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Abstract—Static power consumption is an increasingly impor-
tant concern when designing circuits in deep submicron technolo-
gies. Besides its impact for low-power implementations, recent
research has investigated whether it could lead to exploitable
side-channel leakages. Both simulated analyses and measurements
from FPGA devices have confirmed that such a static signal
can indeed lead to successful key recoveries. In this respect, the
main remaining question is whether it can become the target
of choice for actual adversaries, especially since it has smaller
amplitude than its dynamic counterpart. In this paper, we answer
this question based on actual measurements taken from an AES
S-box prototype chip implemented in a 65-nanometer CMOS
technology. For this purpose, we first provide a fair comparison
of the static and dynamic leakages in a univariate setting, based
on worst-case information theoretic analysis. This comparison
confirms that the static signal is significantly less informative
than the dynamic one. Next, we extend our evaluations to a
multivariate setting. In this case, we observe that simple averaging
strategies can be used to reduce the noise in static leakage
traces. As a result, we mainly conclude that (a) if the target
chip is working at maximum clock frequency (which prevents the
previously mentioned averaging), the static leakage signal remains
substantially smaller than the dynamic one, so has limited impact,
and (b) if the adversary can reduce the clock frequency, the noise
of the static leakage traces can be reduced arbitrarily. Whether
the static signal leads to more informative leakages than the
dynamic one then depends on the quality of the measurements
(as the former one has very small amplitude). But it anyway
raises a warning flag for the implementation of algorithmic
countermeasures such as masking, that require high noise levels.

I. INTRODUCTION

The possible exploitation of static power consumption through
side-channel analysis against cryptographic implementations
has been put forward a while ago. Previous works have
provided concrete evidence that it can lead to successful key
recoveries, based on simulated analyses and actual measure-
ments [2], [7], [11], [16]. For example, in the latter reference,
Moradi described successful experiments of static leakage
based side-channel analysis against FPGA implementations.
So qualitatively, this source of leakage is well known and has
already triggered research on countermeasures [1], [8], [24].

In this paper, we aim to study the problem from a more
quantitative point-of-view. In particular, we are interested in
the question whether there exist situations where focusing
attacks on the static leakage could provide concrete gains
compared to the standard approach exploiting dynamic power.

Answering this question requires to perform fair comparisons
between both types of leakages, which (to the best of our
knowledge) has been left out of the analysis in previous
works (essentially because ad hoc attacks were sufficient for
proving qualitative statements). For this purpose, we relied on
the evaluation framework proposed at Eurocrypt 2009 [20],
and performed worst-case information theoretic and security
analyses of an AES S-box implemented in a 65-nanometer
CMOS technology. Our main conclusions are twofold.

First, in cases the target implementation runs at (or close to)
maximum frequency, the information provided by static power
remains substantially lower than that of dynamic leakage –
so is essentially useless. This is because its signal amplitude
is significantly lower and a limited number of samples are
available to exploit it. Second, in cases the adversary can
control (and reduce) the clock frequency of a target device,
the information provided by static power can be the weak
point – so become a critical source of leakage. This is because
reducing the clock frequency may significantly increase the
portion of the traces containing only static leakage, hence
allow reducing its noise via simple averaging strategies. Such
observations naturally fit with the standard intuition in low-
power design that it is the integration of static power over
(long) time(s) that makes it energy consuming. In view of
simulated analyses available from smaller technologies, we
believe this intuition is valid for most current implementations.

These results have important consequences. First and very
concretely, they confirm that clock control may be a significant
advantage for side-channel adversaries (as already hinted in
previous works on the topic [17]). Second, they raise warning
flags for the security of different algorithmic countermeasures
against side-channel attacks, since many of them have as
primary requirement that the measurements should be “suf-
ficiently noisy”. This is the case, e.g. of masking [18] (that we
briefly discuss in conclusion of this work) and shuffling [23].
Eventually, they exhibit a context where the “only computation
leaks” paradigm (that is frequently used in formal works
aiming to prevent side-channel attacks [15]) is not respected.

II. BACKGROUND

Notations. In the rest of the paper, we use capital letters for
random variables and small caps for their realizations. Vectors
are denoted with bold notations, functions with Greek letters
or sans serif fonts and sets with calligraphic ones.



