IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

A Framework for the Analysis and Evaluation of
Algebraic Fault Attacks on
Lightweight Block Ciphers

Fan Zhang, Shize Guo, Xinjie Zhao, Tao Wang, Jian Yang, Francois-Xavier Standaert, Dawu Gu

Abstract—Algebraic fault analysis (AFA), which combines algebraic
cryptanalysis with fault attacks, has represented serious threats to the
security of lightweight block ciphers. Inspired by an earlier framework
for the analysis of side-channel attacks presented at EUROCRYPT
2009, a new generic framework is proposed to analyze and evaluate
algebraic fault attacks on lightweight block ciphers. We interpret AFA at
three levels: the target, the adversary and the evaluator. We describe
the capability of an adversary in four parts: the fault injector, the
fault model describer, the cipher describer and the machine solver. A
formal fault model is provided to cover most of current fault attacks.
Different strategies of building optimal equation set are also provided
to accelerate the solving process. At the evaluator level, we consider
the approximate information metric and the actual security metric.
These metrics can be used to guide adversaries, cipher designers and
industrial engineers. To verify the feasibility of the proposed framework,
we make a comprehensive study of AFA on an ultra-lightweight block
cipher called LBlock. Three scenarios are exploited which include
injecting a fault to encryption, to key scheduling, or modifying the
round number or counter. Our best results show that a single fault
injection is enough to recover the master key of LBlock within the
affordable complexity in each scenario. To verify the generic feature of
the proposed framework, we apply AFA to three other block ciphers,
i.e., DES, PRESENT and Twofish. The results demonstrate that our
framework can be used for different ciphers with different structures.

Index Terms—Algebraic fault analysis (AFA), Lightweight block cipher,
LBlock, CryptoMiniSAT, Security evaluation

1 INTRODUCTION
1.1 Background

Data security gets more demanding under
resource-constrained environments. Lightweight block

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

Fan Zhang is with the College of Information Science and Electrical Engineer-
ing, Zhejiang University, China. He is also with the Science and Technology
on Communication Security Laboratory. E-mail: fanzhang@zju.edu.cn.
Shize Guo and Xinjie Zhao are with the Institute of North Electronic
Equipment, Beijing, China. E-mail: nsfgsz@126.com, zhaoxinjieem@163.com.
Tao Wang is with the Department of Information Engineering, Ordnance
Engineering College, Hebei, China. E-mail: twangdrsjz@aliyun.com

Jian Yang is with the Department of Computer Science and Engineering,
University of Notre Dame, USA. Email: jyang9@nd.edu.

Francois-Xavier Standaert is with the UCL Crypto Group, Belgium. E-mail:
fstandae@uclouvain.be.

Dawu Gu is with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China. E-mail: dwgu@sjtu.edu.cn.

ciphers are a cutting-edge technology to provide an
efficient and power-saving solution. Frequently used
lightweight block ciphers include PRESENT, Piccolo,
LED, and LBlock. Most of these ciphers can be
implemented with less than 3000 gate equivalents. The
complexity of traditional cryptanalysis increases
exponentially with the number of rounds. From a
theoretical point of view, these ciphers are deemed
secure if the number of rounds is sufficiently high.
Fault attack can retrieve secret information by actively
injecting faults into the cryptosystem. Faults can be
generated by changing the power supply voltage, chang-
ing the frequency of the external clock, varying the
temperature or exposing the circuits to lasers during
the computation [I]. The idea was first reported on
RSA-CRT by Boneh et al. in 1996 [2]. Later, Btham and
Shamir proposed a differential fault analysis (DFA) attack
on the block cipher DES, which combines a fault attack
with differential cryptanalysis [3]]. Since then, DFA has
been used to break various block ciphers. Traditionally,
DFA on block ciphers is mostly conducted through
manual analysis. When facing fault injection in a deep
round, the fault propagation paths will overlap. The
complexity of the analysis among overlapping paths
increases exponentially, which is very difficult for the
further manual analysis. This also happens when the
number of flipped bits is large. A large size is easy for the
injections, but it increases the difficulty of the analysis.
To overcome the difficulty of DFA, recent work [4]
shows that algebraic cryptanalysis [5] can be combined
with fault analysis. A machine solver can be used to
automatically recover the secret key. This technique is
referred to as algebraic fault analysis (AFA). AFA was
proposed by Courtois et al. [4] in 2010. They showed
that if 24 key bits are known and two bits in the 13-
th round are altered, DES can be broken with a single
fault injection in 0.01 hour. The full attack requires
about 2'9 hours and works 10 times as fast as the
brute force attack. Considering their design principles,
cryptographic devices with lightweight block ciphers
are more vulnerable to fault attacks. Moreover, it is
less complicated to solve the algebraic equations for

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

lightweight block ciphers due to their relatively simple
structure, making fault exploitations much easier. Zhao
et al. [6] and Jovanovic et al. [7] extended AFA to
lightweight block ciphers, such as LED. In [6], they used
only one fault injection to recover the master key of
LED in one minute with a PC. In 2013, Zhang et al. [8]
proposed an improved AFA, which showed that the
secret key of Piccolo can be recovered with only one
fault injection. Zhao et al. [9] also got a more precise
estimation of the LED key search space using AFA.

1.2 Motivation

Previous AFA mostly focused on one particular block
cipher. The motivation of this paper is to standardize the
process of AFA and provide a generic framework to an-
alyze fault attacks on different block ciphers, especially
on the lightweight ones. In practice, many situations are
more challenging. Usually, faults are injected into a state
before the linear layer that will bring the diffusion. For
example in AES, a fault can be injected into the output
of the key addition or substitution, as long as the place
for the injection is before the MixColumn layer. However
from the adversary’s point of view, it is straightforward
to ask the question: where else can I inject a fault during
the encryption? A smart attacker may jump out of the
box at a specific state and focus on a local index variable
referred to as the round counter. Lightweight ciphers have
a simple structure for efficiency reasons, but require
more rounds to guarantee security. We aim to investigate
how fault injections can modify the number of rounds,
and how leakages could be used in algebraic fault
attacks. The extended case of injecting faults both inside
and outside the encryption module therefore requires a
thorough study.

1.3 Our Work

In this paper, we make a comprehensive study on
algebraic fault attacks on block ciphers.

In Section 2, we first give the formal description of
algebraic fault analysis on block ciphers. We can describe
AFA from three levels: the target, the adversary and
the evaluator. At the target level, the design and im-
plementation of cryptographic schemes are considered
from three aspects. At the adversary level, we describe
the capability of an adversary in four parts. At the
evaluator level, we consider two metrics: the approximate
information metric and the actual security metric. These
metrics can help us to answer two types of questions:
for adversaries, What faults should I inject and how? For
cipher designers and industrial engineers, How secure is
my design? and How secure is my implementation?

To verify the feasibility of the proposed framework,
we make a comprehensive study of AFA on an ultra-
lightweight block cipher called LBlock [10]. In Section 3,
we first describe LBlock and related fault attacks. Then,
we present how to build the algebraic equation set and
provide the strategies on how to solve the equation set.

Different fault models are considered. In Section 4, we
evaluate LBlock against fault injections in the encryption
procedure. In Section 5, we conduct fault attacks on
the key scheduling of LBlock. Inspired by previous
work [11], [12], in Section 6 we finally investigate four
cases where faults are injected to a round number or a
round counter. Under each case, our best results show
that we can recover the key with only one fault injection.

To verify the generic feature of the proposed frame-
work, we apply AFA to evaluate some other block
ciphers against fault attacks in Section 7. The first target
is DES [13], a standard cipher selected by NIST. The
result shows that, under the single bit fault model, the
attack efficiency is quite different when the fault location
varies. If a single fault is injected into a certain bit in the
12-th round or any bit in the 11-th round of DES, the
remaining entropy of the master key can be reduced to
5 or 0, respectively. The second one is PRESENT [14].
It has become a standard lightweight block cipher and
has been deployed in many applications. The results
show that, if single fault is injected in the 28-th round of
PRESENT with 80-bit key length, the remaining entropy
of the master key can be reduced to less than 30 with 35%
probabilities. For most of the instances, two injections
can recover the master key within three minutes. The
third one is Twofish [15], a very complicated cipher and
one of the AES candidates. The results show that if a
single byte fault is injected into the last round of Twofish,
about 280 fault injections can recover the key within 24
hours.

