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Abstract Template attacks and machine learning are

two popular approaches to profiled side-channel analy-

sis. In this paper, we aim to contribute to the under-

standing of their respective strengths and weaknesses,

with a particular focus on their curse of dimension-

ality. For this purpose, we take advantage of a well-

controlled simulated experimental setting in order to

put forward two important aspects. First and from a

theoretical point of view, the data complexity of tem-

plate attacks is not sensitive to the dimension increase

in side-channel traces given that their profiling is per-

fect. Second and from a practical point of view, concrete

attacks are always affected by (estimation and assump-

tion) errors during profiling. As these errors increase,

machine learning gains interest compared to template

attacks, especially when based on random forests. We

then clarify these results thanks to the bias-variance

decomposition of the error rate recently introduced in

the context side-channel analysis.

Keywords side-channel attacks · template attacks ·
machine learning · curse of dimensionality · bias-

variance decomposition

1 Introduction

In a side-channel attack, an adversary targets a crypto-

graphic device that emits a measurable leakage depend-

ing on the manipulated data and/or the executed op-

erations. Typical examples of physical leakages include

the power consumption [21], the processing time [20]

and the electromagnetic emanation [13].
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Evaluating the degree of resilience of a cryptographic

implementation is an important concern, e.g. for mod-

ern smart cards. In this respect, profiled attacks are use-

ful tools, since they are considered to be the strongest

leakage analysis in an information theoretic sense [36].

Such attacks essentially work in two steps: first a leak-

age model is estimated during a profiling phase, then

the leakage model is exploited to extract key-dependent

information in an online phase. Several approaches to

profiling have been introduced in the literature. Tem-

plate Attacks (TA), e.g. based on a Gaussian assump-

tion [5], are a typical example. The stochastic approach

exploiting Linear Regression (LR) is a frequently con-

sidered alternative [34]. More recently, solutions rely-

ing on Machine Learning (ML) have also been inves-

tigated [1,3,15–19,22–24,26,27,30,31]. These previous

works support the claim that machine learning based

attacks are effective and lead to successful key recov-

eries. This is natural since they essentially exploit the

same discriminating criteria as template attacks and

linear regression (i.e. a difference in the mean traces cor-

responding to different intermediate computations if an

unprotected implementation is targeted – a difference

in higher-order statistical moments if the device is pro-

tected with masking). By contrast, it remains unclear

whether machine learning can lead to more efficient at-

tacks, either in terms of profiling or in terms of online

key recovery. Previous publications conclude in one or

the other direction, depending on the implementation

scenario considered, which is inherent to such experi-

mental studies.

In this paper, we aim to complement these previ-

ous works with a more systematic investigation of the

conditions under which machine learning based attacks
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may outperform template attack (or not)1. For this pur-

pose, we start with the general intuition that machine

learning based approaches are generally useful in order

to deal with high-dimensional data spaces. Following,

our contributions are twofold. First, we tackle the (the-

oretical) question whether the addition of useless (i.e.

non-informative) leakage samples in leakage traces has

an impact on their informativeness if a perfect profiling

phase is achieved. We show that the (mutual) informa-

tion leakage estimated with a template attack exploit-

ing such a perfect model is independent of the number

of useless dimensions if the useless leakage samples are

independent of the useful ones. This implies that ma-

chine learning based attacks cannot be more efficient

than template attacks in the online phase if the profiling

is sufficient. Second, we study the practical counterpart

of this question, and analyze the impact of imperfect

profiling on our conclusions. For this purpose, we rely

on a simulated experimental setting, where the num-

ber of (informative and useless) dimensions is used as a

parameter. Using this setting, we evaluate the curse of

dimensionality for concrete template attack and com-

pare it with machine learning based attacks exploiting

Support Vector Machines (SVM) and Random Forests

(RF). That is, we considered support vector machine

as a popular tool in the field of side-channel analysis,

and random forest as an interesting alternative (since

its random feature selection makes its behavior quite

different than template attack and support vector ma-

chine).

Our experiments essentially conclude that template

attack outperform machine learning based attacks when-

ever the number of dimensions can be kept reasonably

low, e.g. thanks to a selection of Points of Interests

(POI), and that machine learning (and random forest

in particular) become(s) interesting in “extreme” profil-

ing conditions (i.e. with large traces and a small profil-

ing sets) – which possibly arise when little information

about the target device is available to the adversary.

