
On the Cost of Lazy Engineering
for Masked Software Implementations

Josep Balasch1, Benedikt Gierlichs1, Vincent Grosso2,
Oscar Reparaz1, François-Xavier Standaert2.

1 KU Leuven Dept. Electrical Engineering-ESAT/COSIC and iMinds
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium.

2 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.

Abstract. Masking is one of the most popular countermeasures to mit-
igate side-channel analysis. Yet, its deployment in actual cryptographic
devices is well known to be challenging, since designers have to ensure
that the leakage corresponding to different shares is independent. Several
works have shown that such an independent leakage assumption may be
contradicted in practice, because of physical effects such as “glitches” or
“transition-based” leakages. As a result, implementing masking securely
can be a time-consuming engineering problem. This is in strong con-
trast with recent and promising approaches for the automatic insertion
of countermeasures exploiting compilers, that aim to limit the develop-
ment time of side-channel resistant software. Motivated by this contrast,
we question what can be hoped for these approaches – or more gen-
erally for masked software implementations based on careless assembly
generation. For this purpose, our first contribution is a simple reduc-
tion from security proofs obtained in a (usual but not always realistic)
model where leakages depend on the intermediate variables manipulated
by the target device, to security proofs in a (more realistic) model where
the transitions between these intermediate variables are leaked. We show
that the cost of moving from one context to the other implies a division
of the security order by two for masking schemes. Next, our second and
main contribution is to provide a comprehensive empirical validation of
this reduction, based on two microcontrollers, several (handwritten and
compiler-based) ways of generating assembly codes, with and without
“recycling” the randomness used for sharing. These experiments confirm
the relevance of our analysis, and therefore quantify the cost of lazy
engineering for masking.

1 Introduction

Masking is a widely deployed countermeasure to protect block cipher imple-
mentations against side-channel attacks. It works by splitting all the sensitive
variables occurring during the computations into d+1 shares. Its security proofs
(such as given, e.g. for the CHES 2010 scheme of Rivain and Prouff [24]) ensure
the so-called dth-order property, which requires that every tuple of at most d in-
termediate variables in the implementation is independent of any sensitive vari-
able. Ensuring this property (ideally) guarantees that the smallest key-dependent

statistical moment in the leakage distribution is d+ 1. It has been shown (in dif-
ferent, more or less specialized settings [6,10,21,27]) that the data complexity of
side-channel attacks against such implementations increases exponentially with
the number of shares. More precisely, in the usual context of (close to) Gaussian
noise, this data complexity is proportional to (σ2

n)d, with σ2
n the noise variance.

In practice though, security proofs for masking heavily rely on an independence
assumption. Namely, the (ideal) hope is that the leakage function manipulates
the shared intermediate variables independently. Whenever this assumption is
not fulfilled, all bets are off regarding the security of the implementation. For
example, a leakage function that would re-combine the different shares would
directly lead to an implementation that is as easy to attack as an unprotected
one. As a result, the main question for the proofs in [6,10,21] to provide concrete
security improvements is whether this assumption is respected in practice.

Unfortunately, experiments have shown that the independent leakage as-
sumption does not always hold in actual hardware and software. Many physical
effects can be the cause of this issue. For hardware implementations, glitches
are a well-identified candidate [15]. For software implementations, the problem
more frequently comes from memory transitions (e.g. captured by a Hamming
distance model) [8]. From this empirical observation, different strategies could
be followed. One can naturally try to enforce independent leakages at the hard-
ware or software level, but current research rather concludes negatively in both
cases [8,17]. A more promising approach is to deal with the problem at the al-
gorithmic level. For example, threshold implementations and solutions based on
multi-party computations can provide “glitch-resistance” [20,25]. But the first
solution is rather specialized to hardware devices (see, e.g. [5,18] for applications
to the AES), while the second one implies strong performance overheads [12]. In
the following, we pursue a third direction for the software case, and investigate
the security guarantees that can be obtained if we simply ignore the problem.

For this purpose, we start by formalizing the types of leakage functions that
can be encountered in practice (namely value-based vs. transition based, generic
vs. specific). As any formalization effort, we do not claim that it perfectly corre-
sponds to actual measurements. Yet, we will show that it captures some impor-
tant physical effects to a sufficient extent for our conclusions to be supported by
practical experiments. Next, our first contribution is to provide a couple of reduc-
tions from security claims obtained for one type of leakage functions to security
claims for another type. Our most interesting result shows that a dth-order secu-
rity proof obtained against value-based leakages leads to a bd2cth-order security
proof against transition-based ones. As the main question for such reductions
to be relevant is whether they can be confirmed by actual implementations,
our second and main contribution is to provide a comprehensive analysis of two
case-studies of masked software (namely, in an Atmel AVR and an 8051 mi-
crocontroller). More precisely, we show empirical evidence that implementations
masked with one mask (two shares) and proved first-order secure against value-
based leakages are insecure in our devices with transition-based leakages, while
two-mask (three-share) ones are indeed first-order secure in the same context.

Furthermore, we show that our conclusions hold both for handwritten assembly
codes and for C code compiled with various flags. We also study the impact
of recycled randomness in these case studies. We finally combine these security
analyses with an evaluation of the performance overheads due to the increased
number of shares needed to reach a given masking order, and sub-optimally
compiled codes.

Besides their theoretical interest, we believe these conclusions are important
for security engineers, since they answer a long standing open question regarding
the automated insertion of countermeasures against side-channel attacks. Our
proofs and experiments suggest that a single C code of a masked block cipher
can indeed provide concrete security on two different devices, at the cost of an
artificially increased number of shares. The overheads caused by this increased
order correspond to the “cost of lazy engineering” suggested by our title, which
is to balance with the significant gains in terms of development time that au-
tomation allows. As a result and maybe most importantly, these results validate
an important line of research trying to exploit compilers to replace the manual
insertion of countermeasures by expert developers [4,19,23]. Our findings suggest
that such an approach can be feasible for masking.