In Section 8, we conclude the paper and list some
future work.

2 PROPOSED AFA FRAMEWORK

In order to overcome the disadvantage of DFA, we
propose a generic framework for AFA, which considers
three levels: the target, the adversary and the evaluator.
The framework tries to standardize the process of AFA
and provides a unified solution which could evaluate
different targets and adversaries.

2.1

The target level covers two aspects: design and imple-
mentation. The cryptographic design refers to the cipher
which utilizes some ideal functions to solve cryptograph-
ic problems. For example, LBlock [10] is a cipher. The
cryptographic implementation includes two parts: code
and device. The cryptographic device refers to the hard-
ware platform to implement the encryption/decryption
functions of the cipher. For example, a smart card run-
ning the LBlock algorithm can be a target device. The
cryptographic code comprehends the engineering effort
of converting the theoretical cipher into practical pro-
gramming code running on the device. For example,
LBlock has size-optimized and speed-optimized versions
in terms of programming code. The target level depicts

The Target Level

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

_— >(How secure is my demgn’D (How secure is my |mplemenat|on'7>(_——

(Design Implementation N S |
. 2
> Cipher Device _:—;
IEIRE: - 2| |
~ B <<
N)| %
| P P N 2
B [[———————— =
r | Cipher | [| Fault Model | | - |
| § ’ Describer ’ I Describer Fault Injector % | |
@ Equation Builder Equation Builder <
| g L ﬁrthe CiE - | || _forthe Faults 1 2 | |
< =
< &
| I Machine Solver | s |
o T J = |
N2 =
| 5 Approximate Information Metric Actual Security Metric N\ — | |
=
‘G . . .
(_36 Conditional entropy Computational restrictions J
< Success rate
w J

Figure 1: The proposed framework for AFA

how a cryptographic code is implemented on a specific
device.

Possible targets include block ciphers, stream ciphers,
hash functions, message authentication codes (MACs)
etc. For this paper, we carefully chose four block ciphers:
LBlock [10], DES [13], PRESENT [14] and Twofish [15].
LBlock, DES and Twofish have a Feistel structure while
PRESENT has an SPN structure. LBlock is quite new
but efficient. There is not much work known about it.
DES is quite old but well-known. Twofish requires some
complicated operations such as modulo addition, key-
dependent S-Boxes, and the Pseudo-Hadamard Transfor-
m (PHT), which make fault attacks difficult. PRESENT
is one of the most famous lightweight block ciphers
with an SPN structure. Both LBlock and PRESENT are
lightweight. The large number of applications to the
aforementioned ciphers demonstrates the universality of
our framework.

2.2 The Adversary Level

In our framework, an adversary’s capability is charac-
terized by four factors: the cipher describer, the fault model
describer, the fault injector and the machine solver. The
cipher describer refers to its capability of giving the for-
malizations of the cryptographic codes. The fault model
describer depicts the attributes of faults to be injected.
Both describers are implemented as public interfaces
and supported by equation builders which automatically
transfer those from describers into algebraic equations.
The fault injector is in charge of injecting the fault into the
device [1]|. Finally, the machine solver takes the equations
as inputs and solves them using mathematical automata.

There are three important stages at this level: D
Fault Injection, @ Equation Building and Q) Equation
Solving, which are performed by the fault injector, the
describer /builder, and the machine solver in Figure

respectively. Figure [2| shows the details of how the
adversary level works.

2.2.1 The fault injector

In Figure [2| Stage @, i.e., Fault Injection, indicates where
the fault is injected. Previous work focused on the
injections in encryptions. It is possible to extend the
scenarios. Inside the encryption, the fault, denoted as f,
could be injected into an intermediate state for different
linear or non-linear operations, or a state for storing the
total number of rounds, or an instant state called round
counter. Outside the encryption, f might also be induced
to other components such as key scheduling.

There are many practical methods to inject faults, such
as optical radiation, clock glitch, critical temperature
change, and electromagnetic emission. How to inject
faults is discussed in [1], which is out of the scope
of this paper. We focus here on three fault models
(bit-based, nibble-based and byte-based) and conduct
injections with simulations.

2.2.2 The fault model describer and its equation builder

In Stage), i.e., Equations Building, the adversary needs
to build the equations for the faults.

A formal model F describes what the fault is and how
it is related to the cipher. Here, X is an intermediate
state. X; is a unit of X, which determines how X is
organized. f is the injected fault. w is the width of
f. The fault width w is the maximal number of bits
affected by one fault. The value of w might be 1, 4,
8, which refers to bit-based, nibble-based, and byte-based
fault models, respectively. X* is a faulty state where faults
are injected. r is the index for a specific round. 7,4, is
the round number, i.e., the total number of rounds. X
has different meanings. It can be a state in r-th round
of the key scheduling or encryption, thus X is written
as XX or X It can also be a state referred to as the

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

An example: the i-th pair

1 2 .o I o F;ax equati .
quation set for the cipher
P [[-[x[-[¢
) N Ci =Enc @)
) Correct Encryption Mmax-r+1 ... Max
N pairs of C*=Ency v ()| N
correct/faulty @ ::a_ultf
i njection .
encryptions Iocgtionl ® Equation equation set for the faults @ Equa_‘tlon
1 2 ..} r .. I'ax Buildi So|v|ng
K reeep ey uilding N
(a MNES I oy x| o,
rmax‘r+1
Faulty Encryption
1 2 .. r .. I;max equation set for verification
One correct K Y
encryption for | Pv —> .lﬂ.ﬂl G \ | c=Enc 0
verification Lo Fmax

Correct Encryption

Figure 2: The adversary level of AFA framework

round counter, thus X can be depicted as X} or X"
respectively.

Two terms are used throughout this paper. Position,
denoted by X, is the state where the fault is situated. It
refers to the round in most of cases. Location, denoted
by t, is the place where the fault is located inside a
state. As in most previous fault attacks [3], we assume
that only one unit of X, ie., Xy, is erroneous with a
single fault injection in this paper. This usually happens
in fault attacks to the software implementations of block
ciphers. For hardware implementations, multiple units
of X might become faulty after a single fault injection.
In general,), the size of the state, is larger than w. Thus
there are m possible locations for f where m = A\/w. m
denotes the maximal value for the number of possible
locations for fault injection. ¢ can be known or unknown
depending on the scenarios.

A formal fault model can be described as a tuple of
five elements F(X,\, w,t, f). Basically, it tells us that a
fault with value f and width w is injected at location ¢
with respect to a state (or position) X having A bits.

The injected faults are also represented with algebraic
equations. Different parameters such as width w and
location ¢ should be considered. The equation set for
the faults can be merged with the one for the entire
encryption, which can significantly reduce the computa-
tion complexity. There is an option to build an additional
equation set for verification purposes. It is based on the
correct full round encryption of a known plaintext P,,
resulting in a corresponding ciphertext C,,. This equation
set enforces the number of solutions to be one.

2.2.3 The cipher describer and its equation builder

Stage), i.e., Equations Building, specifies how to con-
struct the equation sets for the cipher. Enc stands for
the encryption function. The plaintext, the ciphertext,
the master key and the state are denoted by P,C, K, X
respectively. On the one hand, the building work has

to include all the major components in both encryption
and key scheduling. On the other hand, it should rep-
resent every operation. The most difficult part is how to
represent the non-linear operations such as S-Box and
modulo addition. More details can be found in [16]. In
order to accelerate the solving speed, different strategies
can be applied to the solver. For example, as to AFA
on block ciphers with SPN structure, it is better to use
the pair of correct and faulty ciphertexts to build the
equations reversely [9]. In Figure [2} a fault is injected to
X in the 7-th round. The equation set is built for the last
(Pmaz — 7 + 1) rounds.

2.2.4 The machine solver

Stage @), i.e., Equation Solving, specifies how to solve
the entire equation set. Many automatic tools, such as
Grobner basis-based [19] and SAT-based [18] solver,
can be leveraged. The adversary could choose his own
according to his skill set.