We then complement these results with an additional

analysis based on the bias-variance decomposition of

the error rate, which was recently introduced in the

side-channel literature [25]. The biais-variance decom-

position allows separating the error rate of an attack

in three weighted terms, among which the bias and

the variance terms. The values of the variance and the

bias relate to the attack complexity: a strategy with a

high variance means a high sensitivity to the profiling

set while an attack with a high bias indicates a high

1 Note that the gain of linear regression based attacks over
template attack is known and has been analyzed, e.g. in [14,
35]. Namely, it essentially depends on the size of the basis
used in linear regression.

systematic error. This last analysis bring an interst-

ing complement to our results of COSADE 2015 [27],

since it adds a sound statistical explanation to our find-

ings. Namely, we can now show that template attacks

have a high variance while a random forest represents

an interesting approach to reduce this term in high-

dimentional data spaces. The bias-variance decompo-

sition also sheds new light on the results obtained in

previous(ly listed) papers comparing machine learning

algorithms with conventional profiled attacks.

As a side remark, we also observe that most cur-

rent machine learning based attacks rate key candi-

dates according to (heuristic) scores rather than prob-

abilities. This prevents the computation of probability-

based metrics (such as the mutual/perceived informa-

tion [32]). It may also have an impact on the efficiency

of key enumeration [37], which is an interesting scope

for further investigation.

The rest of the paper is organized as follows. Sec-

tion 2 contains notations, the attacks considered, our

experimental setting and evaluation metrics. Section 3

presents our theoretical result on the impact of non-

informative leakage samples in perfect profiling condi-

tions. Section 4 discusses practical (simulated) experi-

ments in imperfect profiling conditions. Section 5 anal-

yses our results based on the bias-variance decompo-

sition. Eventually, Section 6 concludes the paper and

discusses perspectives of future work.

2 Background

2.1 Notations

We use capital letters for random variables and small

caps for their realizations. We use sans serif font for

functions (e.g. F) and calligraphic fonts for sets (e.g.

A). We denote the conditional probabilitiy of a random

variable A given B with Pr [A|B] and use the acronym

SNR for the signal-to-noise ratio.

2.2 Template Attacks

Let lx,k be a leakage trace measured on a cryptographic

device that manipulates a target intermediate value v =

f(x, k) associated to a known plaintext (byte) x and a

secret key (byte) k. In a template attack, the adversary

first uses a set of profiling traces LPS in order to esti-

mate a leakage model, next denoted P̂rmodel

[
lx,k | θ̂x,k

]
,

where θ̂x,k represents the (estimated) parameters of the

leakage Probability Density Function (PDF). The set of
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profiling traces is typically obtained by measuring a de-

vice that is similar to the target, yet under control of

the adversary. Next, during the online phase, the ad-

versary uses a set of new attack traces LAS (obtained

by measuring the target device) and selects the secret

key (byte) k̃ maximizing the product of posterior prob-

abilities:

k̃ = argmax
k∗

∏
lx,k∈LAS

P̂rmodel

[
lx,k | θ̂x,k∗

]
· Pr[k∗]

P̂rmodel[lx,k]
· (1)

Concretely, the seminal template attack paper suggested

to use Gaussian estimations for the leakage PDF [5].

We will follow a similar approach and consider a Gaus-

sian (simulated) experimental setting. It implies that

the parameters θ̂x,k correspond to mean vectors µ̂x,k
and covariance matrices Σ̂x,k. However, we note that

any other probability density function estimation could

be considered by the adversary/evaluator [11]. We will

further consider two types of template attacks: in the

Naive Template Attack (NTA), we will indeed estimate

one covariance matrix per intermediate value; in the

Efficient Template Attack (ETA), we will pool the co-

variance estimates (assumed to be equal) across all in-

termediate values, as previously suggested in [6].

In the following, we will keep the lx,k and v nota-

tions for leakage traces and intermediate values, and

sometimes omit the subscripts for simplicity.

2.3 Support Vector Machines

In their basic (two-classes) context, support vector ma-

chine essentially aims at estimating Boolean functions [7].

For this purpose, it first performs a supervised learning

with labels (e.g. v = −1 or v = 1), annotating each

sample of the profiling set. The binary support vector

machine estimates a hyperplane y = ŵ>l + b̂ that sep-

arates the two classes with the largest possible margin,

in the geometrical space of the vectors. Then in the at-

tack phase, any new trace l will be assigned a label ṽ

as follows:

ṽ =

{
1 (ŵ>l + b̂) ≥ 1,

−1 otherwise.
(2)

Mathematically, support vector machine finds the pa-

rameters ŵ ∈ Rns (where ns is the number of time

samples per trace) and b̂ ∈ R by solving the convex

optimization problem:

min
w,b

1

2
(w>w),

subject to v(w>φ(lv) + b) ≥ 1,

(3)

where φ denotes a projection function that maps the

data into a higher (sometimes infinite) dimensional space

usually denoted as the feature space. Our experiments

considered a Radial Basis kernel Function φ (RBF),

which is a commonly encountered solution, both in the

machine learning field and the side-channel communi-

ties. The radial basis kernel function maps the traces

into an infinite dimensional Hilbert space in order to

find a hyperplane that efficiently discriminate the traces.