2 Definitions

Following previous works on masking, we denote any key-dependent intermedi-
ate variable appearing in an unprotected implementation as a sensitive variable.
Taking the example of the secure multiplication of two shared secrets in Algo-
rithm 1 in [24], a and b are sensitive variables.

We further denote as intermediate variables the set of all the variables appear-
ing in a masked implementation, bar loop counters. These intermediate variables
should not be sensitive if masking is well implemented, since each share should
be independent of the key in this case. For example, the set of intermediate
variables in Algorithm 1 in [24] is given by:

V = {ai} ∪ {bi} ∪ {ri,j} ∪ {ai × bj} ∪ {ri,j ⊕ ai × bj}
∪ {aj × bi} ∪ {(ri,j ⊕ ai × bj)⊕ aj × bi} ∪ {ai × bi}
∪ {ai × bi ⊕i−1j=0 [(ri,j ⊕ ai × bj)⊕ aj × bi]⊕dj=i+1 ri,j}. (1)

The security proof of the masking scheme in [24] (and following works) was
typically obtained for value-based leakage functions that we define as follows:

Definition 1 (Value-based leakage functions). Let V be a set of intermedi-
ate variables and L(.) = Ld(.) +N be a leakage function made of a deterministic
part Ld(.) and an (additive) random noise N . This leakage function is value-based
if its deterministic part can only take values v ∈ V as argument.

By contrast, the flaws in [8] come from the fact that the software implementation
considered by the authors was leaking according to a Hamming-distance model.
The following transition-based leakage functions aim at formalizing this issue:

Definition 2 (Transition-based leakage functions). Let V be a set of inter-
mediate variables and T := {v⊕v′ | v, v′ ∈ V}∪V be the set of all the transitions
between these intermediate variables. A leakage function L(.) is transition-based
if its deterministic part Ld(.) can only take values t ∈ T as argument.

Note that this type of transitions, based on the bitwise XOR between the val-
ues v and v′, is motivated by practical considerations (since it generalizes the
Hamming distance model). Yet, even more general types of transitions, e.g. the
concatenation v||v′, would not change our following conclusions – it would only
make the bound of Theorem 1 more tight in certain cases (see next).
We further define generic vs. specific leakage functions as follows:

Definition 3 (Generic leakage functions). A value-based (resp. transition-
based) leakage function associated with an intermediate variable v ∈ V (resp.
transition t ∈ T) is generic if its deterministic part is a nominal mapping from
this variable to a leakage variable ld ∈ Ld, such that the set of deterministic
leakages Ld has the same cardinality as the set of values V (resp. transitions T).

The identity mapping is a typical example of generic leakage function1.

Definition 4 (Specific leakage functions). A value-based (resp. transition-
based) leakage function associated with an intermediate variable v ∈ V (resp.
transition t ∈ T) is specific if its deterministic part is a mapping from this
variable to a leakage variable ld ∈ Ld, such that the set of deterministic leakages
Ld has smaller cardinality than the set of values V (resp. transitions T).

The frequently considered Hamming weight and distance functions are typical
examples of specific (value-based and transition-based) leakage functions.

3 Reductions

From these definitions, a natural question is whether a proof of security ob-
tained within one model translates into a proof in another model. As we now
detail, three out of the four possible propositions are trivial (we recall them for
completeness). The last one is more intriguing and practically relevant.

Lemma 1. A proof of dth-order side-channel security obtained within a generic
model implies a proof of dth-order security in a specific model.

Proof. This directly derives from Definitions 3 and 4. By moving from one to
the other, we only reduce the amount of information provided to the adversary
(since we reduce the cardinality of the set of possible deterministic leakages).

Lemma 2. A proof of dth-order security obtained within a specific model does
not imply a proof of dth-order security in a generic model.

1 This definition differs from the one of “generic power model” in [3] since it relates
to the leakage function, while the latter one relates to the adversary’s model.

Proof. A counterexample can be found in [13] for low-entropy masking schemes.

Lemma 3. A proof of dth-order side-channel security obtained within a transition-
based model implies a proof of dth-order security in a value-based model.

Proof. Similarly to Lemma 1, this directly derives from Definitions 2 and 1. By
moving from one to the other, we only reduce the amount of information provided
to the adversary (since we reduce the input range of the leakage function).

We will need the following lemma to prove our last result.

Lemma 4. The information obtained from any subset of at most bd2c elements
in a set T can be obtained from a subset of d elements in a set V.

Proof. Let ST ⊂ T such that #(ST) < bd2c. We show that ∃ SV ⊂ V such that
#(SV) < d, and ST can be built from SV as follows (with #(.) the cardinality of
a set). ∀t ∈ ST , if t ∈ V, then SV = SV ∪{t}, else ∃ v, v′ ∈ V such that t = v⊕v′
and SV = SV ∪ {v, v′}. Since #(ST) < bd2c, and we add at most 2 elements in
SV per element in ST , we directly have that #(SV) < d.

It directly leads to the following theorem:

Theorem 1. A proof of dth-order side-channel security obtained within a value-
based model implies a proof of bd2cth-order security in a transition-based model.

Proof. If there existed a subset of transitions ST with less than bd2c elements
which can be used to mount a successful side-channel attack, then there would
exist a subset SV with less than d elements that can be used to mount a successful
side-channel attack as well. As this second attack is impossible by hypothesis,
such a set ST cannot exist and the implementation is at least bd2cth-order secure.

