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Abstract: Definitions of utility in databases are usually
torn between two main options. On the one hand, spe-
cific metrics quantify utility based on the purpose of the
collected data, which hardly allows comparing the util-
ity of data collected for different purposes. On the other
hand, general purpose metrics rely on the goal of mini-
mal distortion, which only guarantees that any privacy-
preserving operation has only degraded the original data
to a limited extent, and therefore does not relate to the
actual utility of the original data. In this paper, we in-
troduce an alternative solution to measure “perceptual
utility”, based on whether the collected data represents
well the true distribution of the random variables from
which it is sampled. Intuitively, perceptually useful data
can be seen as data that is “useful for anything”. It can
therefore be connected to emerging discussions about
regulations on the automatic processing of (personal)
data. For this purpose, we first define this notion and
show that it allows shedding interesting light on the
tradeoff between utility and anonymity in databases.
We then put forward that perceptual utility can be seen
as another type of privacy metric, and discuss its con-
ceptual differences and links with anonymity metrics.

1 Introduction

The collection of digital information by organizations
has been an increasingly important trend over the
last decade. While it creates new opportunities for
knowledge-based decision making, it also raises new
challenges regarding the privacy of the individuals
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whose personal information is collected. In this con-
text, privacy-preserving data publishing aims at releas-
ing data in a way that it is practically useful (e.g. al-
lows data mining) while preserving individual privacy.
In other words, it aims at trading utility and privacy.

A wide literature has investigated metrics for pri-
vacy, including the popular k-anonymity [12] and its
numerous refinements. By contrast, metrics for measur-
ing the utility of a database are sparser, and generally
face the difficulty of defining what is useful data. In or-
der to be independent of the type of data processing
purposed, the typical solution is to follow the “princi-
ple of minimal distortion”. This means assuming that
the database is useful anyway, and measuring a utility
based on this a priori, by quantifying the damage caused
by the anonymization of the data [7]. Quite naturally,
this approach also implies that any modification of the
original data is damaging by definition/assumption.

In this paper, we aim to investigate an alternative
track for measuring utility, based on recent advances in
the certification of the information leakage in crypto-
graphic implementations [4, 6]. More precisely, we pro-
pose to quantify utility based on whether the statis-
tical attributes of which the samples form a database
are “well characterized”. We further describe how to use
the notion of Perceived Information (PI) for this pur-
pose. Intuitively, the PI captures the amount of infor-
mation that an adversary can extract from some obser-
vations, given a (possibly biased) model of the data. If
the model is perfect, the PI correspond to Shannon’s
classical definition of Mutual Information (MI). If the
model is imperfect (as usually the case in practice), the
PI is the best approximation of the MI that is available
to the adversary. Based on this notion, we can trade
the speed of convergence of a model with its informa-
tiveness, and derive a perceptual utility metric for ac-
tual databases. We use this metric to illustrate concrete
situations where the anonymization of the data does
not have any utility cost. For example, the accuracy of
an attribute’s observations can be too high for being
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characterized with the number of available samples. In
this case, reducing the accuracy of the collected data is
beneficial to anonymity, but does not reduce perceptual
utility. We also describe a couple of experiments that
allow us to discuss the impact of grouping users from
the anonymity and perceptual utility points-of-view, as
well as the curse of dimensionality for the characteri-
zation of attributes. Eventually, we conclude the paper
by arguing why perceptual utility should also be seen
as another facet of privacy, and can be asymptotically
connected to some (probabilistic) anonymity metrics.

Besides, and more fundamentally, perceptual utility
has strong connections with recent EU regulations on
the automatic processing of (personal) data, e.g. [15],
and important debates regarding the impact of data
collection and processing on (algorithmic) governmen-
tality [11]. By algorithmic govenmentality, we refer to
an unprecedent mode of government fuelled mostly with
infra-personal, meaningless but quantifiable signals, ad-
dressing individuals through their “profiles" – behavioral
patterns produced on a purely inductive base – rather
than through their understanding and will [10]. In this
context, perceptual utility can be viewed as a natural
(general purpose) metric allowing a quantitative discus-
sion of the risks of discrimination in big data systems.

Notations. In the following, we use capital letters for
random variables, small caps for their samples, calli-
graphic letters for sets and sans serif fonts for functions.

2 Definitions and framework

In this first section, we introduce the definitions and
mathematical framework that allow us to reason for-
mally about privacy and utility in databases.

We start by defining a set of n users
U = {u1, u2, . . . , un}, and m random variables
X1, X2, . . . , Xm with (discrete or continuous) sample
spaces X1,X2, . . . ,Xm. We denote these random vari-
ables as attributes, that are specified by their probability
function p(x) in the discrete case, and probability den-
sity function f(x) in the continuous case. We also use
the more generic term probability distribution to denote
both p(x) and f(x), when we do not want to distinguish
between discrete and continuous random variables.

