications by 2s, multiplications by 1 + 2s and
additions) instead of two. For the AES and DES S-boxes, our improvement leads
to an efficiency gain between 35% and 55%. Our work also opens avenues for
further research of polynomial evaluation techniques minimizing the number of
multiplications which are neither F2-linear nor F2-bilinear.
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A Field Multiplication Algorithms

In the algorithm hereafter, we recall how a multiplication over an extension of
F2 can be done. Since we consider extensions of the form F2n

∼= F2[X]/p(X)
where the coefficients of p(X) are in F2, we denote by p the binary vector whose
coordinates are the coefficients of p(X) (from MSB to LSB). The operation � t
stands for the shift of t bits and the ith bit of a binary vector b is denoted by
b(i).

Algorithm 6 Field multiplication naive way

Require: Field elements a, b in F2n
∼= F2[X]/p(X), the binary representation p of

p(X).
Ensure: The field element c such that c = a× b
1: tmp← a
2: c← 0
3: for i from 0 to degree(p(X)) do
4: if b(i) = 1 then
5: c← c⊕ tmp
6: end if
7: tmp← tmp� 1
8: if tmp(degree(p(X))) = 1 then
9: tmp← tmp⊕ p

10: end if
11: end for

For fields of small dimension (e.g. n ≤ 4), the multiplication can be tabu-
lated. Then, only one access to a double entry table is required to perform the
multiplication in an efficient manner. If the field is composed of 2n elements,
the table will have 22n elements of size n. For larger fields (e.g. n > 4) the size
of such a table becomes larger than the memory available in embedded system.
Hence, other evaluation methods are applied, such that the so-called log/alog
tables method. It is based on the fact that the non-zero elements of F2n can all



be represented as a power of a primitive element which is a root of p(X). The log
table is used to get this power for each x ∈ F2[X]/p(X), whereas the alog table
is used to get the element of F2[X]/p(X) that corresponds to a given power.
Under this representation, multiplying two non-zero elements x and y, simply
consists in processing alog(log(x) + log(y) mod 2n − 1).

Algorithm 7 Field multiplication with log/alog tables

Require: Field elements a, b.
Ensure: c such that c = a× b
1: d← log[a]
2: e← log[b]
3: c← d+ e mod 2n − 1
4: c← alog[c]

B Masking Complexity of Power Functions

For exponentiation in F24 , we report on the cost of our extended addition chain
in Table 6.

Table 6. Smallest cost to process xα with operations of types II and III in F24 .

# Type-II # Type-III Exponent α

0 0 C0 = {0},C1 = {1, 2, 4, 8}
1 0 C3 = {3, 6, 12, 9}, C5 = {5, 10}
1 1 C7 = {7, 14, 13, 11}

For the case of operations in F26 , like for the DES S-boxes. We report on the
cost of our extended addition chain in Table 7.

Table 7. Smallest cost to process xα with operations of types II and III in F26 .

# Type-II # Type-III Exponent α

0 0 C0 = {0},C1 = {1, 2, 4, 8, 16, 32}
1 0 C3 = {3, 6, 12, 24, 48, 33}, C5 =

{5, 10, 20, 40, 17, 34}, C9 = {9, 18, 36}
2 0 C11 = {11, 22, 44, 25, 50, 37},C15 =

{15, 30, 60, 57, 51, 39} C27 = {27, 54, 45}
1 1 C7 = {7, 14, 28, 56, 49, 35} C13 =

{13, 26, 52, 41, 19, 38},C21 = {21, 42} C31 =
{31, 62, 61, 59, 55, 47, }

2 1 C23 = {23, 46, 29, 58, 53, 43}