This bound is tight for Boolean masking. If x = v0⊕v1⊕ . . . vd−1⊕vd, we can see
that x = t0 ⊕ · · · ⊕ tb d2 c, with ti = v2i ⊕ v2i+1 for 0 ≤ i < bd2c and tb d2 c

= vd if d

even, and tb d2 c
= vd−1⊕vd if d is odd. By contrast, it is not tight for other types of

masking schemes such as inner product or polynomial [1,22]. However, it would
be tight even for those masking schemes in the context of concatenation-based
transitions (i.e. if using v||v′ rather than v ⊕ v′ in Definition 2).

4 Experiments

In view of the simplicity of Theorem 1, one can naturally wonder whether it
captures real-world situations. That is, is it sufficient for a careless designer
to double the security order to obtain some guarantees for his masked imple-
mentations? In the rest of the paper, we investigate this question in various
practically-relevant scenarios. For this purpose, we will focus on secure S-box
computations. As explained in [24], this is usually the most challenging part
of a masked block cipher. In the case of AES that we will consider next, the
method exploits a representation of the S-box with power functions in GF(28) ≡

GF(2)[x]/x8 +x4 +x3 +x+ 1 (see Algorithm 3 in [24]). We will implement it for
two key additions followed by two inversions (see Algorithm 1). Note that we are
aware that the masked inversion scheme proposed by Rivain and Prouff exhibits
a small bias as presented by Coron et al. in [9], however, this does not affect our
results and conclusions, as explained in the full version of this paper [2] which
can be found online here: http://eprint.iacr.org/2014/413.

Concretely, we made several implementations of Algorithm 1, which is com-
plex enough to exercise registers, ALU, RAM and ROM. Note that we provide

Algorithm 1 Masked key addition and inversion.

Require: Shares (p0i)i, (p
1
i)i, (k

0
i)i, (k

1
i)i satisfying ⊕ip

0
i = p0,⊕ip

1
i = p1,⊕ik

0
i =

k0,⊕ik
1
i = k1; with k0 fixed and k1 6= k0 fixed

Ensure: Shares (c0i), (c1i) satisfying ⊕ic
0
i = (p0 ⊕ k0)−1,⊕ic

1
i = (p1 ⊕ k1)−1

1: for i from 0 to 1 do
2: for j from 0 to d do
3: xj ← pij ⊕ ki

j

4: end for
5: (ci0, . . . , c

i
d)← SecInv(x0, . . . , xd)

6: end for

input plaintext and key bytes to the implementations in d+ 1 shares each. This
ensures that the device does not process unmasked variables, unless the shares
are explicitly combined by the implementation, which is highly relevant for our
testing procedure. We investigate the impact of the following parameters:

– Programming language: we contrast handwritten assembly (ASM) and com-
piled C code. For both ASM and C we implemented straightforwardly with
little attention to secure the implementations.

– Device architecture: we provide results for an Atmel AVR and for an 8051
compatible microcontroller.

– Compiler flags: we assess the impact of compiler flags. We compiled the
C code with default options and with several combinations of flags that
influence the degree of optimization as well as the order in which registers
are assigned.

– Masking order: we implemented everything for d = 1 (2 shares) and for d = 2
(3 shares).

– Mask re-use: since randomness is expensive on low cost microcontrollers
an implementer might decide to re-use random masks. We contrast imple-
mentations that use fresh randomness for the processing of each input byte
(initial masking, SecMult, RefreshMasks) and implementations that recycle
the randomness from the processing of the first byte for the processing of
the second byte. Since our microcontrollers do not have an internal source
of randomness, we provide uniformly distributed random numbers from the
measurement PC.

http://eprint.iacr.org/2014/413

4.1 Implementation details

Our main target platform is an AVR ATmega163 microcontroller in a smart
card body. It internally provides 16 kBytes of flash memory and 1 kByte of
data memory. Implementations are processed by avr-gcc (ver. 4.3.3) from the
WinAVR tools (ver. 20100110).

The implementation of the secure inversion requires support for arithmetic in
the finite field GF(28). Multiplication over GF(28) is implemented using log and
alog tables [28]. This method requires two read-only tables of 256 bytes each and
allows to compute the product of two non-zero field elements in 3 table lookups.
Since a straightforward implementation of this technique may exhibit SPA leak-
age when handling 0 inputs, we implemented an SPA-resistant version of Kim
et al. as in [14]. This version, illustrated in Algorithm 2, avoids if/else state-
ments and expresses the logical conditions in the form of elementary arithmetic
operations.

Algorithm 2 SPA-resistant multiplication over GF(28) [14].

Require: Field elements a, b ∈ GF(28), log and alog tables
Ensure: Field element a× b ∈ GF(28)
1: (c, s) = log[a] + log[b] /* c holds carry bit, s the lower 8 bits */
2: r = alog[c + s]
3: return (a&&b) · r /* && indicates logical AND condition */

Assembly. Our assembly implementations are tailored to the target AVR archi-
tecture and optimized for speed. We have developed codes for each of the tested
masking orders, i.e. one for d = 1 and one for d = 2. Our routine for field mul-
tiplication takes 22 cycles. More than a third of this time is devoted to achieve
a constant flow of operations to securely implement line 3 in Algorithm 2. Both
log and alog tables are stored in program memory. All raisings to the power of
two are implemented as lookup tables in program memory. While this requires
the storage of 3×256 = 768 bytes, it results in a significant performance increase.
Further speed-ups are achieved by aligning all tables on a 256 byte boundary
(0x100). This ensures all addresses of the cells differ only in the lower byte and
allows for more efficient handling of pointers.
C language. One of the goals of our experiments is to devise and evaluate
platform-independent C code. Declaring and accessing program memory arrays
in AVR requires the use of special attributes in avr-gcc2. Consequently, we
cannot take advantage of storing lookup tables in program memory and the
implementation becomes more restricted in terms of storage than its ASM coun-
terpart. Our C routine for multiplication over GF(28) follows the code given in
Algorithm 2. The two log and alog tables take half of the available space in
RAM. Because of this we opt to perform field squarings as field multiplications,