A. Target chip and setup

Our analysis is based on actual power traces obtained from
the execution of an AES Rijndael S-box, full-custom designed
in a low-power 65-nanometer CMOS technology, measured
under a 1.2V supply voltage. We used an area-optimized
architecture based on composite field arithmetic, described
in [14], of which the design is detailed in [10]. Measurements
were performed on a prototype chip implementing this S-
box, made of 1,530 transistors and with a maximum logic
depth of 22. This leads to a delay of 3 ns at 1.2V supply
voltage, hence tolerating operating frequencies up to 200 MHz
(taking a security margin of 2 ns). Yet, since our goal was
to investigate static leakages, our measurements were running
the chip at a much lower 2 MHz frequency. Concretely, we
monitored the voltage drop on a resistor introduced in the
supply circuit of the chip, using a high sampling rate 8-bit
oscilloscope. For illustration, Figure 1 shows an exemplary
trace where the samples corresponding to the dynamic and
static power consumption are marked. However, in order to
exploit the full quantization range of our oscilloscope, these
static and dynamic parts have been measured separately (see
the figures in the next section). Furthermore, and in order
to limit the memory requirements of our experiments, we
measured 256×1,000 traces at a sampling rate of 2 GS/s
corresponding to the 256 S-box inputs for the dynamic parts
of the traces, and 256×100 traces at 1 GS/s corresponding
to the 256 S-box inputs for the (much longer) static parts
of the traces. In the following, we denote the ith leakage
trace corresponding to the intermediate value y = x⊕ k with
S(y)  liy . We further use li,dyn

y and li,stat
y for the dynamic

and static parts of the traces. Eventually, whenever accessing
the jth time sample of these traces, we will use the notations
li,dyn
y (j) and li,stat

y (j). These subscripts and superscripts will
be omitted when not necessary and clear from the context.
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Fig. 1. Leakage trace with dynamic and static parts of the power consumption.

B. Evaluation tools and metrics

We now describe the tools and metrics used in our experiments.
In order to mitigate biases due to incorrect a-priori choices of
leakage models, we rely on profiled distinguishers. Namely,
we estimate the Signal-to-Noise Ratio and the Perceived Infor-
mation of our implementation, based on Gaussian Templates,
possibly enhanced by Principal Component Analysis.

1) Gaussian Templates (GT): Introduced by Chari et al. [5]
at CHES 2002 as a powerful attack against cryptographic
implementations, GT essentially extract secret information
based on probabilistic leakage models (next denoted as P̂rmodel)
– which can typically be used to estimate the Perceived
Information metric (see below). For this purpose, GT assume
that the leakages can be interpreted as the realizations of a

random variable which generates samples according to a Gaus-
sian distribution. For example, when the target intermediate
value is a key addition (as in the following), we have that
P̂rmodel[ly|x, k] ≈ P̂rmodel[ly|x⊕k] ∼ N (µ̂y, Σ̂

2
y), with µ̂y and

Σ̂2
y the mean vector and covariance matrices corresponding

to the target intermediate value y. The latter simplifies to
P̂rmodel[ly|x ⊕ k] ∼ N (µ̂y, σ̂

2
y) in the case of univariate

leakages. Hence, this approach only requires the estimation
of the sample means and (co)variances corresponding to each
y = x ⊕ k from a set Lp

Y of Np profiling traces. We denote
this profiling step as P̂rmodel ← Lp

Y . In order to recover the
key, GT then estimates probabilities for each candidate k∗:

pk∗ =

q∏
i=1

P̂rmodel[k
∗|x, liy],

which corresponds to the DPA setting where the input x is
given to the adversary. Note that for this second step, the traces
are taken from a new set Lt

Y with Nt test traces.

2) Principal Component Analysis (PCA): In order to max-
imize the amount of information extracted from leakage traces
while keeping the advantage of low-dimensional data spaces,
dimensionality reduction techniques such as PCA can be
applied, as introduced in the context of side-channel analysis
by Archambeau et al. [3] at CHES 2006. PCA projects the
traces into a subspace of small dimensionality while optimizing
the inter-class variance. When applied to mean traces in the
context of unprotected implementations (as in the following),
this corresponds to maximizing the so-called “leakage signal”
(which corresponds to the variance taken over the mean traces).
Concretely, we will apply PCA to the dynamic parts of the
traces, and denote the reduced samples as PCA(li,dyn

y ).