It is defined by a parameter γ that essentially relates

to the “variance” of the model. Roughly, the variance

of a model is a measure on the variance of its output in

function of the variance of the profiling set. The higher

the value of γ, the lower the variance of the model is.

Intuitively, the variance of a model therefore relates to

its complexity (e.g. the higher the number of points per

trace, the higher the variance of the model). We always

selected the value of γ as one over the number of points

per trace, which is a natural choice to compensate the

increase of the model variance due to the increase of the

number of points per trace. Future works could focus

on other strategies to select this parameter, although

we do not expect them to have a strong impact on our

conclusions.

When the problem of Equation 3 is feasible with

respect to the constraints, the data is said to be lin-

early separable in the feature space. As the problem

is convex, there is a guarantee to find a unique global

minimum. Support vector machine can be generalized

to multi-class problems (which will be useful in our con-

text with typically 256 target intermediate values) and

produce scores for intermediate values based on the dis-

tance to the hyperplane. In our experiments, we consid-

ered the “one-against-one” approach. In a one-against-

one strategy, the adversary builds one support vector

machine for each possible pair of target values. During

the attack phase, the adversary selects the target value

with a majority vote among the set of support vector

machines. We refer to [8] for a complete explanation.

2.4 Random Forests

Decision trees are classification models that use a set of

binary rules to calculate a target value. They are struc-

tured as diagrams (tree) made of nodes and directed

edges, where nodes can be of three types: root (i.e. the

top node in the tree), internal (represented by a circle in

Figure 1) and leaf (represented by a square in Figure 1).

In our side-channel context, we typically consider deci-

sion trees in which (1) the value associated to a leaf is a

class label corresponding to the target to be recovered,

(2) each edge is associated to a test on the value of a
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time sample in the leakage traces, and (3) each inter-

nal node has one incoming edge from a node called the

parent node, as also represented in Figure 1.

In the profiling phase, learning data is used to build

the model. For this purpose, the learning set is first as-

sociated to the root. Then, this set is split based on

a time sample that most effectively discriminates the

sets of traces associated to different target intermedi-

ate values. Each subset newly created is associated with

a child node. The tree generator repeats this process

on each derived subset in a recursive manner, until the

child node contains traces associated to the same target

value or the gain to split the subset is less than some

threshold. That is, it essentially determines at which

time sample to split, the value of the split, and the

decision to stop or to split again. It then assigns termi-

nal nodes to a class (i.e. intermediate value). Next, in

the attack phase, the model simply predicts the target

intermediate value by applying the classification rules

to the new traces to classify. We refer to [33] for more

details on decision trees.

t1 t2 t3

3.1
3.2
3.3

l(t1) < 3.4

t4

1
l(t1) < 3.2

0

rootclass: 0
           13.4

l(t3) < 3.23

1 0time

le
ak

ag
e

Fig. 1: Decision tree with two classes (l(t1) is the leak-

age at time t1).

The Random Forests (RF) introduced by Breiman

can be seen as a collection of classifiers using many (un-

biased) decision trees as models [4]. It relies on model

averaging (aka bagging) that leads to have a low vari-

ance of the resulting model. After the profiling phase,

random forest returns the most consensual prediction

for a target value through a majority vote among the

set of trees. Random forests are based on three main

principles. First, each tree is constructed with a differ-

ent learning set by re-sampling (with replacement) the

original dataset. Secondly, the nodes of the trees are

split using the best time sample among a subset of ran-

domly chosen ones (by contrast to conventional trees

where all the time samples are used). The size of this

subset was set to the square of the number of time sam-

ples (i.e.
√
ns) as suggested by Breiman. These features

allow obtaining decorrelated trees, which improves the

accuracy of the resulting random forest model. Finally,

and unlike conventional decision trees as well, the trees

of a random forest are fully grown and are not pruned,

which possibly leads to overfitting (i.e. each tree has a

low bias but a high variance) that is reduced by averag-

ing the trees. The main (meta-) parameters of a random

forest are the number of trees. Intuitively, increasing the

number of trees reduces the instability (aka variance)

of the models. We set this number to 500 by default,

which was sufficient in our experiments in order to show

the strength of this model compared to template attack.

We leave the detailed investigation of these parameters

as an interesting scope for further research.

2.5 Experimental setting

Let lp,k (t) be the t-th time sample of the leakage trace

lp,k. We consider contexts where each trace lp,k repre-

sents a vector of ns samples, that is:

lp,k = {lp,k (t) ∈ R | t ∈ [1;ns]} . (4)

Each sample represents the output of a leakage func-

tion. The adversary has access to a profiling set of Np
traces per target intermediate value, in which each trace

has d informative samples and u uninformative samples

(with d+u = ns). The informative samples are defined

as the sum of a deterministic part representing the use-

ful signal (denoted as δ) and a random Gaussian part

representing the noise (denoted as ε), that is:

lp,k (t) = δt (p, k) + εt, (5)

where the noise is independent and identically distributed

for all t’s. In our experiments, the deterministic part δ

corresponds to the output of the AES S-box, iterated

for each time sample and sent through a function G,

that is:

δt (p, k) = G
(
SBoxt (p⊕ k)

)
, (6)

where:

SBox1 (p⊕ k) = SBox (p⊕ k) ,

SBoxt (p⊕ k) = SBox
(
SBoxt−1 (p⊕ k)

)
.