2 See http://www.nongnu.org/avr-libc/user-manual/pgmspace.html

http://www.nongnu.org/avr-libc/user-manual/pgmspace.html

i.e. without using lookup tables. This saves 768 bytes of memory arrays with
respect to the assembly implementations, but results in larger execution times
and more randomness requirements.

4.2 Testing procedure

The security evaluation of cryptographic implementations with respect to side-
channel attacks is a topic of ongoing discussions and an open problem. Since
long, implementations are evaluated (in academia) by testing their resistance to
state-of-the-art attacks. However, it is well known that this is a time-consuming
task with potentially high data and computational complexity. In addition, an
implementation that resists known attacks may still have vulnerabilities that
can be exploited by new attacks. Hence, this style of evaluation can lead to a
false sense of security, but it also stimulates improvements of the state-of-the-
art. In 2009, Standaert et al. [26] proposed a framework for the evaluation of
cryptographic implementations w.r.t. side-channel attacks. For univariate anal-
ysis (i.e. analysis of each time sample separately), their information-theoretic
metric shows how much information is available to an attacker in a worst-case
scenario. It directly corresponds to the success rate of a (univariate) template at-
tack adversary and captures information present in any statistical moment of the
leakage distributions. For multivariate analysis (i.e. joint analysis of time sam-
ples) the technique relies on heuristics regarding the selection of time samples,
just as well as all state-of-the-art attacks. The technique has strong requirements
w.r.t. data and computational complexity. For our evaluations, computing the
metric is beyond feasible, but it would also be inappropriate as we are interested
in testing specific statistical moments of the measured distributions for evidence
of leakage (while a worst-case evaluation typically exploits all the statistical mo-
ments jointly). We therefore adopt the relatively novel approach to evaluation
called leakage detection. Contrary to the classical approach of testing whether a
given attack is successful, this approach decouples the detection of leakage from
its exploitation. And contrary to the IT metric, this approach can be tuned in
order to evaluate specific statistical moments of the measured distributions.

For our purpose we use the non-specific t-test based fixed versus random
leakage detection methodology of [7,11]. It has two main ingredients: first, chosen
inputs allow to generate two sets of measurements for which intermediate values
in the implementation have a certain difference. Without making an assumption
about how the implementation leaks, a safe choice is to keep the intermediate
values fixed for one set of measurements, while they take random values for the
second set. The test is specific, if particular intermediate values or transitions
in the implementation are targeted (e.g. S-box input, S-box output, Hamming
distance in a round register, etc.). This type of testing requires knowledge of
the device key and carefully chosen inputs. On the other hand, the test is non-
specific if all intermediate values and transitions are targeted at the same time.
This type of testing only requires to keep all inputs to the implementation fixed
for one set of measurements, and to choose them randomly for the second set.
Obviously, the non-specific test is extremely powerful. The second ingredient is

a simple, robust and efficiently computable statistical test to determine if the
two sets of measurements are significantly different (to be made precise below).

In our experiments, all implementations receive as input 4(d + 1) shares
(p0i)i, (p1i)i, (k0i)i, (k1i)i of the plaintext and key bytes. The (unshared) key
bytes (k0, k1) are fixed with k0 6= k1. We obtain two sets of measurements from
each implementation. For the first set, we fix the values p0 = k0 and p1 = k1

such that, without masking, the input of the inversion function would be zero,
which is likely to be a “special” case. Indeed, all the intermediate results through
the exponentation to the power of 254 would be zero. We denote this set Sfixed.
For the second set, the values of p0 and p1 are drawn at random from uniform.
We denote this set Srandom. Note that we obtain the measurements for both
sets interleaved (one fixed, one random, one fixed, one random, etc.) to avoid
time-dependent external and internal influences on the test result. A power trace
covers the execution of steps 1 to 6 in Algorithm 1.

We then compute Welch’s (two-tailed) t-test:

t =
µ(Sfixed)− µ(Srandom)√
σ2(Sfixed)
#Sfixed

+ σ2(Srandom)
#Srandom

, (2)

(where µ is the sample mean, σ2 is the sample variance and # denotes the
sample size) to determine if the samples in both sets were drawn from the same
population (or from populations with the same mean). The null hypothesis is that
the samples in both sets were drawn from populations with the same mean. In
our context, this means that the masking is effective. The alternative hypothesis
is that the samples in both sets were drawn from populations with different
means. In our context, this means that the masking is not effective.

At each point in time, the test statistic t together with the degrees of freedom
ν, computed with the Welch-Satterthwaite equation allow to compute a p value
to determine if there is sufficient evidence to reject the null hypothesis at a
particular significance level (1 − α). The p value expresses the probability of
observing the measured difference (or a greater difference) by chance if the null
hypothesis was true. In other words, small p values give evidence to reject the
null hypothesis.