3) Signal-to-Noise Ratio (SNR): Introduced by Man-
gard [12] at CT-RSA 2004, the SNR of a sample point in
a power trace can be defined as:

ˆSNR =
v̂ary

(
Êi(L

i
y)
)

Êy

(
v̂ari(Li

y)
) ,

with Ê and v̂ar denoting the sample mean and variance
operators. Contrary to Perceived Information which relies on
GT (hence requires two sets of profiling and test traces), the
SNR is estimated from a single set of Nt test traces.

4) Perceived Information (PI): The information theoretic
metric introduced by Standaert et al. [20] at Eurocrypt 2009
aims at quantifying the leakage of an implementation by
measuring the Mutual Information (MI) between the sensitive
values manipulated by the device and the leakages it produces:

MI(K;X,L) = H[K]−
∑
k∈K

Pr[k]
∑
x∈X

Pr[x]

·
∑

liy∈LY

Prchip[liy|k, x] · log2 Prchip[k|x, liy].

In practice, the real leakage probability density function is
unknown, hence the adversary can only approximate the MI
based on the adversary’s chip model (e.g. using the GT



described above). This results in computing the PI introduced
by Renauld et al. [19] at Eurocrypt 2011, which is given by:

P̂I(K;X,L) = H[K]−
∑
k∈K

Pr[k]
∑
x∈X

Pr[x]

·
∑

liy∈Lt
Y

Prchip[liy|k, x] · log2 P̂rmodel[k|x, liy].

Intuitively, the MI quantifies the worst-case security level of
a leaking device, while the PI (computed with the “best-
available” model) quantifies its best concrete estimate. In the
following, we will compute the PI separately for Ldyn or Lstat.
Besides being applicable to multivariate leakages, one advan-
tage of this metric is that it embeds a test for the quality of the
adversary’s model, which may avoid some shortcomings of the
SNR metric, as will be shown next. Indeed, the PI essentially
computes how well the true distribution Prchip[liy|k, x] can
be “explained” by the estimated distribution P̂rmodel[k|x, liy].
Thanks to this feature, and in order to obtain accurate PI
values, our experiments exploit 10-fold cross-validation as
suggested by Durvaux et al. [6] at Eurocrypt 2014.

Note that we considered the PI for a single chip (i.e. we
profiled and attacked the same chip), which can be substan-
tially easier than profiling one chip and attacking another one,
e.g. in case of variability in the power measurements [19].
The motivation for considering this (worst) case is the same
as the one for using the PI metric in general. That is, our goal
is to evaluate the security of an implementation independent
of the adversary exploiting it, and without relying on the
possibly incomplete knowledge of the leakage model. That is,
we stick with the standard cryptographic setting where only the
key is considered as secret knowledge (whereas considering
inaccurate leakage models, although sometimes justified in
practice, amounts to relying on security by obscurity).

III. EXPERIMENTAL RESULTS

Preliminary results presented at CHES 2014 showed the feasi-
bility of attacks using the static power on FPGA platforms [16].
We now present complementary studies targeting the CMOS
S-box implementation described in the previous section.

A. Leakage traces, signal, noise and SNR

As a preliminary step, we represented the 256 mean leak-
age traces corresponding to the dynamic and static power
consumption of our chip (see Figure 2-left, and Figure 3-
left, respectively). While the dynamic traces present clearly
visible data-dependent power variations, allowing us to detect
points-of-interest by visual inspection, this is not the case for
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Fig. 2. Dynamic power consumption: mean leakage traces and SNR.
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Fig. 3. Static power consumption: mean leakage traces and SNR.

the static measurements which exhibit a much smaller signal.
These observations are confirmed by computing the respective
SNR of these traces’ samples, included in the right part of
the figures. The SNR of the dynamic power indeed exhibits
clear peaks. By contrast, the SNR estimations for the static
leakages are more questionable. On the one hand, they are
positive for all samples. On the other hand, they look very
noisy compared to their dynamic counterpart. Hence, one could
naturally suspect that this signal could come from estimation
errors in the mean traces Êi(L

i
y), hence creating variance in the

term v̂ary
(
Êi(L

i
y)
)

that would not correspond to exploitable
information. Such doubts are in fact typical of the possible
shortcomings discussed in [6] for metrics (such as the SNR)
that do not allow cross-validation. In the next section, we show
evidence that these doubts can be encountered, by trying to
confirm these SNRs with a fair(er) PI-based evaluation.