Deterministic data. We define a deterministic Data
Structure (DS) as a set of m attributes together with
their probability distributions pi(x) or fi(x), with 1 ≤

i ≤ m. And we define a deterministic Data Base (DB)
as the sampling of a deterministic DS, i.e. a set of m×n
samples, one per attribute Xi and user uj .

An illustration of deterministic DB is given in Ta-
ble 1, where xi(uj) denotes the sample corresponding
to attribute i for user j. Concretely, purely determin-
istic attributes are not so frequent (the date of birth
is a typical example). By contrast, there are many at-
tributes that are stable enough for being considered as
deterministic (such as the ZIP code for example), and
therefore will be interpreted as such in practice.

Table 1. Example of deterministic DB.

X1 X2 . . . Xm

u1 x1(u1) x2(u1) . . . xm(u1)
u2 x1(u2) x2(u2) . . . xm(u2)
. . . . . . . . . . . . . . .
un x1(un) x2(un) . . . xm(un)

Probabilistic data. Similarly, we define a probabilistic
DS as a set of m attributes, each of them described by
n probability distributions pj

i (x) or fj
i (x), with 1 ≤ j ≤

n. And we define a probabilistic DB as the sampling
of a probabilistic DS, where we denote the number of
samples per user as m × nuj , so that the total number
of samples in the DB equals m×

∑n
j=1 nuj .

An example of probabilistic DB with nuj = 2 for
all users is given in Table 2, where xi(uj , t) denotes the
tth sample corresponding to attribute i for user j. Con-
cretely, any (shopping, cultural, . . . ) user preference can
be examples of probabilistic attributes. The latter ones
are especially important for our following discussions,
since perceptual utility typically aims at quantifying the
accuracy and convergence of their characterization.

Table 2. Example of probabilistic DB.

X1 X2 . . . Xm

u1 x1(u1, 1) x2(u1, 1) . . . xm(u1, 1)
x1(u1, 2) x2(u1, 2) . . . xm(u1, 2)

u2 x1(u2, 1) x2(u2, 1) . . . xm(u2, 1)
x1(u2, 2) x2(u2, 2) . . . xm(u2, 2)

. . . . . . . . . . . . . . .
un x1(un, 1) x2(un, 1) . . . xm(un, 1)

x1(un, 2) x2(un, 2) . . . xm(un, 2)

Both for deterministic and probabilistic data, we
further denote any vector of m samples corresponding
to a line of a DB (excluding the user) as an observation.
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We also define any subset of users that one may be in-
terested to characterize as a group, and a set of q groups
as G = {g1, g2, . . . , gq}. Eventually, we call aggregation
the process of replacing an attribute Xi by an aggre-
gated attribute Yi, such that the original sample space
Xi is replaced by a set of events Yi, with |Yi| < |Xi| if
the attribute was discrete, and Yi a discretized version
of Xi if the attribute was continuous. Note that in con-
crete case studies the DS is always unknown and the
only thing that can be analyzed are sampled DB.

3 Privacy metric(s)

As mentioned in introduction, numerous metrics were
introduced to quantify various aspects of privacy in
databases, some of them being surveyed in [7]. For sim-
plicity, we will mostly use the popular k-anonymity. In
this respect, and while other metrics offer stronger guar-
antees, we recall that our goal is not to argue about the
relevance of one or another anonymity metric. We just
use the k-anonymity to put forward intuitive differences
between the general concepts of anonymity, privacy and
utility (independent of the chosen metric). For this pur-
pose, we first denote an observation ot

j as the vector of
tth samples obtained for the m attributes of user uj as:

ot
j := [x1(uj , t), x2(uj , t), . . . , xm(uj , t)]·

Secondly, we denote the set of observations O(uj) found
in a DB for a user uj as:

O(uj) := {ot
j | 1 ≤ t ≤ nuj}·

Thirdly, we denote the anonymity set A(o) as the set of
users for which a given observation o is in the DB as:

A(o) := {uj | o ∈ O(uj)}·

Based on these notations, we say that a DB preserves
k-anonymity (or is k-anonymous) if:

k = min
o∈DB

|A(o)|·

Intuitively, the k-anonymity guarantees that an obser-
vation does not allow to (strictly) distinguish (i.e. with
probability one) a user from at least k − 1 other users
in the DB. Concretely, this metric is usually computed
with respect to deterministic attributes that are sup-
posed to be easier to collect for the adversary (such as
the sex, ZIP code, . . . ) in order to obtain sensitive in-
formation (such as the incomes, medical data, . . . ).

Note that in probabilistic DB, the k-anonymity ig-
nores the possibility that different users have different
probabilities given an observation. Yet, by denoting the
number of apparitions of an observation o in a DB as
#o and its number of apparitions for user uj as #o|uj ,
we can additionally define the hypothetical probability of
a user uj given an observation o as follows:

P̃r[U = uj |O = o] := #o|uj

#o ·

The term hypothetical probability here reflects the fact
that P̃r[uj |o] is defined based the sampled data of a DB,
which does not mandatorily represents well the DS (i.e.
the true distribution of the attributes). Such hypothet-
ical probabilities can then be used to estimate other
anonymity metrics such as the one of Diaz et al. in [2],
that we will use in Section 7 to illustrate the fact that
perceptual utility reflects another facet of privacy.