2.3 The Evaluator Level

The evaluator level takes the output of machine solvers
and evaluates two metrics: the approximate information
metric and the actual security metric. The evaluator an-
swers two types of questions: for adversaries, What
faults should I inject and how? For cipher designers and
industrial engineers, How secure is my design? and How
secure is my implementation?

2.3.1 Actual security metric

There are two types of security metrics. One is the
computational restrictions. The possible criteria of the
restrictions can be time complexity (such as the threshold
for the timeout and the entire solving time, denote by
tour and tg, respectively), the data complexity (such
as the number of fault injections, denoted by N), and
the space complexity (such as the memory cost). The

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

other is the success rate (denoted by SR) for extracting
the master key. All these objective metrics are either
measurable or computable, thus they can be used to
evaluate and compare different factors that may affect
algebraic fault attacks.

2.3.2 Approximate information metric

The information metric refers to the conditional entropy
of the secret key after IV fault injections. It is denoted by
¢(K). In traditional DFAs, the adversary cannot analyze
deeper rounds due to the overlap among propagation
paths. The full utilization of all faults can be easily
done in our AFA framework. The remaining key search
space (denoted by 2¢(K)) is equivalent to the number
of satisfiable solutions if the multiple solution output is
supported. Note that if the number of fault injections
is small or the fault position is deep, the number of
solutions might be too big to search them all. In this
case, we can feed « guessed bits of the secret key into the
equation set. As opposed to [17], our information metric
actually calculates an approximation to the theoretical
complexity of the key search, which can serve as an
additional criterion to conduct the evaluations.

3 PRELIMINARIES OF AFA ON LBLOCK

LBlock [10] is an ultra-lightweight block cipher present-
ed by Wu et al. in CANS 2011. It uses a 32-round
Feistel structure with a block size of 64 bits and a
key size of 80 bits. The design of LBlock well balances
the trade-off between security and performance. On the
one hand, only 1320 gate equivalents and 3955 clock
cycles are required for hardware and software imple-
mentation respectively, which is outperforming many
proposed lightweight block ciphers under mainstream
architectures [18]], [19]. The good efficiency makes it very
suitable for resource constrained environments. On the
other hand, LBlock remains still secure under modern
cryptanalysis. It is worth taking a comprehensive inves-
tigation to its security features. We are interested in its
resilience against fault attacks.

In this section, we first provide the design of LBlock
and list related cryptanalysis. Then, the general repre-
sentations of the equation set for both LBlock and the
faults are described.

3.1 The Cipher of LBlock

Algorithm [1| shows the encryption of LBlock. Let P =
X1]|Xo denote the 64-bit plaintext and C' = Xga| X33
denote the ciphertext, where X; is 32 bits. 7,4, = 32
is the total number of rounds. rc is the round counter.

The round function F' is a non-linear function with
a 32-bit input. It consists of Key Addition (AK), Sub-
stitution (SB) and Linear Permutation (PM). F =
PM(SB(AK (X, K;))).

o AK: the leftmost 32 bits of F' function input are

bitwise exclusive-ORed with a round key

Algorithm 1: The Encryption of LBlock

1 Tmaz = 32 ;

2 P=X1|Xo;

3 for rc = 0; rc < Tyaz; Tet+ do

4 ‘ Xret2 = F(X7'c+1,Krc+1) + (ch <KL 8) ;
5 end

6 C = X32|| X33 ;

o SB: the substitution uses every 4 bits of the
exclusive-OR results as index for eight different
4-bit S-Boxes, sg, S1,...,87

e PM: a permutation of eight 4-bit words Z (Z =
Z7||Zsl| .. .|| Zo) to U (U = Uz||Us]||...||Uo), and it
can be illustrated as the following equations:

Ur = Z6,Us = Z4,Us = Z7, Uy = Zs,
Us = Z3,Up = Zy, Uy = Z3,Uy = Z1

Algorithm [2| shows the key scheduling of LBlock. The
master key is denoted by K = krl|krs||...||ko. The
leftmost 32 bits of K are used as the first round key
K. Left32(L) denotes a function to get the leftmost 32
bits of L, where L is a state register of 80 bits. /; is one
bit of L. The other round keys K;i1 (i = 1,2...31) are
generated according to Algorithm

@

Algorithm 2: The Key Scheduling of LBlock

1 Tmaz = 32 ;

2 L=K;

3 K1 = Left32(L) ;

4 for rc = 1; rc < rmaz; ret+ do
5 L <<<29;

6 [I7olli7s||ll77]|l76] = so[l7ol|lzs||l77/l76]
7 (lzsllizalllzsl|lz2] = ss[lzs||l7al|lz3]/i72] ;
8 [ks0llkaol|kas || ka7 ||kas] @ [rc] ;

9 Krey1 = Left32(L) ;

10 end

LBlock has two software implementations [10]. In
the size-optimized implementation, eight 4-bit S-Boxes
and 4-bit word permutations are used. In the speed-
optimized implementation, the eight S-Boxes and the
permutations can be implemented as four 8-bit lookup
tables. No additional permutation is required. In the rest
of this paper, we mainly focus on fault attacks on the
software implementation of LBlock.

3.2 Related Fault Attacks on LBlock

Regarding the fault attacks, Zhao et al. [20] proposed
the first fault attack on LBlock with DFA. Their best
results showed that if a single-bit fault is injected into
any round between the 24th and the 31st round, at least
8 fault injections are required to extract the master key.
In 2013, Jeong et al. [21] presented an improved DFA on
LBlock under nibble-based fault model. It requires 5 fault
injections into the left input register of the 29th round,
or 7 injections into the one of the 30th round. Chen
et al. [22] built eight 8-round integral distinguishers of
LBlock and proposed several integral based fault attacks.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

When faults are induced into the right part at the end
of the 24th round under random nibble fault model, 24
fault injections are required to recover the master key of
LBlock. When faults are induced into the right part at the
end of the 23rd round under semi-random nibble model,
32 fault injections are required. Li et al. [23] presented the
first AFA on LBlock. Under nibble-based fault model in
the 27th round, two fault injections are enough to recover
the 80-bit master key.

3.3 Building the Equation Set for LBlock

3.3.1 Representing the overall encryption

The equations for the overall encryption have already

been listed in Algorithm [I| (Line 4) where 0 < ¢ < 31.
XH_Q =F (Xi+1a K¢+1) + (XZ < <L 8) (2)

3.3.2 Representing AK

Suppose X = (331,.132,...71'32) and Y = (y17y27"'5y32)

are the two 32-bit inputs to the AK of LBlock. Z =

(21, 22, ..., z32) is the output. AK can be represented as
ity +2,=0, 1<:<32 3)

Note that the XOR operation in key scheduling (Line 8
in Algorithm [2) can also be represented with Equation
rc can be considered as one input whose value is known.

3.3.3 Representing SB
In LBlock, eight S-Boxes sg, 51, - - - , 57 are used in encryp-
tion and the other two sg, s9 are used in key scheduling.
Let the input of S-Box be (z1|z2||xs||x4) and the output
be (y1llyzllysllys). We adopt the method in [24] and
represent each S-Box with four equations. For example,
the equations for sy can be represented as:
14+ z120004 + 71 + 2173 + 2304 + 2274 +y1 =0
1+ 212004 + x12223 + 21 + T4 + 2122
+xox3 + Toxs + 214 +y2 =0 (4)
1+21+20+ 24+ 2273+ 2224 +y3 =0
T+ 2o+ x3tTat+ T2 +ys =0

3.3.4 Representing PM

Let the input and output of PM be (z1||z2| ... [|z32) and
(y1llyz|l - - - |lys2) respectively. The i-th bit of the input can
be mapped to the i-th bit of the vector M using Table

Table 1: Permutation Sector M

~
—
N
W)
S
6]
o
N
@

=
O
—
o
p—
—_
p—
N
—_
N
[eN)
'

~
O
—
o
p—
—_
p—
N
—
@
—
=~
—
6]}
—
o)}

=
)
W)
—
o~
p—
a1
—
(o)}
a1
o
N
@

-
—
N
—
@
p—
o
N
o
N
[y
N
N
N
@
N
N

=
N
a1
)
)
N
3
N
®
p—
N
—
®
—
©
)
S

~
N
&1
N
(o)}
N
N
N
o]
N
Ne)
W
o
W
=
W
N

=
N
O
w
o
w
—_
w
N
N
=
N
N
N
(€8]
N
=

The PM function can be expressed as

i +ymp =0, 1<i <32 @)

3.3.5 Representing [-bit left cyclic shift

Suppose there is an I-bit left cyclic shift to a state register
of m bits. LBlock adopts one 8-bit left cyclic shift in
encryption (I = 8,m = 32) and one 29-bit left cyclic
shift in key scheduling (I = 29,m = 80). Both can
be written as the following equation when the input
is (z1]|z2|| ... |lzm) and the output is (y1]|y2]| - - |ym). %
stands for a modulo operation.