Concretely, we considered a function G that is a weighted

sum of the S-box output bits. However, all our results

can be generalized to other functions (preliminary ex-

periments did not exhibit any deviation with highly

non-linear leakage functions – which is expected in a

first-order setting where the leakage informativeness es-

sentially depends on the signal-to-noise ratio [29]). We

set our signal variance to 1 and used Gaussian dis-

tributed noise variables εt with mean 0 and variance
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σ2 (i.e. the signal-to-noise ratio was set to 1
σ2 ). Eventu-

ally, uninformative samples were simply generated with

a noisy part. This simulated setting is represented in

Figure 2 and its main parameters can be summarized

as follows:

– number of informative points per trace (denoted as

d),

– number of uninformative points per trace (denoted

as u),

– number of profiling traces per intermediate value

(denoted as Np),

– number of traces in the attack step (noted Na),

– noise variance (denoted as σ2) and signal-to-noise

ratio.

xor

Plaintext

Key

Sbox

Sample 1

Sbox ... Sbox

addition

0 0

deterministic 
part

Sample d

addition

Sample d+1

addition

Sample d+u

addition

deterministic 
part

noise noise noise noise

...

Fig. 2: Simulated leaking implementations.

2.6 Evaluation metrics

The efficiency of side-channel attacks can be quantified

according to various metrics. We will use information

theoretic and security metrics advocated in [36].

2.6.1 Success rate (SR) and Error rate (ER).

For an attack targeting a part of the key (e.g. a key

byte) and allowing to sort the different candidates, we

define the success rate of order o as the probability that

the correct subkey is ranked among the first o candi-

dates. The error rate represents the probability that the

correct subkey is not ranked among the first o candi-

dates. The success rate and the error rate are generally

computed in function of the number of attack traces Na
(given a model that has been profiled using Np traces).

In the rest of this paper, we focus on the success rate

of order 1 (i.e. the correct key rated first).

2.6.2 Perceived/Mutual information (PI/MI).

Let X,K,L be random variables representing a target

key byte, a known plaintext and a leakage trace. The

perceived information P̂I(K;X,L) between the key and

the leakage is defined as [32]:

H(K)

+
∑
k∈K

Pr[k]
∑
x∈X

Pr[x]
∑
l∈L

Prchip[l|x, k] · log2 P̂rmodel[k|x, l].

The perceived information measures the adversary’s

ability to interpret measurements coming from the true

(unknown) chip distribution Prchip[l|x, k] with an esti-

mated model P̂rmodel[l|x, k] while Prchip[l|x, k] is gen-

erally obtained by sampling the chip distribution (i.e.

making measurement). Of particular interest for the

next section will be the context of perfect profiling,

where we assume that the adversary’s model and the

chip distribution are identical (which, strictly speak-

ing, can only happen in simulated experimental settings

since any profiling based on real traces will at least be

imperfect because of small estimation errors [11]). In

this context, the estimated perceived information will

exactly correspond to the (worst-case) estimated mu-

tual information.

Information theoretic metrics such as the mutual in-

formation and the perceived information are especially

interesting for the comparison of profiled side-channel

attacks as we envision here. This is because they can

generally be estimated based on a single plaintext (i.e.

with Na = 1) whereas the success rate is generally es-

timated for varying Na’s. In other words, their scalar

value provides a very similar intuition as the success

rate curves [35]. Unfortunately, the estimation of in-

formation theoretic metrics requires distinguishers pro-

viding probabilities, which is not the case of machine

learning based attacks2. As a result, our concrete ex-

periments comparing template attack, support vector

machine and random forest will be based on estima-

tions of the success rate for a number of representative

parameters.

3 Perfect profiling

In this section, we study the impact of useless samples

in leakage traces on the performances of template at-

tack with perfect profiling (i.e. the evaluator perfectly

knows the leakages’ probability density function). In

this context, we will use Pr for both Prmodel and Prchip

2 There are indeed variants of support vector machine
and random forest that aim to remedy to this issue. Yet,
the “probability-like” scores they output are not directly
exploitable in the estimation of information theoretic met-
rics either. For example, we could exhibit examples where
probability-like scores of one do not correspond to a success
rate of one.
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(since they are equal) and omit subscripts for the leak-

ages l to lighten notations.