4 Perceptual utility metric

Approaches to guarantee privacy in DB generally imply
a number of anonymization operations, which include
aggregation, noise addition, suppression, . . . This leads
to the problem of determining if the sanitized data re-
mains useful. Both general purpose and specific metrics
have been introduced to answer this question [1].

On the one hand, general purpose metrics rely on
the goal of minimal distortion. That is, they start from
the a priori that the DB is useful, and quantify (pseudo)
utility by measuring the distance between the original
and anonymized DB. To a good extent, this approach
resembles the one to quantify privacy in the previous
section, since it is also based on the sampled data of
a DB, independent of its DS. We use the term pseudo
utility to reflect this fact. Minimizing distortion does
not guarantee that an anonymized DB is useful, it only
guarantees that it is nearly as useful as originally.

On the other hand, specific metrics aim at mea-
suring utility based on the purpose of the data col-
lected (e.g. estimating some statistical moment for an
attribute, or classifying users based on some machine
learning tool). Compared to the previous case, this ap-
proach suffers from the complementary drawback that it
does not allow comparing the utility of data collected for
different purposes. Moreover, it requires knowing this
purpose precisely at the time the data is published.

Strictly speaking, this last drawback seems unavoid-
able: utility is indeed most accurately defined in func-
tion of a task to perform. However, we argue next that
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an alternative path is possible, that may better suit cur-
rent trends in big data systems. Namely, we propose to
quantify (perceptual) utility based on whether the data
collected represents well the DS (i.e. the true distribu-
tion of the attributes). We first define the perceived in-
formation metric that we will use for this purpose, and
then provide the rationale behind our new approach.

4.1 The Perceived Information

The Perceived Information (PI) was introduced in the
context of side-channel attacks against cryptographic
devices, of which the goal is to recover some secret data
(aka key) given some physical leakage [9, 14]. The PI
aims at quantifying the amount of information about
the secret key, independent of the adversary who will ex-
ploit this information. Informally, we will use this metric
in a similar way, by just considering the users’ ID as the
secret to recover, and the observations as leakages.

Using the previous notations, we can first define
the Mutual Information (MI) between the users random
variable U and the observation random variable O:

MI(U ;O) = H[U ] +
∑

u

Pr[u] ·
∑

o

p(o|u) · log2 Pr[u|o],

if the observations are discrete, and:

MI(U ;O) = H[U ] +
∑

u

Pr[u] ·
∫

f(o|u) · log2 Pr[u|o] do,

if they are continuous. For conciseness, we use the no-
tation Pr[X = x] := Pr[x] when clear from the context.
The probability Pr[u|o] is derived via Bayes’ theorem,
e.g. Pr[u|o] = f(o|u)∑

u∗ f(o|u∗)
for the continuous case, and

H[U ] is computed based on the a priori distribution of
the users (e.g. H[U ] = log2(n) if it is uniform).

Concretely, and as previously discussed, the true
distribution of the attributes (i.e. the DS) is always un-
known. Therefore, it is not possible to compute the MI
directly (excepted in the case of simulated DB). In or-
der to avoid this caveat, the approach in side-channel
analysis, that we repeat here, is to split the DB that
one wishes to evaluate in two parts: the first one, de-
noted as DBl is used for learning a model, the second
one, denoted as DBt is used to test its accuracy.1

The PI is then computed based on two main phases:

1 One can possibly split the DB in more parts in order to take
advantage of k-fold cross-validation, as described in [6].

1. A probabilistic model p̂j
model (resp. f̂j

model) is esti-
mated for each user uj , which we denote with the con-
ditional distribution p̂j

model(o|uj)← DBl in the discrete
case (resp. f̂j

model(o|uj)← DBl in the continuous case).
Note that in the discrete case, such a model can be

quite close to the previously defined hypothetical prob-
abilities. The main conceptual difference is that this
model is only built from a (learning) part of the DB
that will be tested on independent observations (in the
second phase below), and can be “simplified” (see, e.g.
the example in Section 6.5 taking advantage of an in-
dependence assumption). By contrast in the continuous
case, differences are generally more explicit, since the
model will be based on a continuous distribution.

2. The model is tested by computing the PI estimate:

P̂I(U ;O) = H[U ]+
n∑

j=1

Pr[uj ]·
nt

uj∑
k=1

1
nt

uj

·log2 P̂rmodel[uj |ok
j ],

where nt
uj

is the number of observations for user uj

in DBt, and P̂rmodel[uj |ok
j ] is derived from p̂j

model (resp.
f̂j
model) via Bayes’ theorem, as for the standard MI.

In the ideal case where the model is perfect, the PI
is an estimate of the MI (i.e. its value tends towards the
MI one as the number of samples in DBt increases). In
the practical cases where the model differs from the at-
tributes’ true distribution, the PI captures the amount
of information that is extracted from the DB, biased by
the model errors. That is, the PI becomes lower than
the MI as the model errors increase. It can even become
negative in contexts where the model does not approx-
imate at all the attributes’ true distribution.