Tari-) %m+1T¥=0,1<i<m (6)

Using Equations [2| to [6} each round of key scheduling
can be represented with 196 variables and 244 CNF equa-
tions; while each round of encryption can be represented
with 304 variables and 496 CNF equations. The script
size of one full LBlock encryption is 449KB.

3.4 Building the Equation Set for Faults

Let X denote the A-bit correct data unit of LBlock.
X = z1||z2] ... [|Jxa. X might represent a 32-bit left state
register in the encryption (A = 32), or an 80-bit key
register in the key scheduling (A = 80). Let Y denote
the faulty value of X. Y = yi]ly2] ... |lyr. There are m
possible locations for the injected faults where m = A/w.
Let Z denote the fault difference of X and Y:

Z=zlz| - lzxzi =2 +yi, 1<i <A)
Then, Z can be divided into m parts: Z1||Z2|| ... || Zm
Zi = zux(i—1)+1 Zwx =42l - [[2wxi, 1 <i <mo (8)

According to whether the adversary knows the exact
location ¢ (1 < ¢t < m) or not, the algebraic equation
representation of Z may have different formats.

3.4.1
Suppose t is known. Then Z can be denoted as

Representing the fault with known t

Zi=0,1<i<m,i#t)

Z; has a nonzero value of w-bits. We introduce a single
bit variable u; to represent that Z; is faulty.

Ut = (1 2 wa(t—l)-i—l)(l 2 wa(t—1)+2) te (1 S wat) =0

(10)

Using Equations 9] and [10} Z can be represented with
w + 1 variables and w(m + 1) + 2 CNF equations.

3.4.2 Representing the fault with unknown ¢

In practical attacks, the fault location ¢ may be unknown.
We introduce a variable u; of m bits to represent whether
Z; is faulty or not.

u; = (1 2] wa(i—1)+1) (1 S wa(i—1)+2) ak

11
(16 2axi), 1<i<m (an

If u; = 0, Z; will be the variable that is associated
with the w-bit fault. Assuming that one and only one

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

fault is injected, there should be only one zero among
U1, U2, . .., Un. This constraint can be represented as:

I—u) V(I —ug)V--- V(I —up) =1,
uVu; =1, 1 <i<j<m
Using Equations [11]and [12] Z can be represented with
m(w + 2) variables and m(2w + 0.5m + 1.5) + 1 CNF

equations. These equations can also be represented when
different values of w, m and A are given.

(12)

3.5 Equation Solving Strategies

In this paper, we choose CryptoMiniSAT v2.9.6 as our
equation solver. It has two modes. Mode A works with a
pair of known plaintext P, and corresponding ciphertext
C,,, which enforces the number of solutions to be one all
the time. The purpose of this mode is to get the statistics
of different solving times with different numbers of fault
injections, which is one type of the actual security met-
rics mentioned in Section 2.3.1. Mode B works without
(Py, Cy). The solver is running a multiple solution mode
to estimate ¢(K'), the remaining entropy of the master
key. It is the approximate information metric mentioned
in Section 2.3.2.

Next we describe how to use CryptoMiniSAT to
roughly estimate ¢(K) given N fault injections under
Mode B. Let len denote the key length and s denote
the number of guessed secret bits fed into the solver.
To estimate ¢(K), s is usually chosen from a larger
value to a smaller one. Let 7(x) denote the number of
solutions for given x. When the number of solution for
one AFA is larger than 28, it is difficult for
CryptoMiniSAT to find out all possible solutions within
affordable time. In this case, a threshold 7 for the
maximal number of solutions can be set as 7 = 218, The
detailed algorithm is shown in Algorithm

Algorithm 3: Estimate ¢(X) under Mode B
input : len, N, T
output: ¢(K)

GenerateAFAES (N);

GenKnownKeySet (Sg);

for k=len; k >-1; Kk — — do

FeedRandKeyBits (Sg) ;

RemoveRandKeyBit (Sg);

RunAFAModeB () ;

CalcSolutionCount (n(k));

if n(k) > 7 and k > 0 then
B(K)=+ -+ loga (1(x));
break;

end

if n(k) < 7 and k==0 then

| 6(K)=logz (n(x));
end

© ® N U W N =

I =
@ N = o

-
-

end

J
@

In Algorithm [3] GenerateAFAES generates the e-
quation set of the last few rounds after the fault is
injected. GenKnownKeySet generates the value of the
known key bits into set Sj. Sj is initialized to len (80
for LBlock) bits of the secret key. FedRandKeyBits

feeds the value of k key bits in S, to the equation
set. RemoveRandKeyBit removes one random key bit
from Sj. RunAFAModeB means using CryptoMiniSAT to
solve for all possible solutions. CalcSolutionCount
represents counting the solutions of the secret key from
the output file of CryptoMiniSAT. From Algorithm 3| we
can see that when n(k) > 7 and k > 0, ¢(K) can be
roughly estimated as k+logon(x). If Kk =0 and n(k) <,
the accurate value of ¢(K) is logan(k).

4 APPLICATION TO LBLOCK: FAULT INJEC-
TION TO ENCRYPTION (SCENARIO 1)

4.1 Fault Model

In this scenario, the fault f is injected into X,.y; in
LBlock encryption which is marked with a red double
box in Algorithm E} The fault model can be described
as F(X, A\, w,t, f). More specifically, a fault is injected
into the left 32-bit register of the encryption (A = 32),
whose value f is unknown. We consider three cases for
the fault width (w = 1,4, 8) and two cases for the location
(t is known or unknown).

Algorithm 4: Fault Injection to Encryption

1 Tmaz = 32 ;
2 P=X1|Xo;
3 for rc = 0; rc < rmaz; Tc++ do

X'rc+2 = F(f ~ X1*c+1 7K'rc+1) + (XT'C <L 8)r
5 end

6 C = X32|| X33 ;

-

4.2 AFA Procedure

The attack is described in Algorithm 5| Both Mode A and
Mode B of CryptoMiniSAT are considered. We define
an instance as one run of our algorithm under one
specific fault model. In one instance, the algorithm may
be repeated many times, each of which requires one pair
of plaintext and ciphertext, and one fault injection. We
define N as the number of fault injections. For these N
fault injections, the fault model F is the same. As for the
inputs of Algorithm 5] b, is a flag to indicate whether the
location ¢ is known or not. 7 is the specific round of X;".
If the fault is induced into a deeper round, the value of
r is smaller. If the solver is under Mode A, the output
is the solving time ¢, if it is successful. Otherwise the
algorithm stops at a time out ¢,,;. We define a success
rate SR for extracting the master key, which is the
number of instances with a successful solving within ¢,
over the number of all instances. If it is under Mode B,
the output is the remaining key entropy ¢(K).

In Algorithm |5, P and K denote the sets for plaintexts
and round keys respectively. KS and Enc denote the
key scheduling and encryption function respectively.
RandomPT generates one or more random plaintexts.
InjectFault induces one fault. A function in Algo-
rithm |5 will generate an equation set if its name is
prefixed with Gen and suffixed with ES. The attack
can be described as follows. The adversary A generates

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

N pairs of plaintext/ciphertext and starts constructing
equations. First, he builds the equations for key schedul-
ing (GenKSRAES in Line #1). For each F;, he will build
the equation set for the correct encryption (R, to Rsz)
using C; (GenEnRdES in Line #2). For each injection, he
needs to build the equation set for the faulty encryption
(R, to R32) using C; (in Line #3) together with the one
for the fault itself (GenFaultyES in Line #4). Besides
that, A has to generate the equation set for a full round
encryption (in Line #5). The equation set based on a pair
of (P,, Cy) in Line #6 is for the verification purpose under
Mode A. Finally, these combined equation sets are fed
into the solver for key recovery (RunAFA in Line #7).