Proposition 1 Let us assume two template attacks with

perfect models using two different attack traces l1 and

l2 associated to the same plaintext x: l1 is composed of

d samples providing information and l2 = [l1||ε] (where

ε = [ε1, ..., εu] represents noise variables independent of

l1 and the key.). Then the mutual information leakage

MI(K;X,L) estimated with their (perfect) leakage mod-

els is the same.

Proof As clear from the definitions in Section 2.6, the

mutual/perceived information estimated thanks to tem-

plate attack only depend on Pr[k|l]. So we need to show

that these conditional probabilities Pr[k|l2] and Pr[k|l1]

are equal. Let k and k′ represent two key guesses. Since

ε is independent of l1 and k, we have:

Pr[l2|k′]
Pr[l2|k]

=
Pr[l1|k′] · Pr[ε|k′]
Pr[l1|k] · Pr[ε|k]

,

=
Pr[l1|k′] · Pr[ε]

Pr[l1|k] · Pr[ε]
,

=
Pr[l1|k′]
Pr[l1|k]

. (7)

This directly leads to:∑
k′∈K Pr[l2|k′]

Pr[l2|k]
=

∑
k′∈K Pr[l1|k′]

Pr[l1|k]
,

Pr[l2|k]∑
k′∈K Pr[l2|k′]

=
Pr[l1|k]∑

k′∈K Pr[l1|k′]
,

Pr[k|l2] = Pr[k|l1], (8)

which concludes the proof.

Quite naturally, this proof does not hold as soon as

there are dependencies between the d first samples in

l1 and the u latter ones. This would typically happen

in contexts where the noise at different time samples is

correlated (which could then be exploited to improve

the attack). Intuitively, this simple result suggests that

in case of perfect profiling, the detection of points of

interests is not necessary for a template attack, since

useless points will not have any impact on the attack’s

success. Since template attacks are optimal from an in-

formation theoretic point-of-view, it also means that

the machine learning based approaches cannot be more

efficient in this context.

Note that the main reason why we need a perfect

model for the result to hold is that we need the inde-

pendence between the informative and non-informative

samples to be reflected in these models as well. For

example, in the case of Gaussian templates, we need

the covariance terms that corresponds to the correla-

tion between informative and non-informative samples

to be null (which will not happen for imperfectly esti-

mated templates). In fact, the result would also hold

for imperfect models, as long as these imperfections do

not suggest significant correlation between these infor-

mative and non-informative samples. But of course, we

could not state that template attacks necessarily per-

form better than machine learning based attacks in this

case. Overall, this conclusion naturally suggests a more

pragmatic question. Namely, perfect profiling never oc-

curs in practice. So how does this theoretical intuition

regarding the curse of dimensionality for template at-

tack extends to concrete profiled attack (with bounded

profiling phases)? We study it in the next section.

4 Experiments with imperfect profiling

We now consider examples of template attack, support

vector machine and random forest based attacks in or-

der to gain intuition about their behavior in concrete

profiling conditions. As detailed in Section 2, we will use

a simulated experimental setting with various number

of informative and uninformative samples in the leakage

traces for this purpose.

4.1 Nearly perfect profiling

As a first experiment, we considered the case where the

profiling is “sufficient” – which should essentially con-

firm the result of Proposition 1. For this purpose, we

analyzed simulated leakage traces with 2 informative

points (i.e. d = 2), u = 0 and u = 15 useless samples,

and a signal-to-noise ratio of 1, in function of the num-

ber of traces per intermediate value in the profiling set

Np. As illustrated in Figure 3, we indeed observe that

(e.g.) the perceived information is independent of u if

the number of traces in the profiling set is “sufficient”

(i.e. all attacks converge towards the same perceived

information in this case). By contrast, we notice that

this “sufficient” number depends on u (i.e. the more

useless samples, the larger Np needs to be). Besides, we

also observe that the impact of increasing u is stronger

for naive template attack than efficient template at-

tack, since the first one has to deal with a more com-

plex estimation. Indeed, the efficient template attack

has 256 times more traces than the naive template at-

tack to estimate the covariance matrice. So overall, and

as expected, as long a the profiling set is large enough

and the assumptions used to build the model capture

the leakage samples sufficiently accurately, template at-

tacks are indeed optimal, independent of the number of
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samples they actually profile. So there is little gain to

expect from machine learning based approaches in this

context.
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Fig. 3: Perceived information for Naive Template At-

tack (NTA) and Efficient Template Attack (ETA) in

function of Np with SNR=1.

4.2 Imperfect profiling

We now move to the more concrete case were profiling is

imperfect. In our simulated setting, imperfections natu-

rally arise from limited profiling (i.e. estimation errors):

we will investigate their impact next and put forward

some useful intuitions regarding the curse of dimen-

sionality in (profiled) side-channel attacks. Yet, we note

that in general, assumption errors can also lead to im-

perfect models, that are more difficult to deal with (see,

e.g. [11]) and are certainly worth further investigations.