Note that the PI can be viewed as a general pur-
pose utility metric in both cases, since it aims at char-
acterizing a distribution independent of the goal of the
data collection. Yet, the interpretation of this general
purpose flavor is only straightforward in the ideal case
(where the model perfectly corresponds to the DS). By
contrast, in the practical cases where the PI differs from
the MI, it then requires to analyze this difference (i.e.
is it due to estimation or assumption errors?). Interest-
ingly, we argue next that one can directly take advan-
tage of leakage certification tools for this purpose.

4.2 Perceptual utility rationale

In the following, we will say that a DB is more or less
perceptually useful if it allows to extract a smaller or
larger (positive) amount of PI on its users. As previously
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mentioned, the word perceptual relates to the fact that
the definition of the PI is based on a model for the DS
attributes, which may be incorrect (because of estima-
tion or assumption errors). Intuitively, a perceptually
useful DB implies that the collected data represents the
DS sufficiently well to capture some specific features of
the users which allow to distinguish them (i.e. are use-
ful for anything). Hence it is conceptually different from
metrics based on the hypothetical probabilities of a DB,
and will be concretely different whenever the number of
samples in a DB is too low for characterizing the at-
tributes accurately or if the model is based on some
(possibly incorrect) assumptions on the underlying dis-
tribution. Furthermore, we will say that a DB is percep-
tually characterized with respect to some modeling tool
if the PI metric computed based on this tool has con-
verged (i.e. is stable over the number of observations in
the DB). Eventually, we will say that a DB is perfectly
characterized with respect to some modeling tool if it is
perceptually characterized and the model used when es-
timating the PI does not exhibit detectable assumption
error (with leakage certification tests – see next).

Note that besides the fact that it captures possi-
ble estimation and assumption errors, the word percep-
tual additionally relates to the difficulty to character-
ize users in the long term, e.g. because of preference
or habit changes. In other following, we will typically
assume that the users’ distributions are stationary.

The rationale behind the PI metric and the previous
notions of utility relate to two recent results in the field
of side-channel attacks against cryptographic devices:
1. The perceived information can be used to bound the
success rate of a Bayesian adversary trying to distin-
guish a user based on new samples of his DS (i.e. inde-
pendent of the samples used to build the model) [4]. This
is in contrast with the k-anonymity game, where the
goal is to identify a user based on an observation that is
already in a DB. In other words, it relates to the “best
possible” characterization of the attributes that can be
obtained thanks to statistical sampling, and therefore to
the possibility to effectively discriminate the DB users
based on this characterization. This justifies why the PI
is an interesting candidate metric for quantified discus-
sions regarding algorithmic governmentality.
2. The perceived information can benefit from “leak-
age certification” [6], which aims to guarantee that it
is “close enough” to the MI. Informally, we say that
the PI is close enough to the MI if any discrepancy be-
tween these metrics is dominated by assumption errors.

More precisely, leakage certification guarantees that, for
a given number of observations in a DB, any improve-
ment of the modeling tool (used to characterize an at-
tribute and compute P̂rmodel[uj |ok

j ]) will not lead to a
significant increase of the PI since the assumption er-
rors are anyway smaller than the estimation ones for
this number of observations. Leakage certification tools
are based on two steps. First an analysis of estimation
errors which allows determining whether a DB is percep-
tually characterized. Second an analysis of assumption
errors which allows determining whether a DB is per-
fectly characterized. If this last condition is satisfied, the
collected data is “useful for everything” since it nearly
perfectly represents the true attributes’ distribution.

We refer to these previous works for the bounds’
proof and details on the implementation of certifica-
tion tools. Note that our notion of perceptual utility
is based on whether some users’ distributions are well
characterized. This directly corresponds to the setting
of a probabilistic DB (where each attribute is indeed
distributed according to some unknown distribution).
However, even in the case of deterministic DB, one will
generally describe group features, in which case the de-
terministic user data also becomes probabilistic (e.g. the
year of birth is a deterministic attribute for single users,
but becomes a probabilistic attribute for groups). In this
respect, by useful data, we essentially mean data that
is useful to discriminate a group or an individual.

4.3 Related works

The use of information theoretic metrics to quantify the
tradeoff between utility and privacy in statistical DB is
admittedly not new: see e.g. [3]. In general, statistical
distance metrics (such as the MI) are indeed natural
candidates to measure a generic dependency between
different random variables. However, our approach fun-
damentally differs from such a previous work since (as
already observed in Section 3 for privacy metrics) it
aims at quantifying model errors rather than assuming
a model is perfect and considering hypothetical proba-
bilities. That is, our work is primarily concerned with
the question whether a DB reveals something about its
users’ true distributions and therefore whether it can be
discriminating (e.g. for decision making) and how much.
By contrast, [2] and [3] consider the DB independent of
the number and representativity of the samples it con-
tains. For a similar reason, comparisons between general
purpose utility metrics based on quantifying the distor-
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tion between a DB and its sanitized version and percep-
tual utility are essentially meaningless since they quan-
tify different things: how much sanitization has modified
a DB in the first case; how much it has decreased the
representativity of its samples in the second one.