Algorithm 5: The AFA Procedure of Scenario 1
input : N, r, w, b;
output: ts,; in Mode A, ¢(K) in Mode B

RandomPT (P) ;
K=Ks (K, L) ;
for rc = 1; rc < rmaqa; ret+ do
| GenKSRAES (r¢, Krey1) ; // #1
end
for:=0;i < N; i++ do
C;=Enc (P;, K) ;
forrc=r —1; rc¢ < rmaz; rc++ do
‘ GenEnRdES (XT'C+17 Xre, KTC+1) ; // #2
end
GenInputES (C;) ;
Cr=InjectFault (Enc (P;, K), Xr);
forrc =1r —1; rc < rmax; re++ do

© ® N U R W N R

I e
[3 R ==

14 | GenEnRAES (Xreq1, Xre, Kreg1) 5 /] #3
15 end

16 GenInputES(C}) ;

17 GenFaultyES (f = X, + X)) ; /] #4

end

RandomPT (Py) ;

Cy=Enc (P, K) ;

for rc = 0; rc < rmagz; rc++ do

NN ==
= S © ®

22 | GenEnRAES (Xycy1, Xre, Kret1) ; /] #5
23 end

24 GenInputES (P,,Cy) ; /1 #6
25 (Tsor, (K)) = RunAFA () ; /] #7

4.3 Case Study 1: Bit-based Fault Model

Under bit-based fault model, we consider different fault
positions and known/unknown locations.

4.3.1

For a specific state X", we decrease r from 30 to 24.
For each r, 100 instances of AFA are conducted under
Mode A. For each instance, there are N fault injections.
The statistics of different values of (r,N) are shown
in Figure 3| The horizontal axis is the solving time in
seconds. The vertical axis is the percentage.

In Figure 3 the statistics seem to follow an exponential
distribution. NV can be reduced when r is smaller, which
means that an injection to a deeper round could reduce
the number of faults that are required. When (r, N) =
(30,10) or (29, 5), the 80-bit master key of LBlock can be
recovered within five minutes, SR = 100%. If (r,N) =
(28,3) or (27, 2), it can be extracted in one minute, SR =
100%.

The location t is unknown

0 50 100 150 200 250 300 0 50
Solving time (second)

100 150 200 250 300
Solving time (second)

(@) r =30,N =10 (b) r=29,N=5

40 50 60

50 50 (] 10 20
Solving time (second)

0 10 20 30 40
Solving time (second)

©r=28N=3 (d)r=27,N=2
Figure 3: Distribution of solving time under bit-based
fault model, ¢ is unknown (Mode A)

Note that the single-bit fault model in [20] can be
converted to our fault model in this paper. The work in
[20] assumed that a single-bit fault is randomly injected
into the internal state at the end of the (r — 1)-th round.
This is equivalent to our bit-based fault model in the -
th round, where single-bit fault is randomly injected into
the left input register of the r-th round. The comparison
with [20] is shown in Table With our framework,
we first verify the result in previous work for specific
rounds. In contrast, the efficiency and effectiveness of
our work are demonstrated when the fault is injected
into the same round. Our attack requires only a few
injections. For example, two injections are enough for
our AFA in Ry7, while about 8 injections or more are
required for most cases in [20].

Table 2: The number of injections in comparison with
previous work under random bit-based fault model

7 DFA in [20]

AFA in this paper
10

30 24

29 24 5
28 24 3
27 12 3
26 8 2
25 24 5

4.3.2 The location t is known

If ¢ is known, we first conduct 100 AFA instances for
each r under Mode A, t,,: = 3600 seconds. The results
in Table 3| show that N becomes smaller compared to
that for the same » when t is unknown. For example,
(r,N) = (29,5) in Figure |3| while (r,N) = (29,4) in
Table (3l Moreover, fault injections in deeper rounds can
help retrieve the key. For instance, when r is decreased
from 28 to 27, N can also be reduced from 3 to 2.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Table 3: Bit-based fault model, ¢ is known (Mode A)

r N tgo (seconds) Success Rate
30 10 100%

29 4 15 100%

28 3 6 100%

27 2 10 100%

26 2 15 100%

26 1 1997 92%

25 2 221 91%

24 5 321 85%

23 50 654 65%

In particular, when a single bit fault is injected into
the left register in Rgg, it might be possible to recover
the master key. In this special case, we first try to
solve for the secret key directly under Mode A. When
tout = 2 hours, SR is only 18% for most instances,
which indicates that it is difficult for CryptoMiniSAT
to find the solution. To overcome this, we guess an 8-
bit value of the master key and feed this value into
the solver. The attack stops when the solver finds out
a satisfiable solution for one key guess. Since there are
256 possible values, we can conduct at least 1, at most
256 (on average 128) guesses for each instance. When
more guessed key variables are fed into the solver,
CryptoMiniSAT can either find a satisfiable solution or
output “unsatisfiable”. The statistics of the solving time
of 100 AFA instances are listed in Figure i} The master
key can be recovered within 1997 seconds on average
and SR = 92% when t,,; = 2 hours. To the best of our
knowledge, this is the first time LBlock has been attacked with
only one injection under bit-based fault model.

10 20 30 40 50 60 70 80 90 100 110 120
Solving time (minute)
Figure 4: Distribution of solving time with one injection
to Rsg under bit-based fault model (Mode A)

To interpret the results in Table i} we evaluate ¢(K)
for one fault injection (N = 1) under Mode B. Let ¢
denote the number of the faulty nibbles in the ciphertext
for one injection. Let ¢ denote the average of ¢ where
10000 random instances are collected. Results of 1/, 1) and
¢(K) are listed in Table {4

From Table [} we can see that when 28 < r < 30,
only a few nibbles in the ciphertext become faulty. Since
r = 26, all 16 nibbles in the ciphertext are faulty. When
(r,) = (26,16), our best result of AFA shows that ¢(K)

Table 4: ¢, v and ¢(K) under bit-based fault model

r P P Best ¢(K)
30 5 5 70.2
29 8 8 61.6
28 11<¢<12 1181 50.4
27 12<¢ <15 1457 32.6
26 10<y <16 1521 17.3
25 9<y <16 14.99 18.5
24 9<y <16 14.99 <24
23 8<¢<16 1500 <40

can be reduced to 17.3. Note that in Table @, N = 1.
When (r,N) = (30,1), ¢(K) can be reduced to about
70.2, which means that 9.8 key bits can be recovered with
a single injection. Then, when (r, N) = (30, 10), ¢(K) can
be reduced to a smaller value. This can also explain why
CryptoMiniSAT can output the correct solution within a
few seconds for (r, N') = (30, 10) in Table 3} In particular,
when (r,N) = (26,1), ¢(K) can be reduced to about
17.3 in Table [} It explains why CryptoMiniSAT can find
the secret key within affordable time under Mode A in
Table 3

4.4 Case Study 2: Nibble-based Fault Model

In [21], [22], the adversary has to build the distinguish-
ers manually and deduce the fault position. Specific
algorithms must be customized for each fault position.
We conduct AFA under nibble-based fault model as
in [21], [22]. However, with our framework, the solver
can automatically deduce the fault position and solve for
the key. The workload for customizations can be saved.

We extend the faults into deeper rounds and calculate
¢(K) for a given amount of fault injections. The com-
parison with previous work [21], [22] under Mode B is
shown in Table [5| Under the same fault model, our AFA
can use less injections. For example, when r = 30, we
can reduce N from 7 to 5 as compared to [21]].