As in any evaluation, one is left with choosing a threshold to decide if an
observed difference is significant or not. Typical significance levels in statistics
are 0.05 and 0.00001 [16]. However, here we aim at choosing the threshold in a
less arbitrary, data-driven way. To this end, we run a test “random-vs-random”.
In this test, measurements in both groups come from the same population (pop-
ulation of traces with random plaintext) so we know that the null hypothesis
is true. We compute the test statistic t based on a random partition into two
groups, keep its largest absolute value and repeat the experiment 200 times,
each iteration with a fresh random partition into two sets. The highest absolute
t-value we observed was 5.6088. For orientation, note that for large sample sizes
the probability to observe a single t-value with absolute value ≥ 4.5 by chance
is approximately 0.001% [11]. The fact that we observe several t-values with
absolute value ≥ 5 by chance can be attributed to the length of the traces we

used for this test (5 million time samples). In light of this result, we select a
conservative threshold of ±5 for the statistic t in all experiments to determine
if an observed difference in means of the two sets is significant or not.

Further, also this type of evaluation is limited by the number of measurements
at hand. In case the test does not show sufficient evidence of leakage, repeating
the same evaluation with more measurements might do.

4.3 Security results

We measure the power consumption of the AVR platform as the voltage drop
over a 50 Ohm shunt resistor placed in the GND path. For all code evaluations
we set the device’s clock at 3.57 MHz and the oscilloscope’s sampling rate at
250 MS/s. Results are presented in form of plots of t-values on the y-axis and time
on the x-axis. Recall that the t-test is applied to each time sample individually.
Superposed, we plot a threshold of±5 for the statistic t. For clarity, we include an
auxiliary trigger signal in the upper part of the figure to indicate the beginning
and the end of each byte’s processing, i.e. masked key addition followed by
masked field inversion.
Assembly. We begin by evaluating the AVR assembly implementation corre-
sponding to the masking order d = 1 (two shares). The results are shown in
Figure 1. The first input byte is processed until time sample ≈ 3 × 104, while
processing of the second byte starts at time sample ≈ 4×104. The left plot corre-
sponds to the implementation with fresh randomness. The right plot is the result
for recycled randomness. Both experiments are performed using a set of 1 000
measurements: 500 corresponding to Sfixed and 500 corresponding to Srandom.

1 2 3 4 5 6

x 10
4

−50

0

50

Time samples
1 2 3 4 5 6

x 10
4

−50

0

50

Time samples

Fig. 1: T-test evaluation. Assembly, d = 1. Left: fresh randomness, 1k traces.
Right: recycled randomness, 1k traces. Clear evidence of first-order leakage.

Figure 1 shows clear excursions of the t-test statistic beyond the defined
thresholds, rejecting the null hypothesis. This indicates the existence of obvi-
ous univariate first-order leakage, in the form of identical patterns in each byte
processing. There is no appreciable difference between using fresh versus recy-
cled randomness. The outcome of this first experiment is however not surprising:
as our platform is known to leak transitions, a (straightforward) implementa-
tion with masking order d = 1 is likely to be vulnerable to univariate attacks

(see, e.g. [8] for similar findings). Perhaps more important, the results of the
evaluation serve to validate the soundness of our testing methodology.

The situation changes when we evaluate the case d = 2 (three shares), as
illustrated in Figure 2. Even by increasing the number of measurements to 10 000,
the t-test does not reject the null hypothesis for both scenarios. This indicates
that any attack exploiting univariate first-order information (i.e., mean traces
for each unshared value) is expected to fail, since there is no information about
intermediate values in the first statistical moment. Interestingly, this result shows
a first constructive application of Theorem 1. Starting with an implementation
with second-order security in a value-based leakage model, we are able to achieve
first-order security on a device with a transition-based leakage behavior. Finally,
note that all our claims regarding the evaluation for d = 2 are restricted to first-
order scenarios. In fact, attacks exploiting second or higher statistical moments
are expected to succeed in breaking the implementation. We addressed this point
in more detail in Appendix 4.3 (together with the previously mentioned flaw
exhibited at FSE 2013). Besides, and as already mentioned, all evaluations are
inherently limited to the number of measurements at hand. In this respect,
one may imagine that more measurements would allow detecting a first-order
leakage. Yet, we note that in all our following experiments, whenever we claim
no evidence of first-order leakages, second-order leakages were identified with
confidence. This suggests that even if first-order leakages could be detected,
their informativeness would be limited compared to second-order ones.

2 4 6 8 10 12

x 10
4

−6

−4

−2

0

2

4

6

Time samples
2 4 6 8 10 12

x 10
4

−6

−4

−2

0

2

4

6

Time samples

Fig. 2: T-test evaluation. Assembly, d = 2. Left: fresh randomness, 10k traces.
Right: recycled randomness, 10k traces. No evidence of first-order leakage.

C language. A natural follow-up question is whether the results obtained so far
hold for the case of C implementations. In the following we evaluate the results
of our platform-independent C code. For the first set of tests we initially switch
off the avr-gcc compiler flags for optimization, i.e. we use the option -O0.

Figure 3 shows the results obtained for the case d = 1 (two shares). As
expected, the evaluation of the d = 1 implementation on our AVR platform
indicates univariate first-order leakage. This result is consistent with its assembly
counterpart. The main difference is that the absolute value of the statistic t at
time samples beyond the ±5 threshold is smaller, probably due to the leakage
being more scattered. After all, code resulting from compiling C is expected

to be more sparse code than concise, hand-crafted assembly. Illustrative of this
effect is also the considerable increase in length of our measurements, from 70 000
samples to 1 200 000 samples.

2 4 6 8 10

x 10
5

−20

−10

0

10

20

Time samples
2 4 6 8 10

x 10
5

−20

−10

0

10

20

Time samples

Fig. 3: T-test evaluation. C, no flags, d = 1. Left: fresh randomness, 1k traces.
Right: recycled randomness, 1k traces. Clear evidence of first-order leakage.