4.4 Additional remarks

We mention that the perceptual utility in this sec-
tion is specified based on the conditional probability
P̂rmodel[u|o] and as a reduction of the user’s entropy,
which typically captures the risk of re-identification of
a user based on his observations. But perceptually util-
ity could be similarly defined based on the possibility
to predict the observations (i.e. preferences) of a given
user. We also note that the PI is an average metric,
which is convenient to analyze a DB globally. However,
formally the link between the PI metric and the success
rate of a Bayesian adversary only holds per user, which
can be analyzed by computing the PI per user P̂I(u;O).

5 Preliminaries

We now present two simple observations that result from
the previous definitions and framework, and will sup-
port our simulated experiments in the next section.

First, the impossibility of privacy preserving data
publishing for continuous attributes is formalized
by the next theorem (a proof sketch is in Appendix A).

Theorem 1. In a (finite) DB sampled from a deter-
ministic or probabilistic DS with a single continuous at-
tribute, every observation is different with probability 1.

It implies that every user can be uniquely identified
based on a single observation in such a DB and there-
fore that no k-anonymity can be guaranteed unless some
preliminary sanitization of the data is applied (which
necessarily implies some kind of discretization step).

Next, the unicity of discrete attributes from the
privacy metrics point-of-view is formalized next:

Theorem 2. Any DS with discrete attributes
X1, ..., Xm can be represented as a DS with single dis-
crete attribute X and having the same k-anonymity.

The result simply relies on defining an attribute X of
which the sample space is the product of the sample
spaces of the attributes X1, ..., Xm. Note that a similar

statement holds for the characterization point-of-view,
as long as one tries to characterize all the attributes
jointly. However, as will be discussed next, it is some-
times useful to consider them independently to reduce
the sampling complexity of the characterization.

6 Simulated experiments

In this section, we analyse the evolution of the k-
anonymity and perceptual utility in the exemplary case
of a simulated database containing individuals’ shop-
ping lists. We first define our simulation settings. Next,
we put forward a number of intuitions regarding the im-
pact of aggregating attributes, grouping users and the
list’s curse of dimensionality on our metrics.

Note that despite considering simulated experi-
ments, the only thing we use to compute our metrics
are sampled DB as it would be the case in concrete case
studies. The main difference between simulated and con-
crete experiments is that we can generate DB of various
sizes, which allows us to generate enough samples for
our metrics to converge (which helps readability). Also,
since we actually know (i.e. choose) the exact distri-
bution of the DS, we know whether a DB is perfectly
characterized without the need to run the second (as-
sumption error) part of leakage certification tests.2

6.1 Simulation settings

We consider a DS (corresponding to a shop) with n

users (aka clients). The shop sells Ni different items.
For simplicity, each item can be puchased in Nq (in-
teger) quantities. Hence, we have a set of Nl = NNi

q

possible shopping lists defined as:

L = {(qi1 , qi2 , . . . , qiNi
)|1 ≤ qij ≤ Nq},

that we will also denote as L = {l1, l2, . . . , lNl}. For ex-
ample, a shop with Ni = 2 items and Nq = 3 quantities
will lead to the following set of 32 = 9 lists:

{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

In this context, each user uj has a single attribute. We
define our simulated DS by selecting the user’s probabil-
ity functions pj

1(o|uj). For this purpose, for each user we

2 Which is the most expensive part of the certification process,
although recent works have made steps to simplify it [5].
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pick up Nl probabilities randomly. (Technically, we did
that by assigning a random Gaussian-distributed sam-
ple to each list, and by normalizing to so that the sum of
the list probabilities equals one for every user. Adapting
the variance of the Gaussian distribution additionally
allowed us to make users more or less different). Con-
cretely, we analyzed a case study with n = 100 users,
Ni = 4 items and Nq = 5 quantities (i.e. 54 = 625 possi-
ble lists). The number of observations per user varies in
our experiments, but it is always identical for all users.
Eventually, and taking advantage of our simulated con-
text, we report results averaged over 100 sampled DB
(which allows obtaining smoother curves and gaining
intuition about the average behavior of our metrics).

6.2 PI metric estimation

All our metrics are estimated in function of the DB size,
quantified with a number of observations per user. For a
given number of observations per user, we compute the
PI as described in Section 4.1, taking advantage of 10-
fold cross validation as suggested in Footnote 2. That
is, we iteratively take 9

10 of the observations to build
a model for all the users, and use the last 1

10 of the
observations to test it (i.e. produce the estimated prob-
abilities P̂rmodel[uj |ok

j ]) and compute the PI. Since our
simulated case study is based on a discrete attribute,
the models simply correspond to histograms capturing
the probabilities of occurence of the lists. Note that in
practice, the size of a DB is generally fixed and one can
typically not ask for more observations. Yet, even in this
case the evaluation of perceptual utility benefits from es-
timating the PI with gradually increasing subsets of the
DB in order to gauge the models’ convergence. Finally,
and for readability, all our results are provided as plots
of the metrics. Since they are based on a simulated case
study, the actual values observed in the experiments are
not relevant and only used to discuss the intuitions be-
hind our new approach to (perceptual) utility.