Besides, and as already mentioned, since we now want

to compare template attack, support vector machine

and random forest, we need to evaluate and compare

them with security metrics (since the two latter ones

do not output the probabilities required to estimate in-

formation theoretic metrics).

In our first experiment, we set again the number of

useful dimensions to d = 2 and evaluated the success

rate of the different attacks in function of the num-

ber of non-informative samples in the leakages traces

(i.e. u), for different sizes of the profiling set. As illus-

trated in Figure 4, we indeed observe that for a suf-

ficient profiling, efficient template attack is the most

efficient solution. Yet, it is also worth observing that

naive template attack provides the worst results overall,

which already suggests that comparisons are quite sen-

sitive to the adversary/evaluator’s assumptions. Quite

surprisingly, our experimental results show that up to

a certain level, the success rate of random forest in-

creases with the number of points without information.

The reason is intrinsic to the random forest algorithm

in which the trees need to be as decorrelated as possi-

ble. As a result, increasing the number of points in the

leakage traces leads to a better independence between

trees and improves the success rate. Besides, the most

interesting observation relates to random forest in high

dimensionality, which remarkably resists the addition of

useless samples (compared to support vector machine

and template attack). The main reason for this behav-

ior is the random feature selection embedded into this

tool. That is, for a sufficient number of trees, random

forest eventually detects the informative points of inter-

ests in the traces, which makes it less sensitive to the

increase of u. By contrast, template attack and support

vector machine face a more and more difficult estima-

tion problem in this case.
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Fig. 4: Success rate for Naive Template Attack (NTA),

Efficient Template Attack (ETA), Support Vector Ma-

chine (SVM) and Random Forest (RF) in function of

the number of useless samples u, for various sizes of the

profiling set Np, with d = 2, SNR=1, Na = 15.

Another noticeable element of Figure 4 is that sup-

port vector machine and random forest seem to be bounded

to lower success rates than template attack. But this is

mainly an artefact of using the success rate as evalua-

tion metric. As illustrated in Figure 5 increasing either

the number of informative dimensions in the traces d or

the number of attack traces Na leads to improved suc-

cess rates for the machine learning based approaches as

well. For the rest, the latter figure does not bring signifi-

cantly new elements. We essentially notice that random

forest becomes interesting over efficient template attack

for very large number of useless dimensions and that ef-

ficient template attack is most efficient otherwise.

Eventually, the interest of the random feature selec-

tion in random forest based models raises the question
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Fig. 5: (a) Success rate for Naive Template Attack

(NTA), Efficient Template Attack (ETA), Support Vec-

tor Machine (SVM) and Random Forest (RF) in func-

tion of the number of useless samples u, with parame-

ters Np = 25, d = 5, SNR=1 and Na = 15. (b) Similar

experiment with parameters Np = 50 d = 2, SNR=1

and Na = 30.

of the time complexity for these different attacks. That

is, such a random feature selection essentially works

because there is a large enough number of trees in our

random forest models. But increasing this number nat-

urally increases the time complexity of the attacks. For

this purpose, we report some results regarding the time

complexity of our attacks in Figure 6. As a preliminary

note, we mention that those results are based on pro-

totype implementations in different programming lan-

guages (C for template attack, R for support vector

machine and random forest). So they should only be

taken as a rough indication. Essentially, we observe an

overhead for the time complexity of machine learning

based attacks, which vanishes as the size of the leakage

traces increases. Yet, and most importantly, this over-

head remains comparable for support vector machine

and random forest in our experiments (mainly due to

the fact that the number of trees was set to a constant

500). So despite the computational cost of these attacks

is not negligible, it remains tractable for the experimen-

tal parameters we considered (and could certainly be

optimized in future works).
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Fig. 6: Time complexity for Efficient Template Attack

(ETA), Support Vector Machine (SVM) and Random

Forest (RF) in function of the number of useless sam-

ples, for d = [2, 12] and Np = 25. (a) Profiling phase.

(b) Attack phase.

5 Bias-variance decomposition analysis

The goal of this section is to understand more deeply

(i) why template attack can have a higher success rate

than machine learning based attack in a low dimension-

ality context, and (i) why a random forest outperforms

template attack in a high dimensionality context. Our

analyzes are based on the bias-variance decomposition

of the error rate first proposed by Domingos in the field
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of machine learning [9,10] and then introduced in the

side-channel literature by Lerman et al. [25].

5.1 Background

Domingos showed that the error rate of a model can

be decomposed in three weighted components [9,10]:

the error rate of the Bayes classifier ERb(·) (defined in

this section and also known as the noise term in the

machine learning field), the bias B(·) and the variance

V(·), generally leading to the equality:

Error rate =ELAS
[c1 × ERb(LAS)] (9)

+ ELAS
[B(LAS)] Bias

+ ELAS
[c2 ×V(LAS)] , Variance

where {c1, c2,ERb(LAS),B(LAS),V(LAS)} ∈ R5, and

LAS represents a set of attack traces.