The results obtained for d = 2 (three shares) are given in Figure 4. Here
we observe a substantial difference between the fresh randomness and recycled
randomness scenarios. While the left plot does not exhibit excursions beyond the
threshold, the right plot does unexpectedly suggest clear univariate leakage. In
fact, the statistic t shows a particular pattern not bound to a few time samples.
Rather differently, it gradually increases over time and it only appears during
the second half of the trace, i.e. during the processing of the second input byte
with recycled randomness.

0.5 1 1.5 2

x 10
6

−6

−4

−2

0

2

4

6

Time samples
0.5 1 1.5 2

x 10
6

−6

−4

−2

0

2

4

6

Time samples

Fig. 4: T-test evaluation. C, no flags, d = 2. Left: fresh randomness, 10k traces.
Right: recycled randomness, 10k traces. Evidence of first order leakage.

We have verified that these results are caused by a non-constant time behav-
ior of our compiled code. Although our C routines are written following seemingly
constant-time and SPA-resistant algorithms [14], the avr-gcc compiler gener-
ates code with conditional execution paths. More specifically, the compiler trans-
forms the Boolean evaluation a&&b into a series of TST (test for zero and minus)
and BREQ (branch if equal) commands in assembly, regardless of the choice of
compiler flags. This results in variable execution time (and flow) depending on

the value(s) of the input(s). From this, we conclude that the pseudo-code given
in Algorithm 2 is equivalent to the original use of if / else statements, and
therefore fails in providing resistance against SPA.

Note that it is unclear whether this leakage due to time variations can be
exploited by univariate first-order attacks. While any practically exploitable first-
order leakage will show up in the statistic t, the contrary is not true, i.e. not
all leakage identified by the t-test may be practically exploitable. In order to
confirm the identified origin of the leakage, we implement a new C routine for
multiplication in GF (28) that does not directly evaluate the Boolean condition
a&&b. Instead, our code follows a series of time-constant operations which are
equivalent to the Boolean statement. The results obtained from evaluating this
code are depicted in Figure 5. No obvious leakage is observed in either of the two
scenarios, verifying that the shapes in Figure 4 are indeed caused by misalign-
ments due to timing differences. As a downside, note that the performance of our
platform-independent SPA-resistant code degrades significantly. The number of
samples per measurement increases from 2 500 000 to 8 500 000, which in turn
makes our analyses more difficult to carry out.

x 10
6

x 10
6

Fig. 5: T-test evaluation. C, no flags, d = 2, secure routine for multiplication
in GF (28). Left: fresh randomness, 10k traces. Right: recycled randomness, 10k
traces. No evidence of first-order leakage.

These results are interesting since they moderate the applicability of Theo-
rem 1 for compiled codes. That is, while this theorem nicely predicts the impact
of transition-based leakages on the the security order of our implementations, it
does not prevent the existence of other flaws due to a careless implementation
leading to data-dependent execution times. That is, whenever taking advantage
of compilers, designers should still pay attention to avoid such SPA flaws, e.g.
by ensuring constant-time implementations. Note that this remains an arguably
easier task than ensuring DPA security, which therefore maintains the interest
of our theorem even in this case.

Compiler options. A relevant scenario for the security evaluation of C code is
to determine the impact of compiler flags. To this end, we provide the security
evaluation for different compilation processes with avr-gcc. In particular, we
analyze the effects for different degrees of optimization (flag -O) and for different

assignment of registers (flag -morder). As can be seen in Figures 6, 7 and 8, these
changes do not significantly affect our security conclusions.

1 2 3 4

x 10
6

−6

−4

−2

0

2

4

6

Time samples
1 2 3 4

x 10
6

−6

−4

−2

0

2

4

6

Time samples

Fig. 6: T-test evaluation. C, -O1, d = 2. Left: fresh, right: recycled randomness.

1 2 3 4

x 10
6

−6

−4

−2

0

2

4

6

Time samples
1 2 3 4

x 10
6

−6

−4

−2

0

2

4

6

Time samples

Fig. 7: T-test evaluation. C, -O2, d = 2. Left: fresh, right: recycled randomness.

2 4 6 8 10 12 14

x 10
5

−6

−4

−2

0

2

4

6

Time samples
2 4 6 8 10 12 14

x 10
5

−6

−4

−2

0

2

4

6

Time samples

Fig. 8: T-test evaluation. C, -O3, d = 2. Left: fresh, right: recycled randomness.

They do have however quite strong impact on the performance, in terms of
both code size and cycle count. A detailed summary of the performance figures
for each of the 30 combinations of compiler flags and masking orders is provided
in Table 1. As one may expect, the implementations leading to a better speed vs.
memory trade-off are programmed in assembly. The fastest C implementations
(with flag -O3) are ten times slower than their assembly counterpart. Recall that
due to data memory constraints, C implementations perform field squaring as
field multiplication. In addition, achieving a time and flow constant implemen-
tation of Algorithm 1 in [24] in C is more complex than in assembly. In fact,
while a multiplication over GF (28) in assembly takes 22 cycles, the fastest one

achieved in C (again with flag -O3) requires 150 cycles. This explains the great
difference in performance numbers.

Table 1: Implementation results for masking order d = 1 (left) and d = 2 (right).