6.3 Impact of aggregation

As a first illustration of the tradeoff between k-
anonymity and perceptual utility, we investigate the
impact of a simple aggregation process for the previ-
ously defined shopping list attribute. Namely, we de-
fine Na-aggregated shopping lists as lists where sets of
Na original (consecutive) items are considered as sin-
gle (aggregated) items that can be purchased in N ′

q =
Na · (Nq − 1) + 1 quantities. This reduces the cardinal-

ity of the set of lists from NNi
q down to N ′Ni/Na

q . For
simplicity, we only consider cases wher Na divides Ni.

Figure 1 represents the evolution of the k-anonymity
and the PI in function of the size of the DB, for the
100-users DB defined in Section 6.1, with and without
aggregation. By making users more similar, the aggre-

Fig. 1. Average impact of aggregating items.

(a) k-anonymity. (b) Perceived Information.

gation process increases the k-anonymity and asymptot-
ically decreases the PI. But quite interestingly, we see
that for a DB with up to 1500 observations per user,
the PI of the aggregated data is in fact larger than for
the orginal one. This typically corresponds to the “win-
win” scenario mentioned in introduction. That is, the
amount of data collected is not sufficient to fully charac-
terize the original lists. So aggregation allows improved
k-anonymity without any loss of (perceptual) utility, be-
cause the DB without aggregation is not yet perceptu-
ally characterized and is in fact even less useful than the
DB with aggregation for this number of observations.

6.4 Impact of grouping

We now study a complementary experiment in which
some users are grouped together. For this purpose, and
in order for the grouping to make sense, our DS de-
scribed in Subsection 6.1 actually embeds an additional
feature. Namely, we only created q = 10 user’s proba-
bility functions pj

1 (with 1 ≤ j ≤ q), and each of them
was repeated 10 times to obtain n = 100 users. In this
context, one can naturally group each subset of 10 iden-
tical users together. As illustrated in the right part of
Figure 2, this improves the convergence of the PI metric
(since we have 10 times more observations per user).
Furthermore, if grouping is perfect (i.e. users in each
group have the same distribution), there is no PI loss
since in our experiments with perfect models, we have:

MI(U ;O) = log(100) +
∑100

u=1
1

100
∑

o p(o|u) log Pr[u|o];
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Fig. 2. Average impact of perfect grouping.

(a) k-anonymity. (b) Perceived Information.

MI(U ;O) = log(100) +
∑10

g=1
10

100
∑

o p(o|g) log Pr(g|o)
10 ;

= log(10) +
∑10

g=1
1

10
∑

o p(o|g) log Pr(g|o);
= MI(G;O).

So the gap between the PI curves in Figure 2 is only due
to a lack of samples to characterize ungrouped users. In
other words, both characterizations become perfect once
having access to a sufficient number of observations.

As for the k-anonymity in the left part of the figure,
it is positively impacted by grouping as well. Indeed,
whenever grouping, any observation recorded for a user
uj will be only be labeled as belonging to a group gj . So
in the simple case where groups have identical sizes that
we consider, we can directly derive the user k-anonymity
by multiplying the group k-anonymity by the group size.
This implies a minimum k-anonymity of 10.

Quite naturally, the situation differs when the
grouping is imperfect, as reflected in Figure 3. In this
case, where the users in each group have different dis-
tributions, the characterization is still faster. However,
it comes at the cost of a perceptual utility loss (i.e. an
asymptotically imperfect characterization), which can
be explained by the distributions of the groups that
are becoming more similar (due to their more different
users), as also reflected in a larger k-anonymity.

Fig. 3. Average impact of imperfect grouping.

(a) k-anonymity. (b) Perceived Information.

Note that the imperfect characterization due to im-
perfect grouping is obvious in Figure 3 since we can
compare it with a perfect characterization (thanks to

our simulated setting). However, even in a concrete case
study where a perfect characterization would not be ac-
cessible, the fact that groups are imperfect would be
directly detected thanks to leakage certification.

Let us additionally mention that grouping is a rele-
vant option to preserve (generalizations of) k-anonymity
when multiple observations for probabilistic attributes
are leaked for a single user (since their combination
usually allows a much better discrimination), which we
leave as an interesting scope for further research.

6.5 The curse of dimensionality

As clear from the previous discussions, the size of the
sample space for shopping lists’ distributions grows ex-
ponentially in the number items they contain. This sug-
gests that exhaustively characterizing such lists rapidly
turns out to be infeasible (despite our toy examples
made it possible by limiting Ni to 4). In this context,
a last natural direction, that we investigate in this sub-
section, is to characterize items independently. As illus-
trated in the right part of Figure 4, this allows making
the collected data perceptually useful much faster. We
further observe that the independence assumption was
incorrect in our setting, since asymptotically the charac-
terization of four independent items is significanly less
informative than the characterization of full lists. Again,
this type of incorrect assumption would be directly de-
tected by applying leakage certification tools.