B. Fair (univariate) comparison using the PI

In order to confirm/infirm the previous SNR-based evaluations,
we computed PI estimates from Gaussian templates using
10-fold cross-validation. First, we evaluated this PI for the
dynamic and static power traces across all time samples. The
result of this analysis is given in Figure 4, where we can
observe that for the dynamic power (left part of the figure),
the PI curves nicely match with the conclusions derived in the
previous section, hence confirming the soundness of the SNR
metric when the number of measurements available is enough
to estimate the signal and noise components accurately. By
contrast, for the static measurements (right part of the figure)
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Fig. 4. PI for all time samples: dynamic (left) and static (right) power.

one can observe that the PI is negative for each time sample,
hence confirming that the SNR obtained in the previous section
is due to estimation artifacts. On the one hand, this proves that
when limited to univariate analysis, the amount of information
provided by our static leakage samples is significantly lower
than dynamic ones. In our experiments, it was even too small
to lead to any exploitable information (i.e. a positive PI). We
believe that such an observation (i.e. that the univariate PI is
larger for the dynamic leakages than for static ones) generally
holds for any current CMOS technology. On the other hand,



it is also likely that the negative PI comes from a very weak
SNR and would simply require more measurements to exhibit
exploitable leakage and contrast our conclusions. Therefore,
we investigate this scenario in the next subsection.

C. Multivariate analysis

In order to reduce the noise in the static part of the power
traces, a natural option is to perform more measurements and
to average them. Nevertheless, since we expect the static power
consumption to be constant, a much more efficient option is to
average these traces across the time samples. We will denote
this averaging process with AVG(lstat

y ). It actually corresponds
to the strategy exploited by Moradi in [16]. Quite naturally,
and in order to keep our comparisons (somewhat) comparable
(see the following discussion), it also means that we need to
move to a multivariate setting for the dynamic leakages as
well. As a starting point, we considered the PCA described
in Section II-B for this purpose, and projected our dynamic
traces onto a 1-dimensional principal subspace PCA(ldyn

y ). The
result of these multivariate attacks are given in Figure 5. As
expected, the left part of the figure shows that PCA leads to
an improved PI (compared to the one obtained with the best
Point-of-Interest). More importantly, we observe that averaging
greatly increases the amount of information leaked through
the static power consumption in the right part of the figure.
In our setting, the averaging was limited to 5,000 samples
(i.e. the size of our static leakage traces) but was enough
(a) to reach positive PI values (meaning exploitable leakages),
hence confirming the results of Moradi, and (b) to exhibit some
saturation in the information gain provided by the averaging.
We next discuss the interpretation of these results.
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Fig. 5. Left: PI for the dynamic power, computed from the best PoI and
PCA. Right: PI for the static power after averaging across time samples.

D. Interpretation/discussion

In view of the results of Figure 5, a natural question to ask is
“how far can we go?”. Clearly, we observed that the PI of the
static leakage traces can be increased thanks to averaging. But
in our setting, it remained lower than its dynamic counterpart.
The most important point to acknowledge here is that in theory,
the PI of the static power could reach a full leakage of the
secret key – and in fact, this only depends on the quality of
the measurement setup. Indeed, the most important feature of
static leakages is that their noise can be arbitrarily reduced
thanks to intra-trace averaging (whereas dynamic leakages can
mostly benefit from inter-trace averaging). So the value of
the PI eventually reached in this case only depends on the
amplitude of the static signal and quality of the acquisition
devices (with typically 8 bits to 12 bits of quantization). Our
setup was limited to a PI of approximately 0.2. Designing
better setups (e.g. with low-noise high-bandwidth amplifiers)
able to improve this value is an interesting open problem.