Language Flags
ROM Speed

(bytes) (cycles)

ASM n/a 2 820 627

C -O0 2 806 38 005

C -O1 1 776 18 611

C -O2 1 626 17 677

C -O3 3 866 5 017

C -Os 1 606 17 722

C -morder1 -O0 2 926 38 116

C -morder1 -O1 1 770 18 341

C -morder1 -O2 1 630 17 669

C -morder1 -O3 3 874 5 017

C -morder1 -Os 1 610 17 714

C -morder2 -O0 2 818 38 487

C -morder2 -O1 1 780 18 645

C -morder2 -O2 1 634 17 939

C -morder2 -O3 3 868 5 029

C -morder2 -Os 1 614 17 984

Language Flags
ROM Speed

(bytes) (cycles)

ASM n/a 3 588 1 168

C -O0 2 886 72 880

C -O1 1 956 35 752

C -O2 2 018 35 083

C -O3 4 310 11 211

C -Os 2 002 35 443

C -morder1 -O0 3 006 73 018

C -morder1 -O1 1 952 35 247

C -morder1 -O2 2 024 35 071

C -morder1 -O3 4 318 11 051

C -morder1 -Os 2 010 35 443

C -morder2 -O0 2 898 73 056

C -morder2 -O1 1 958 35 809

C -morder2 -O2 2 030 35 600

C -morder2 -O3 4 312 11 139

C -morder2 -Os 2 014 35 960

Other platforms. A final question of interest is whether the previous results
hold for devices other than AVR. To this end, we perform a second set of exper-
iments with the C implementations on an 8051 processor. Our results confirm
that this is indeed the case, albeit with certain differences regarding the shape
of the statistic t and the number of traces required to achieve clear results.

In this setup, both program and data memory are provided as external com-
ponents. We process our C implementations using the Keil C51 toolchain (v9.02)
and setting the compiler flags to speed optimization. The ASIC core is clocked
at 7 MHz and the sampling rate of the oscilloscope is set at 250 MS/s. Power
measurements are obtained by capturing the voltage drop over a 50 Ohm resistor
in the Vdd path.

The evaluation results are illustrated in Figure 9 for the case of fresh ran-
domness. The left plot depicts the outcome of the t-test for d = 1 (2 shares). The
existence of univariate first-order leakage is confirmed by clear peaks appearing
symmetrically along the processing of each byte. The shape of the excursions
beyond the ±5 threshold is different than the one obtained for the AVR. Also,
we need to evaluate the t-test with a larger number of measurements in order
to clearly detect first-order leakage. As usual in the context of empirical evalua-
tions, such a situation is hard to explain formally. Nevertheless, we believe two
main reasons are the cause for this. First, the more noisy nature of the measure-
ment setup. And second, the less leaky behavior of the targeted 8051 core. For
the sake of completeness, we present the results for d = 2 (3 shares) in the right

plot of Figure 9. Similar to AVR, there is no evidence of univariate first-order
leakage after processing 10 000 traces. Although we expect bivariate second-order
leakage to be present in these measurements, we have not attempted to detect
it. The reason for this is the expensive computation and storage required to
jointly process all possible sample pairs within such long traces (of millions of
time samples).

Fig. 9: T-test evaluation. C, no flags, 8051 platform, fresh randomness. Left:
d = 1, 10k traces. Right: d = 2, 10k traces. First-order leakage visible only in
the left plot.

Bivariate leakage. The bivariate second-order analysis can be found in the
extended version of this paper [2] which can be found online here: http://

eprint.iacr.org/2014/413. We successfully identified bivariate second-order
leakage using a t-test based methodology. This is an expected result, and it
serves to confirm that we indeed used enough traces for the previous univariate
first-order analysis. For details, we refer the reader to the extended version of
this paper.

5 Concluding remarks

Confirmed by numerous experiments, the results in this paper first suggest a
simple and natural way to convert security proofs obtained against value-based
leakage models into security guarantees of lower order against transition-based
ones. As a result, they bring a theoretical foundation to recent approaches to
side-channel security, trying to automatically insert countermeasures such as
masking in software codes. From a pragmatic point of view though, this positive
conclusion should be moderated. On the one hand, just looking at the security
order, we see that compiled codes can bring similar guarantees as handwritten
assembly. On the other hand, reaching such a positive result still requires paying
attention to SPA leakages (e.g. data-dependent execution times). Furthermore,
compiled codes generally imply significant performance overheads. Yet, we hope
that our results can stimulate more research in the direction of design automa-
tion for side-channel resistance, combining low development time and limited
implementation overheads.

http://eprint.iacr.org/2014/413
http://eprint.iacr.org/2014/413

Acknowledgements. F.-X. Standaert is a research associate of the Belgian
Fund for Scientific Research (FNRS-F.R.S.). Oscar Reparaz is funded by a
PhD fellowship of the Fund for Scientific Research - Flanders (FWO). Benedikt
Gierlichs is a Postdoctoral Fellow of the Fund for Scientific Research - Flan-
ders (FWO). This work has been funded in parts by the European Commis-
sion through the ERC project 280141 (CRASH), by the Hercules foundation
(AKUL/11/19) and by the Research Council KU Leuven: GOA TENSE (GOA/11/007).

References

1. J. Balasch, S. Faust, B. Gierlichs, and I. Verbauwhede. Theory and practice of a
leakage resilient masking scheme. In X. Wang and K. Sako, editors, ASIACRYPT,
volume 7658 of LNCS, pages 758–775. Springer, 2012.

2. J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F.-X. Standaert. On the
cost of lazy engineering for masked software implementations. Cryptology ePrint
Archive, Report 2014/413, 2014. http://eprint.iacr.org/.

3. L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F.-X. Standaert, and N. Veyrat-
Charvillon. Mutual information analysis: a comprehensive study. J. Cryptology,
24(2):269–291, 2011.