Table 5: Comparison with previous work under
nibble-based fault model

- [21] 122] this paper
NToE) | NToE) [N ¢K)
30 | 7 30 - - 5 23
29 | 5 25 - - 5 13
28 - - - - 3 7.56
27 | - - - - 2 4.6
26 - - - - 2 0.1
25 - - 24 0 3 0
24 - - 32 0 5 0

Our AFA can further reduce ¢(K). In [21]], ¢(K) is 30
and 25 when (r, N) = (30,7) and (29, 5) respectively. As
for (r,N) = (29,5), ¢(K) is 13 in our AFA, compared to
25 in [21]. The estimation on ¢(K) in [21] might not be
accurate. This is because the manual analysis may miss
some faulty states in the propagation path, while the
solver fully utilizes all the faults along all paths. Each
faulty state can contribute his own entropy to reducing
¢(K). As a result, our AFA can achieve better efficiency.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Significant enhancements are achieved when the injec-
tions are to Ros4 or Rgs. In Table |5 our attack requires
only 3 and 5 injections, compared with 24 injections for
Rss and 32 injections for Ry4 in [22]], respectively.

4.5 Case Study 3: Byte-based Fault Model

Previous fault attacks on LBlock [21], [22], [20] are
mainly under bit-based or nibble-based model. As afore-
mentioned in Section 3, LBlock usually adopts the size-
optimized or speed-optimized implementation on 8-bit
microcontrollers. For speed-optimized implementation,
the fault width is one byte. Under byte-based fault
model, the fault propagation becomes more complicated.
We are concentrating on challenging AFA on LBlock
under byte-based fault model. We implement the speed-
optimized version of LBlock. One single byte fault is
injected into the input of the big S-Box. The results
under Mode B are listed in Table [6] where our AFA can
still reduce ¢(K) to a smaller value. For example, when
(r,N) =(26,2), ¢(K) can be further reduced to 0.

Table 6: AFA under random byte-based fault model

- t is unknown | t is known
NT ¢K) [NTK)
30 | 5 20.8 5 16
29 | 3 204 3 13.5
28 | 3 15.6 2 124
27 | - - 2 2.3
26 - - 2 0
25 - - 3 0

4.6 Comparisons with Previous Work

Compared with previous fault attacks on LBlock [20],
[21], [22], [23], our work demonstrates that the data
complexity of previous work is not optimal and AFA
can work at much deeper rounds. Meanwhile, under
different fault models, AFA can automatically evaluate
the remaining key search space. For the first time, only
one fault injection is required to recover the master key.
To the best of our knowledge, this is the best result for
fault attacks on LBlock in terms of data complexity.

5 APPLICATION TO LBLOCK: FAULT INJEC-
TION TO KEY SCHEDULING (SCENARIO 2)

5.1 Fault Model

In this scenario, a state register for round keys is altered
due to the injected fault. The fault will be propagated
to the remaining rounds of key scheduling. This case
is equivalent to injecting multiple faults simultaneously
into multiple rounds. The manual analysis is difficult
due to the complexity. In contrast, the automatic analysis
by CryptoMiniSAT is expected to be much more efficient.
This is because the more equations that are generated,
the more entropies are utilized in the same problem
solving.

In this model F(XX \,w,t,), a fault is injected into
the left 32-bit of the 80-bit key register L in the r-th
round key scheduling (A = 32), as shown in Algorithm 6]
The round key K., K, 11, ..., K3y are faulty. We consider
three cases for the fault width (w = 1,4,8) and the
location t is known.

Algorithm 6: Fault Injection to Key Scheduling

1 Tmaz = 32 ;

2 L=K;

3 K1 = Left32(L) ;

4 for rc = 1; re < rmaz; rc++ do

5 <<<29,’

6 [I7olli7s[l77]|l76] = so[lzo||l7s||l77/l76] ;
7 (l7slli7alllzs]|lz2] = ss[l7s||l74l|lz3]/l72] ;
8 (k50| kaollkasl|ka7||kae] © [rc] ;

9 Krey1 = Left32(L) ;

10 end

5.2 AFA Procedure

The detailed procedure is depicted by Algorithm [/]where
there are only two slight differences with Algorithm
In Line #3, the adversary has to build the equation set
for the faulty key scheduling (R, to R3;). In Line #4, he
has to build the equation set for the faulty encryption
(R, to R32) using the faulty round keys.

Algorithm 7: The AFA Procedure of Scenario 2
input : N,r,w,b;
output: t5,; in Mode A, ¢(K) in Mode B

RandomPT (P) ;
K=Ks (K, L);
for rc = 1; rc < rmae; ret+ do
| GenKSRAES (r¢, Kpet1) ; /7 #1
end
for:=20;1 < N; i++ do
Ci=Enc (P;,K) ;
forrc =r — 1; rc < rmaz; rc++ do
‘ GenEnRdES (ch+17 er Krc+1) ; !/ #2
end
GenInputES (C;) ;
K*=InjectFault (KS(K,L)) ;
for rc = r; rc < Tmagz; rc++ do
| GenKSRAES (re, K7\ q) ; /] #3
end
Cr=Enc (F;,K*) ;
for rc = r; rc < Tmagz; rc++ do
\ GenEnRAES (Xpet1, Xre, Koy 1) /] #4
end
GenInputES(C}) ;
GenFaultyES(f =L+ L*) ; // #5

© ® N W R W N e

MR R OE e e e e e
m S L ® 9o U R ®N RO

end
RandomPT (P,) ;
Cv=Enc (Py,K) ;
for rc = 0; r¢ < Tmaw; Tet++ do
‘ GenEnRdES (ch+17 Xre, Krc+l) ; /7 #6
end
GenInputES (Py,,Cy) ; /1 #7
9 (Tot, $(K)) = RunAFA() ; /1 #E

NONNNNNN
® T G R @ N

N

5.3 Case Study 1: Bit-based Fault Model
First, we evaluate ¢(K) for different » under bit-based

fault model under Mode B. 1, and ¢ are collected

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

from 10000 instances with single fault injection. ¢(K)

is calculated from 100 full AFA attacks. Results of 1, ¥
and ¢(K) are listed in Table [7}

Table 7: ¢ and ¢(K) under bit-based fault model

r P P Best ¢(K)
30 2<yP <3 2.10 74

29 3<y <4 3.40 71

28 4<9p<8 617 62

27 5 <y <12 9.52 42

26 8§<yY <15 12.89 28

25 9<¢ <16 14.83 20

24 9< ¢y <16 15.09 16

23 10<y <16 15.00 < 30
2 10<¢ <16 15.00 <42

From Table we can see that when 27 < r < 30,
only a few nibbles in the ciphertext become faulty. Since
r = 25, all 16 nibbles in the ciphertext are faulty. When
(r,) = (24,16), our best result of AFA shows that ¢(K)
can be reduced to 16.

It is interesting to see that if » > 23, ¢(K) increases
when r decreases. For instance, ¢(K) changes from 16
to less than 30 if the injection changes from Rj4 to Ras
in key scheduling. Meanwhile, 1 is approximately 15 for
r = 23, which is even slightly smaller than ¢ = 15.09 for
r = 24. The reason behind is the overlap of the faults in
the last few rounds.

Note that Table[7]can be used to determine the optimal
round position for the injection and estimate the total
number of injections that is required. From Table [7, we
can deduce that it is into R4 where we should inject a
bit-based fault in order to minimize ¢(K).

In our attack, when r = 24, 25, 26, two single-bit fault
injections (IV = 2) can reduce ¢(K) to 0 under Mode B. In
particular, we also conducted AFA with only one single-
bit fault injection under Mode A for » = 24,25. As in
Section 4.3, we guess an 8-bit value of the master key
and feed this value into the solver. The results show that
the full key can be recovered within two hours where SR
is about 85%.

5.4 Case Study 2: Nibble-based Fault Model

The results under nibble-based fault model are shown
in Table [8} where 10000 random instances are collected.
We can see that the fault propagation is faster under this
model than under bit-based model. For example, for the
same r = 27, ¢ = 10.09 in Table [§] while ¢y = 9.52 in
Table [/} Note that ¢(K) < 40 when 23 < r < 27. Our
best results show that two fault injections can recover
the master key of LBlock when 24 < r < 26. Similarly,
it is in Re5 where we should inject a nibble-based fault
in order to minimize ¢(K), which could be used as an
empirical parameter to guide the physical injections if
possible.