Fig. 4. Average impact of independent items characterization.

(a) k-anonymity. (b) Perceived Information.

This last example suggests that in practical case
studies, the PI may significantly differ from the MI be-
cause of the difficulty to characterize large distributions
in a non-parametric manner. It typically happens in con-
texts where a DB can only be analyzed based on some
simplifying assumptions. Note that even in this case,
perceptual utility remains a general purpose metric in
the sense that making assumptions about a distribution
to maximize the PI is different than deciding in advance
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the goal for which some data is collected. Importantly,
this observation also highlights that the risks of discrim-
ination in big data systems are inherently hard to bound
when exploiting the collected data requires doing (non-
quantitative) a priori assumptions on the structure of
this data (that are hard to analyze systematically).

Interestingly, and assuming that only single items
have to be characterized, it also becomes possible to
sanitize a DB with “utility-preserving” operations that
substantially increase the k-anonymity. In particular, it
is easy to see that some types of data swapping (similar
to the proposal in [8]) will not affect the utility of items
considered independently. For example, let us assume 3
user observations o1, o2, o3 made for 3 items i1, i2, i3. In
this case, any permutation of the lines below will lead
to “potential user observations” o′

1, o
′
2, o

′
3 that do not

modify the independent items’ characterization.
This example is illustrated with the sampled DB below,
where the swapping does not modify the distribution of
the items (while it does modify the list distribution):

o1 o2 o3

i1 1 0 1
i2 0 0 1
i3 2 1 1

swap→

o′
1 o′

2 o′
3

i1 0 1 1
i2 0 1 0
i3 2 1 1

Since the permutations are unknown, such opera-
tions increase the number of potential user observations,
and therefore the k-anonymity. Quite naturally, this also
makes the computation of the k-anonymity more chal-
lenging, but it at least guarantees that as soon as every
quantity appeared once for every user and item, the k-
anonymity will be maximum. As illustrated in the left
part of Figure 4, this condition was typically observed
after 50 observations per user in our case study.3 As
the previous grouping, this type of anonymization will
preserve k-anonymity even in contexts where multiple
observations are leaked about a user. But contrary to
grouping, it will not maintain probabilistic anonymity
metrics such as the anonymity degree in [2].

7 Utility is privacy (loss)

In the present state-of-the-art, privacy and utility are
usually seen as two different and conflicting goals. How-

3 Note that by slightly biasing the DB with additional fake
observations (which will further decrease its perceptual utility),
we can enforce that this condition is met even earlier.

ever, the results in this paper suggest that this intu-
ition highly depends on the size of the DB, leading to
two important observations. First, there are examples
where privacy metrics such as the k-anonymity can be
improved without loss (or even with an improvement) of
perceptual utility. They typically corresponds to situa-
tions where the size of the DB is too small to character-
ize the attributes’ true distribution. Second and maybe
more fundamentally, the most striking conclusion of our
experimental case studies is that, as the number of sam-
ples in a DB increases, both the k-anonymity and the
characterization of its users generally increases. In this
respect, anonymity and perceptual utility should in fact
be seen as two different facets of privacy. On the one
hand, anonymity allows a user to deny allegations (i.e.
claiming that he is not the only one exhibiting some
attributes). On the other hand, useful data character-
izes its users, which potentially allows identifying them
based on observations that are not (yet) in the DB.
This last observation naturally suggests to investigate
connections between anonymity metrics and perceptual
utility, which we will do next with a last experiment.

For this purpose, we first come back to one limi-
tation of k-anonymity mentioned in Section 3. Namely,
this metric ignores the possibility that different users
have different probabilities given an observation (e.g.
we can have 100-anonymity in a case where an obser-
vation is generated by a user with probability 0.99 and
by the 99 other users with probability 0.01). Since the
characterization of the users with the PI is essentially
based on a probabilistic reasoning, a first step to connect
anonymity and percetual utility is to consider proba-
bilistic anonymity metrics. As already mentioned, there
are several published solutions for this purpose. We will
rely on a metrics inspired from [2]. More precisely, we
will consider the hypothetical probabilities of Section 3
and first define the (hypothetical) conditional entropy:

H̃[U |O] = −
∑

u

Pr[u] ·
∑

o

P̃r[o|u] · log2 P̃r[u|o].