Yet, we would like to insist that such improvements have
limited impact on our main conclusion. First, one should note
that a similar problem generally holds for dynamic leakages as
well. For example, higher PIs could be reached for this part of
the measurements, e.g. by trying different dimensionality re-
duction techniques, or by better exploiting time-based leakages
due to glitches [9] (e.g. through synchronization [22]). But in
fact, it will anyway remains that for (a) univariate attacks,
dynamic power will remain the target of choice, because of
larger signal, and (b) for multivariate attacks, static power
provides a very relevant alternative for adversaries controlling
the clock frequency, because of (possibly much) smaller noise.
For concreteness, the next subsection exhibits a couple of
attack results (in order to translate the previous PI values into a
number of measurements to recover the key). We then conclude
the paper by briefly discussing the impact of our findings for
algorithmic countermeasures such as masking.

E. Security analysis based on worst-case attacks

Previous experiments quantified the dynamic and static infor-
mation leakages by means of the PI, which allows comparing
them. In this section, we complement this analysis by provid-
ing the success rates of several attacks exploiting the same
models as used to estimate the PI. For this purpose, we used
sets of Np = 100 traces to profile the template of each of
our 256 intermediate values y = x ⊕ k. We performed both
GT and CPA attacks. For the dynamic traces, we additionally
investigated the efficiency of PCA (compared to the best
PoI). For the static traces, averaging was used anyway (since
necessary to obtain non negligible success rates). Each success
rate curve was computed from a set of 1,000 experiments
(randomly sampled from our set of traces). These results are
reported in Figure 6 from which a couple of observations can
be extracted. In the left part of the figure (i.e. for dynamic
power), we mainly see the improved success rate enabled by
PCA. In the right part of the figure, we further confirm that the
number of traces to perform successful key recoveries thanks
to static power is increased by a factor corresponding to its
reduced PI. Eventually, we note that GT and profiled CPA
provide very similar results in both cases, as predicted by [13]1.
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Fig. 6. Success rates of GT attacks and profiled CPA attacks exploiting
dynamic power consumption (left) and static power consumption (right).

IV. CONCLUSIONS

The main conclusion of this work is that static leakage can
be a useful information source for side-channel adversaries
able to control the clock signal. In these cases, reducing the
frequency can make the static parts of the traces (as depicted

1The slight performance penalty of GT in the right part of the figure is due to
the limited number of measurements in this case, which did not allow perfectly
accurate estimates of the noise variance (that is not exploited by CPA).



in Figure 1) arbitrarily long, hence allowing to use these
long traces to reduce/remove the noise via averaging. While
this can be an issue in unprotected implementations, we note
that the impact of static leakages can become much more
critical, e.g. in (Boolean) masked implementations. Indeed, the
main goal of masking is to “amplify” the noise. Information
theoretic plots (such as detailed in [21]) provide a simple
intuition for this amplification. As illustrated in Figure 7,
masking leads to an exponential security increase (compared
to an unprotected implementation) given that the noise is large
enough. By contrast, for low noise levels, such a protection is
essentially ineffective (because sufficient information can be

Fig. 7. Potential impact of static leakage averaging on masking.

gathered on the different shares), leading to a plateau’ed region
in the information theoretic curves. As a result, static leakage
signal averaging could be directly exploited to move from
the “effective masking” zone to the “ineffective” one. Note
that attacks against masked implementations exploiting static
leakage have already been put forward by Moradi in [16]. An
interesting scope for further research would be to study such
attacks more quantitatively (as we did in this paper for unpro-
tected implementation). In particular, it would be interesting
to put forward an example of masked implementation where
static leakage allows significant reductions of the side-channel
attacks’ complexity. As mentioned in introduction, such a risk
can be extended to any algorithmic countermeasure requiring
high noise levels to be effective. Eventually, it is worth re-
calling that controlling a cryptographic implementation usually
allows adversaries to take advantage of other physical defaults,
fault insertion being a typical example of this concern (see [4]
for examples of vulnerabilities in a similar technology as used
in this paper). We naturally make no claim regarding what is
the best attack path in general in such challenging contexts.
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