In order to implement the bias-variance decompo-

sition, we first need a Bayes classifier (denoted Ab(·))
which represents the best model that an adversary can

build (i.e., a model with no estimation nor assumption

errors). More formally, the Bayes classifier minimises

the probability of misclassification:

Ab(LAS) = argmax
k

Pr [LAS | k]× Pr [k] . (10)

Next, the loss function L(k, k′) represents the cost of

predicting k′ when the true target value is k. In this

paper we consider the zero-one loss function: the cost

is zero when k equals k′ and one in the other cases.

Intuitively, the error rate of the Bayes classifier rep-
resents the unavoidable component of the error rate,

i.e. the minimum error rate of a model. More formally,

the error rate of the Bayes classifier equals to:

ERb(LAS) = L(k,Ab(LAS)). (11)

Let now Am(LAS) be the main prediction that repre-

sents the most frequent prediction on the set of attack

traces LAS given by the estimated model when varying

the profiling set. The bias term represents the differ-

ence (according to the loss function) between the main

prediction and the prediction provided by the Bayes

classifier. Mathematically the bias term equals:

B(LAS) = L(Am(LAS),Ab(LAS)). (12)

The variance term then measures the variation of a pre-

diction on a set of attack traces as a function of different

profiling sets. Mathematically, the variance term equals:

V(LAS) = ELPS [L(Am(LAS),A(LAS,LPS))] . (13)

where LPS is a set of profiling traces and A(LAS,LPS)

is the prediction of the estimated model based on the

profiling set LPS and the attacking set LAS.

Based on these notations, Domingos demonstrated

that the multiplicative factors c1 and c2 equal:

c1 = Pr [A = Ab] (14)

− Pr [A 6= Ab]× Pr [A = k | Ab 6= k] ,

c2 =

{
−Pr [A = Ab | A 6= Am] Am 6= Ab

1 Am = Ab

, (15)

where A = A(LAS), Ab = Ab(LAS) and Am = Am(LAS).

5.2 Template Attack

Recently, Lerman et al. showed that template attacks

have a high variance while stochastic attack correspond

to a tradeoff between the bias and the variance terms [25].

In this section, we aim to evaluate when and why tem-

plate attacks generally worked well in our previous ex-

periments, and machine learning algorithm (and more

precisely random forests) can outperform them in ex-

treme profiling conditions3.

Our first experiment aims to recall the effect of the

leakage function on the error rate of template attack.

We use 10× 256 traces in the profiling set, 10 informa-

tive points per trace, 1 attacking trace, and a signal-to-

noise ratio of 1. The purpose is to show the error rate,

the bias and the variance of template attacks. Figure 7

clarifies that the success rate of template attack is in-

dependent of the leakage function (as already put for-

ward by Lerman et al. [25]). More precisely, template

attack has a high variance and a low bias, confirming

the high(er) complexity of the model leading template

attacks to be able to represent any kind of dependency

between the target value and the leakage function.

In order to reduce the variance of template attacks,

we need to increase the size of the profiling set or to use

a stochastic attack with a low degree. The first strat-

egy keeps the bias low while the second may increase

the bias. This phenomenon led us to consider the first

approach as an additional illustration of our previous

conclusions. Figure 8 shows what happens when we in-

crease the number of traces in the profiling set and the

3 By contrast, we do not discuss the impact on the bias and
on the variance term of each meta-parameter of a random for-
est and a template attack. For the interested readers about
this aspect, we refer to the document of Louppe [28] analyz-
ing random forests, and to the paper of Lerman et al [25]
analyzing template attack.
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Fig. 7: Error rate, bias and variance of a template attack

as a function of the number of irrelevant points per trace

where u ∈ {0, 60, 120, 180, 240, 300}. There are 10×256
traces in the profiling set, 10 informative points per

trace, 1 attacking trace, a signal-to-noise ratio of 1, and

the leakage function is linear (in the left) and random

(in the right).

number of informative points. As expected, template

attacks have reduced variance as well as error rate when

increasing the number of traces in the profiling set and

when increasing the number of informative points. The

two previous results suggests that machine learning al-

gorithms could gain interest if they have (1) a lower

variance term compared to template attacks and (2)

still maintaining a sufficiently low bias term (as tem-

plate attack) allowing to obtain successful key recover-

ies.
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Fig. 8: Error rate, bias and variance of a template attack

as a function of the number of irrelevant points per trace

where u ∈ {0, 120, 240, 500}. There are 30× 256 traces

in the profiling set, 20 informative points per trace, a

random leakage, 1 attacking trace, and a signal-to-noise

ratio of 1.