5.5 Case Study 3: Byte-based Fault Model

The results under byte-based fault model are shown in
Table[9] We can observe that the fault propagation under

Table 8:) and ¢(K) under nibble-based fault model

~—

r P) Best ¢(K)
30 2<¢<3 211 75

29 3<¢y <5 3.60 66

28 3<% <10 6.70 62

27 4<y <13 10.09 38

26 5< ¢y <15 13.24 32

25 8<¢y <16 14.92 20

24 10<¢y <16 15.06 <32
23 10<¢ <16 15.00 <40
22 10<¢ <16 15.00 < 60

byte-based model is very fast. ¢/ is close to 4 when r = 30.
¢(K) < 40 when 23 < r < 28. Our best results show that
when 24 < r < 28, two fault injections can recover the
full key of LBlock.

Table 9: ¢(K) and ¢ under byte-based fault model

T P P Best ¢(K)
30 2<9y <5 3.98 75

29 3<y <9 3.65 60

28 4<y <14 10.45 39

27 6<y <15 1332 35

26 8<yY <16 14.92 28

25 8§<¢<16 15.02 26

24 10<y <16 15.01 16

23 10<y <16 15.00 < 45
2 10<¢ <16 15.00 <65

6 APPLICATION TO LBLOCK: FAULT INJEC-
TION FOR ROUND MODIFICATION (SCENARIO 3)
6.1 Fault Model

During a typical implementation, round number, denoted
by 7maz, is the total number of rounds to be executed.
round counter, denoted by rc, is a variable that specifies
which round it is executing. In this section, we evaluate
the security of LBlock against round modification attack
(RMA). RMA can induce the misbehavior of round
operations by fault injections. A fault could be injected
either into 7,4, or rc. The new values are denoted by
ez OF 7¢'. The change in the execution of LBlock can
facilitate subsequent cryptanalysis.

In LBlock, there are 31 rounds in key scheduling.
The round keys generated from key scheduling will
be further utilized in the 32-round encryption. Two
round counters are actually used for key scheduling and
encryption. 7,4, = 32 before the fault injection. Due to
page limitation, we mainly discuss the scenario when a
fault is injected to modify the round during encryptions.

In this model F(X, A, w,t, f), a fault is injected into
X in encryption. As in previous RMA work [11], [12],
we assume that both the fault value f and the fault
location ¢ are known. A = w = 8. We consider two cases
for the fault position, as shown in Algorithm

6.2 AFA Procedure

The detailed procedure is depicted by Algorithm [9
where there are only three slight differences with Al-
gorithm 5| Line #3 and Line #4 show how the adversary

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Algorithm 8: Fault Injection to 744 O 7c

1 P=X1|Xo;

4 ‘ ch+2 = F(ch+1,K7‘c+l) + (XT‘C << 8) ;
5 end

6 C = X32|X33;

can build the equation set for the faulty encryption (R, to
Rs1) if the fault is injected into 7,45 Or 7c (determined
by b) respectively. Line #4 in Algorithm [5] is discarded
here.

Algorithm 9: The AFA Procedure of Scenario 3
input : N,b,r,rc’ v}, .
output: ts,; in Mode A, ¢(K) in Mode B
1 RandomPT (P) ;
2 K=Ks (K, L) ;
3 for rc = 1; rc¢ < Tmaz; ret+ do
4 | GenKSRAES (r¢, Kret1) ; /7 #1
5 end
6 fori=0;1 < N; i++ do
7 C;=Enc (P,L,K) ;
8 for rc = 0; rc < rmaz; rct+ do
9 | GenEnRAES (Xret1, Xre, Kret1) ; /] #2
10 end
11 GenInputES (C;) ;
12 switch b do
13 case 0
14 Cr=InjectFault (r],,,, Enc (P;,K)) // #3
for rc = 0; re < 1}, 4, Te++ do
15 ‘ GenEnRAES (Xyet1, Xre, Kret1)
16 end
17 GenInputES (C}) ;
18 end
19 case 1
20 Cr=InjectFault (rrd Enc (P, K)) // #4
btag =0;
21 for rc = 0; rc < rmag; rct+ do
22 GenEnRAES (Xyet1, Xre, Kret1) s
23 if rc=r — 2 and biag = 0 then
24 btag + -+
25 rc=rc’;
26 if rc > 31 then
27 \ break;
28 end
29 end
30 end
31 GenInputES (CY) ;
32 end
33 endsw
3¢ end
35 RandomPT (Py) ;
36 Cy=Enc (Py,K);
37 for rc = 0; r¢c < Tmaz; Tc++ do
38 | GenEnRAES (Xyci1, Xre, Krey1) ; /] #5
39 end
40 GenInputES (P,,Cy) ; // #6
41 (Tso1, ¢(K)) = RunAFA () ; /] #7

6.3 Case Study 1: Injecting Faults to Modify r,,..

In this case, a fault is injected into 7,4, in Line 2 of
Algorithm (8} 7,4, could be accessed at the beginning of
each instance where the fault may cause an increase or
decrease in the total number of rounds.

12
6.3.1 Case 1:r], .. > 32
In this case, LBlock will proceed (r/,,, — 32) additional

rounds after the normal encryption. These extra rounds
use invalid values of round keys (for instance, four Oxcc
bytes observed from physical experiments) which are
known to the adversary. This case does not provide the
adversary with any useful information.

6.3.2 Case?2:r’

max

< 32

In this case, LBlock will only proceed with the first r;,, ..
rounds and skip the remaining (32 — r},,.) rounds. As
for the adversary, the key recovery is a reduced (32 —
T .qz) TOUnd cryptanalysis. We are interested in the cases
Thae = 28 or 29 which are difficult for previous work.
We first run 100 random AFA instances under Mode A.
Time statistics for r},,, = 28 and r},,, = 29 are shown
in Figure |5, The solver can output the correct solution
within one minute for 7/,,, = 28 and two minutes for
Thas = 29. Under Mode B, we also run 100 random
AFA instances and calculate ¢(K) for r], .. = 28 and 29.
The results show that ¢(K) can be reduced to 16 ~ 17
which could be done with a brute force. This can also
explain why the solver can recover the master key within

a limited time under Mode A.

/

0.2 0.35

0.15

Percentage
o
Percentage

0.05 01

0
0 20 40 60 80 100 120 % 10 20 30 40 50 60
Solving time (second) Solving time (second)

Figure 5: Distribution of solving time for AFA when
modifying 7,44

Meanwhile, we conduct AFA on LBlock for r/ .. =3
or 4. Under unknown plaintext scenario, since the key
recovery is equivalent to analyzing the (32 — r/,..)
round LBlock, it is difficult for the solver to recover the
secret key within limited time. However, under known
plaintext/ciphertext scenario, it can be converted into
the algebraic analysis of a reduced r/,,, round LBlock.

Under Mode A, the solver can always solve the problem
within one minute.

6.4 Case Study 2: Injecting Faults to Modify rc

In this case, a fault is injected to rc in Line 3 of
Algorithm [§] at the beginning of R,, the r-th round.
Depending on the instant value of rc and the faulty
value r¢/, various changes may occur during encryption,
such as adding, reducing or even repetitively executing
several rounds.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

6.4.1 Case 1:rc <rc < rmaz

In this case, (rc—rc’) intermediate encryption rounds can
be repeated. We illustrate a simple case where rc = 30
and r¢’ = 29. The sequence of rounds during encryption
is shown as below.

Ry, Ry, -+, Rag, R30, R30, R31, R32 (13)

We can see that Rj is repeated twice. During the key
recovery, two types of equation sets are built: those for
Ri,--+, Rag, R3o, R31, Rs2 with a correct ciphertext, and
those for Rl, s ,RQQ, Rg(), Rg(), R31, R32 with a faulty
ciphertext.

Under known ciphertext scenario, we conduct 100
AFA instances. The results show that under Mode A, the
solver can finish in two minutes with 100% success rate;
under Mode B, ¢(K) can be reduced to 16 ~ 17.