4. A. G. Bayrak, F. Regazzoni, D. N. Bruna, P. Brisk, F.-X. Standaert, and P. Ienne.
Automatic application of power analysis countermeasures. IEEE Transactions on
Computers, 99(PrePrints):1, 2013.

5. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. A more efficient
AES threshold implementation. In D. Pointcheval and D. Vergnaud, editors,
AFRICACRYPT, volume 8469 of LNCS, pages 267–284. Springer, 2014.

6. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In M. J. Wiener, editor, CRYPTO, volume 1666
of LNCS, pages 398–412. Springer, 1999.

7. J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy, and P. Rohatgi. Test
Vector Leakage Assessment (TVLA) methodology in practice. International Cryp-
tographic Module Conference, 2013. http://icmc-2013.org/wp/wp-content/

uploads/2013/09/goodwillkenworthtestvector.pdf.
8. J.-S. Coron, C. Giraud, E. Prouff, S. Renner, M. Rivain, and P. K. Vadnala. Con-

version of security proofs from one leakage model to another: A new issue. In
W. Schindler and S. A. Huss, editors, COSADE, volume 7275 of LNCS, pages
69–81. Springer, 2012.

9. J.-S. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel security
and mask refreshing. In S. Moriai, editor, Fast Software Encryption 2013, volume
8424 of LNCS, pages 410–424. Springer, 2014.

10. A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From probing
attacks to noisy leakage. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT,
volume 8441 of LNCS, pages 423–440. Springer, 2014.

11. G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side chan-
nel resistance validation. NIST non-invasive attack testing workshop, 2011. http:
//csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/

papers/08_Goodwill.pdf.
12. V. Grosso, F.-X. Standaert, and S. Faust. Masking vs. multiparty computation:

How large is the gap for AES? In G. Bertoni and J.-S. Coron, editors, CHES,
volume 8086 of LNCS, pages 400–416. Springer, 2013.

http://eprint.iacr.org/
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf

13. V. Grosso, F.-X. Standaert, and E. Prouff. Low entropy masking schemes, revis-
ited. In A. Francillon and P. Rohatgi, editors, Smart Card Research and Advanced
Applications - CARDIS 2013, LNCS, pages 33–43. Springer, 2014.

14. H. Kim, S. Hong, and J. Lim. A Fast and Provably Secure Higher-Order Masking
of AES S-Box. In B. Preneel and T. Takagi, editors, CHES, volume 6917 of LNCS,
pages 95–107. Springer, 2011.

15. S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of Masked CMOS
Gates. In A. Menezes, editor, CT-RSA, volume 3376 of LNCS, pages 351–365.
Springer, 2005.

16. L. Mather, E. Oswald, J. Bandenburg, and M. Wójcik. Does My Device Leak
Information? An a priori Statistical Power Analysis of Leakage Detection Tests.
In K. Sako and P. Sarkar, editors, ASIACRYPT, volume 8269 of LNCS, pages
486–505. Springer, 2013.

17. A. Moradi and O. Mischke. Glitch-free implementation of masking in modern
FPGAs. In HOST, pages 89–95. IEEE, 2012.

18. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the limits: A
very compact and a threshold implementation of AES. In K. G. Paterson, editor,
EUROCRYPT, volume 6632 of LNCS, pages 69–88. Springer, 2011.

19. A. Moss, E. Oswald, D. Page, and M. Tunstall. Compiler assisted masking. In
E. Prouff and P. Schaumont, editors, CHES, volume 7428 of LNCS, pages 58–75.
Springer, 2012.

20. S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation of non-
linear functions in the presence of glitches. J. Cryptology, 24(2):292–321, 2011.

21. E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security
proof. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT, volume 7881 of
LNCS, pages 142–159. Springer, 2013.

22. E. Prouff and T. Roche. Higher-order glitches free implementation of the AES
using secure multi-party computation protocols. In B. Preneel and T. Takagi,
editors, CHES, volume 6917 of LNCS, pages 63–78. Springer, 2011.

23. F. Regazzoni, A. Cevrero, F.-X. Standaert, S. Badel, T. Kluter, P. Brisk,
Y. Leblebici, and P. Ienne. A design flow and evaluation framework for DPA-
Resistant instruction set extensions. In C. Clavier and K. Gaj, editors, CHES,
volume 5747 of LNCS, pages 205–219. Springer, 2009.

24. M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In S. Man-
gard and F.-X. Standaert, editors, CHES, volume 6225 of LNCS, pages 413–427.
Springer, 2010.

25. T. Roche and E. Prouff. Higher-order glitch free implementation of the AES using
secure multi-party computation protocols - extended version. J. Cryptographic
Engineering, 2(2):111–127, 2012.

26. F.-X. Standaert, T. Malkin, and M. Yung. A unified framework for the analysis
of side-channel key recovery attacks. In A. Joux, editor, EUROCRYPT, volume
5479 of LNCS, pages 443–461. Springer, 2009.

27. F.-X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed,
M. Kasper, and S. Mangard. The World Is Not Enough: Another Look on Second-
Order DPA. In M. Abe, editor, ASIACRYPT, volume 6477 of LNCS, pages 112–
129. Springer, 2010.

28. E. D. Win, A. Bosselaers, S. Vandenberghe, P. D. Gersem, and J. Vandewalle. A
Fast Software Implementation for Arithmetic Operations in GF(2n). In K. Kim
and T. Matsumoto, editors, ASIACRYPT, volume 1163 of LNCS, pages 65–76.
Springer, 1996.

	On the Cost of Lazy Engineering for Masked Software Implementations
	Josep Balasch1, Benedikt Gierlichs1, Vincent Grosso2, Oscar Reparaz1, François-Xavier Standaert2.