It measures the remaining anonymity of the users based
on the (hypothetical) probabilities specified by the DB.
Next, we define the Hypothetical Information (HI):

H̃I(U ;O) = H[U ] +
∑

u

Pr[u] ·
∑

o

P̃r[o|u] · log2 P̃r[u|o],

which similarly represents the anonymity loss of the
users. Note that the anonymity degree in [2] is just the
hypothetical conditional entropy normalized by H[U ].
As a result, we first computed P̂I(U ;O) and H̃[U |O]
based on the same case study as in the previous section.
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The result of this experiment is in the left part of Fig-
ure 5, where we additionally depicted the exact value of
MI(U ;O), which is feasible in our simulated setting. In-
terestingly, both the (probabilistic) anonymity and the
perceptual utility again increase with the number of ob-
servations per user, which confirms that the intuitions
extracted from the k-anonymity computations in the
previous section can also hold for other (probabilistic)
metrics such as the anonymity degree. Besides, and as
expected, the PI estimate tends towards the true MI
value as this number of observations per user increases,
since our (discrete) models indeed tend towards the true
distributions of the observations in this case.

Fig. 5. Avg. asymptotic behavior of the perceptual utility and the
probabilistic anonymity (loss) based on hypothetical probabilities.

(a) PI vs. anonymity. (b) PI vs. anonymity loss.

Next, we reported the PI together with the
anonymity loss measured with H̃I(U ;O) in the right part
of the figure. This last plot reveals two essential intu-
itions. First, as the number of observations per user in
the DB increases, the anonymity loss measured with the
HI and the characterization of the users measured with
the PI are getting closer. In case of a perfect model-
ing for discrete attributes (as in our experiments), they
even tend towards exactly the same value, since the hy-
pothetical probabilities used to compute the HI and the
models used to compute the PI asymptotically tend to-
wards the same DS distribution.4 Second, and from a
general privacy point-of-view, it illustrates that the im-
pact of increasing the size of the DB is contrasted. On
the one hand, it can improve anonymity metrics since
more data can allow users to better “hide themselves”
in the DB.5 On the other hand, it also improves their

4 In case of imperfect modeling, a gap between these two
asymptotic values will remain, due to the fact that the estimated
PI will inevitably become lower than the (true) MI.
5 Intuitively, this can be easily understood in the case of obser-
vations coming from distributions with large supports: indeed
in this case it is likely that little observations per user create

characterization. In this respect, one could see proba-
bilistic anonymity metrics (such as the HI in this pa-
per, or Diaz et al.’s anonymity degree) as related to
the internal identifiability of the users (i.e. the possi-
bility to identify them based on an observation from
the DB). By contrast, the perceptual utility is rather
related to their external decidability/predictability (i.e.
to whether one can use the DB to make a decision based
on the user’s attributes, or to predict their future ob-
servations). By collecting more data, one can reduce
the internal identifiability (up to the limit given by the
MI) but this comes at the cost of an improved decid-
ability/predictability, i.e. a better characterization, and
therefore with increased risks of discrimination.

8 Conclusions
In this paper, we propose to quantify the (perceptual)
utility of a DB based on whether its collected data repre-
sents well the true distribution of the random variables
from which it is sampled. Perceptual utility provides
an alternative solution to discuss the tradeoff between
anonymity and utility in DB, and captures a fundamen-
tally different notion of utility than solutions based on
the principle of minimal distortion. It provides a nat-
ural (general purpose) metric to quantify the risks of
discrimination due to the automatic data processing.
This metric brings a complementary view to the state-
of-the-art in open data publishing since it suggests that
useful data is always worrying from the privacy view-
point, even if it guarantees some level of anonymity.

Our results raise a number of interesting research
challenges. First, it would be relevant to study the con-
nections between perceptual utility and the location pri-
vacy metrics in [13], for which characterization is indeed
a central ingredient of the definition. Next, and for large
enough DB, investigating the links between perceptual
utility and the success rate of adversaries trying to iden-
tify users based on models built with a DB, that have
been proved useful in cryptographic contexts, is an im-
portant open problem as well. This link could poten-
tially improve and simplify the evaluation of location
privacy. More generally, applying the tools in this pa-
per to real case studies, and analyzing the risks when
combining multiple DB, is certainly needed to confirm

no collisions (i.e. confusion) between users, while increasing the
number of observations per user can create such collisions).
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their applicability and improve understanding. Eventu-
ally, developing new methods allowing one to character-
ize the evolution of a user’s profile over time (i.e. what
is the impact of a change of preferences or habits on
privacy and utility?) is yet another stimulating goal.
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A Proof sketch

Theorem 1. For a finite DB with a single attribute, the
number of observations equals N =

∑n
i=1 nj with n the

number of users and nj the number of observations per
user. In the detreministic case, (where nj = 1) we must
show that:

n∑
i=1

n∑
j=1

Pr[x(ui) = x(uj)] = 0.

Since x(ui) and x(uj) are sampled from a contiuous dis-
tribution f, we have: Pr[x(ui) = x(uj)] =

∫
Pr[x(ui) =

α] · Pr[x(uj) = α] dx, and Pr[x(ui) = α] = Pr[x(uj) =
α] = 0, which concludes the proof. A similar argument
holds in the probabilistic case by showing the general-
ized statement:

n∑
i=1

n∑
j=1

ni∑
k=1

nj∑
l=1

Pr[x(ui, k) = x(uj , l)] = 0.
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