5.3 Random forests

In general, the main advantage of template attacks as

a profiling method is the possibility to target complex

leakage functions. Our first experiment on random for-

est aims to verify whether random forest enjoys the

same ability. Figure 9 plots the error rate, the bias and

the variance of a random forest with 10 × 256 traces

in the profiling set, 10 informative points per trace, 1

attacking trace, and a signal-to-noise ratio of 1. The fig-

ure shows that random forests are indifferent to changes

in the leakage function (similarly to template attacks).

Moreover, and as previoulsy, we observe that random

forests outperform template attacks in very high dimen-

sionality contexts (see Table 1 that summarizes the re-

sults of template attack and random forest). More pre-

cisely, the higher the number of irrelevant points, the

higher the error rate for both models. Interestingly, the

error rate of template attacks is mainly due to a high

variance while random forests seek to minimize this

variance term thanks to its bagging approach. So the

bias-variance decomposition here allows understanding

the complementary nature of these techniques.

Figure 10 shows additional results when we increase

the size of the profiling set as well as the number of

informative points. This new setting allows to reduce

the variance and the bias of a random forest. Table 2

summarizes the results of template attacks and random

forests in this new context. Once again, this experi-

ment highlights that the latter ones gain interest in high
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Fig. 9: Error rate, bias and variance of a random forest

as a function of the number of irrelevant points per

trace where u ∈ {0, 60, 120, 180, 240, 300}. There are

10×256 traces in the profiling set, 10 informative points

per trace, a signal-to-noise ratio of 1, and the leakage

function is linear (in the left) and random (in the right).

dimensionality contexts. Moreover, the increase of the

number of irrelevant points has a lower impact on the

error rate of random forest compared to the error rate

of template attack. More precisely, the increase of the

number of irrelevant points impacts less the variance

term of random forests compared to the variance term

of template attacks. Interestingly, this discussion also

allows to understand other previous results obtained in

the profiled side-channel attacks literature [1,3,15–19,

22–24,26,27,30,31].
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Fig. 10: Error rate, bias and variance of a random forest

as a function of the number of irrelevant points per trace

where u ∈ {0, 120, 240, 500}. There are 30× 256 traces

in the profiling set, 20 informative points per trace, a

random leakage, 1 attacking trace, and a signal-to-noise

ratio of 1.

6 Conclusion

Our results provide interesting insights on the curse of

dimensionality for side-channel attacks. From a theo-

retical point of view, we first showed that as long as a

limited number of points of interests can be identified

in leakage traces and contain most of the information,

template attacks are the method of choice. Such a con-

clusion extends to any scenario where the profiling can

be considered as “nearly perfect”. By contrast, we also

observed that as the number of useless samples in leak-

age traces increases and/or the size of the profiling set

becomes too limited, machine learning based attacks

gain interest. In our simulated setting, the most inter-

esting gain is exhibited for random forest based models,

thanks to their random feature selection. These obser-

vations nicely fit to the observations made by Banciu et

al. in a different context, namely Simple Power Analy-

sis and Algebraic Side-Channel Analysis [2]. Our addi-

tional analyzes based on the bias-variance decomposi-

tion also allow re-stating these observations in more fo-

mal terms. That is, template attacks are the method of

choice as long as the variance term is low, while machine

learning algorithms or linear regression (that can have

a lower variance term than template attack) should be

used in high dimensionality contexts.

Admittedly, the simulated setting we investigated

is probably most favorable to template attacks, since

only estimation errors can decrease the accuracy of the

adversary/evaluator models in this case. One can rea-



12 L. Lerman et al.

Table 1: Error rate of several profiled attacks as a function of the number of irrelevant points per trace. There are

10 × 256 traces in the learning set, 10 informative points per trace, a random leakage, 1 attacking trace, and a

signal-to-noise ratio of 1.

u=0 u=60 u=120 u=180 u=240 u=300

Template attack 0.49 0.86 0.89 0.92 0.93 0.93

Random Forest 0.77 0.80 0.82 0.83 0.84 0.85

Table 2: Error rate of several profiled attacks as a function of the number of irrelevant points per trace. There are

30 × 256 traces in the learning set, 20 informative points per trace, a random leakage, 1 attacking trace, and a

signal-to-noise ratio of 1.

u=0 u=120 u=240 u=500

Template attack 0.18 0.31 0.42 0.57

Random Forest 0.28 0.34 0.37 0.41

sonably expect that real devices with harder to model

noise distributions would improve the interest of ma-

chine learning techniques compared to efficient tem-

plate attacks – as has been suggested in previously

published works. As a result, the extension of our ex-

periments towards other distributions is an interesting

avenue for further research. In particular, the study of

leakage traces with correlated noise could be worth ad-

ditional investigations in this respect.

In summary, template attacks are the most efficient

strategies for well understood devices, with sufficient

profiling, as they can approach the worst-case security

level of an implementation in such context. By contrast,

machine learning based attacks (especially random for-
est) are promising alternative(s) in black box settings,

with only limited understanding of the target imple-

mentation and in high dimensionality contexts.
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