6.4.2 CaseZ2:rc<rc < rma

In this case, (r¢’ — rc) intermediate encryption rounds
can be skipped. We investigate the case when rc¢ = 29
and ¢ = 31. The sequence of those rounds during
encryption is shown as below. R3y and R3; are skipped.
The total number of rounds actually executed is 30.

Ry, Ra, -+, Rag, Ra2 (14)

Then the key recovery is converted into the algebraic

analysis with two equation sets: one for
Ri, Ry, -, Rag, Rao, R31, R32 with a correct ciphertext,
and one for Ri,Rs,---,Ra,R32 with a faulty

ciphertext. Results achieved are similar to the ones in
Case 1. One fault injection is enough to recover the
master key of LBlock within two minutes.

6.4.3 Case 3:rc < rpee <1

In this case, (33 —rc) intermediate encryption rounds can
be skipped. One more example can be given for rc = 30
and r¢’ = 35. The sequence is Ry, Ra, - - , Rag. Note that
Rs30, R31, R3o are skipped. This case is equivalent to our
Case Study 1 when 1,4, = 29. The result is similar to
Case 1. One fault injection is enough to recover the full
key within one minute.

It should be noted that AFA can also be used to recover
the master key when a fault is injected to modify the
round during key scheduling. Since only the number of
rounds in key scheduling has been modified and that
in the encryption is always 32, the equation sets to be
built are slightly different from those in this section.
Our experiment results show that, if a single fault could
be injected into either r,,,, or rc in key scheduling of
LBlock, ¢(K) can also be reduced to 16 ~ 17.

7 EXTENSIONS TO OTHER BLOCK CIPHERS

The work on LBlock demonstrated the generic feature of
our framework on lightweight block ciphers which typ-
ically have simple structures but many iterative rounds.
That is why we chose lightweight block ciphers such as

LBlock as an appropriate starting point to check how to
represent the internal structure with equations and how
AFA is affected by the number of rounds or other factors
such as fault models. In fact the work in this paper can
be extended to other well known block ciphers. Some
new and interesting results are achieved.

7.1

DES is a block cipher that uses a 56-bit master key and
operates on 64-bit blocks. It has 16 rounds preceded and
followed by two bit-permutation layers IP and 1P~
The round transformation F' follows a Feistel scheme.
The 64-bit block is split into two 32-bit parts L and R. F
is defined as Fx, = (R,L® fk,.(R)). The function f first
applies an expansion layer I that expands the 32 input
bits into 48 output bits by duplicating 16 of them. The 48-
bit round key K. is then introduced by bitwise addition.
Afterward the block is split into eight 6-bit blocks, each
entering into a different S-Box .S; with a 4-bit output.
Finally, the 32 bits from the eight S-Boxes are permuted
by a bit-permutation P which yields the 32-bit block.

For simplicity reasons, we assume that a single-bit
fault is injected into the left part of the DES state at the
end of one round, as in the previous work [3], [25], [8].
The fault model can be described as F(X", A = 32,w =
1,t, f). In practice, the single-bit fault can be injected by
high precision techniques such as lasers when both the
location ¢t and the value f are known. We conduct both
AFA on DES under Mode A and Mode B.

Under Mode A, for each r in the range of [1,16], we
fix the number of fault injection N = 1 and randomly
choose the fault location ¢ in the range of [0,31]. When
1 < r <10, or 13 < r < 16, 10 simulations were
conducted for each round and the solver could not
output the solution within 24 hours. When (r,N) =
(12,1), the solver can recover the secret key within one
hour. When (r, N) = (11,1), the solver can succeed in
one minute.

When (r, N) = (11,1) or (r,N) = (12,1), we observe
a very interesting experimental result. The solving time
is different when ¢ varies. The statistical results are
shown in Figure [6] and [7] where 640 AFAs are conduct-
ed and each value of ¢ is tested for 20 times. When
t € {0,3,4,7,8,11,12,15, 16, 19, 20, 23, 24, 27, 28,31}, the
solving time is smaller. We guess that this might be
caused by different entropy of the remaining key search
space and then conduct the attack under Mode B. The
statistical results are shown in Figure [§] and [0 which
are consistent to those in Figure [6| and [/} When ¢ €
{0,3,4,7,8,11,12, 15,16, 19, 20, 23, 24, 27, 28, 31}, ¢(K) is
smaller than in other locations. When (r, N) = (12,1),
¢(K) = 5. When (r,N) = (11,1), ¢(K) ~ 0. The reason
behind lies on the fact that, since the expansion layer
E duplicates some bits, the single bit fault on those
locations propagates to two S-Boxes instead of one.

Compared with the first DFA work on the last three
rounds of DES [3], [25] and the middle rounds of

Application to DES

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

-
[] —
4 2000
[N / 0
1 o £
/ - 1500 £
S
41000 &
.\ th
>
4500 <
[- o o oo
@ 107
©
x 084
® 0.6
3
S 0.4
>
@ 024

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Bit Location

Figure 6: The average solving time and the success rate
on different bit locations for DES,(r, N) = (11,1)

N
o

@
19 ©
£
=
{s &
[=2]
17 g
>
le <
1s
© 107
S
& 084
? 06
8
S 044
=3
» 024

0.0 -

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Bit Location

Figure 7: The average solving time and the success rate
on different bit locations for DES,(r, N) = (12, 1)

DES [25], our AFA demands less data complexity and
only one fault injection is required. Compared with the
first AFA work on DES [4], the time complexity of
our work is optimal and our best results show that
the master key of DES can be recovered within a few
seconds. Contrary to the recent AFA on DES [8], we
evaluate the remaining key entropy of faults attacks on
DES and find out that the key recovery efficiency is not
the same for the various bits of fault locations.

7.2 Application to PRESENT

PRESENT is a 3l-round block cipher with an SPN
structure. The block size is 64 bits. Each round consists
of three major operations. The first one is addRoundKey
(AK) where the 64-bit input is XORed with the round
key. The second one is sBoxlayer (SL) where 16 identical
4 x 4 S-Boxes are used in parallel. The third operation
is the pLayer (PL) where the 64-bit input is permuted
according to a table P. PRESENT has two versions.
In this paper, we mainly focus on PRESENT-80. Its
key scheduling uses simple bit rotation, S-Box lookup
and round-counter XOR operations. More details can be
found in [14].

Extensive AFAs are conducted on PRESENT under
different fault models. We assume that the input of AK
layer in the 29th or 28th round is injected with faults.

Key entropy
- &

I
o

0 2 4 6 8101214 16 18 20 22 24 26 28 30

Bit Location

Figure 8: ¢(K) with different w for DES, (r, N) = (11,1)

o

Key entropy
o S

-
o

a

0
0 2 4 6 8 10121416 18 20 22 24 26 28 30
Bit Location

Figure 9: ¢(K) with different w for DES, (r, N) = (12,1)

The fault width w can be 1, 4, 8, 16, 32. 100 instances
are performed for each w. The statistical results of AFA
on PRESENT under Mode B are shown in Figure [10]and
Considering the fault position, the injection in the
28th round is more efficient than in the 29th round. The
average value of ¢(K) is much smaller. Considering the
fault width, the single-bit fault model is the optimal one
and the word-based fault model is the worst. Our best
results show that when w = 1 and (r,N) = (28,1),
for some attack instances, one fault injection can reduce
¢(K) to less than 30 with 35% probabilities. For most
instances, two injections can recover K within three
minutes.

05 o r=29,w=1
L —e—r=29,w=4

0.4 r=29,w=8 ﬁ
g, r=29w=16 |
S L —— r=29,w=32
S 03
IS4
(<5
& L

0.2

0.1

%2 36 40 44 48 52 56 60 64 68 72 76 80
The remained key entropy

Figure 10: ¢(K) with different ¢ for PRESENT,
(r,N)=1(29,1)

Previous fault attacks on PRESENT [26], [27] are DFAs

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

o , T R
—o—r=28,w=4
04 | X r=28,w=8 -
8, : | r=28,w=16
£ ‘ v r=28,w=32|
g o3
D
a

0.2 [A |
| N\
FOANE e Y .
01) A
F—o AT >\!
NSl S 2

% 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
The remained key entropy

Figure 11: ¢(K) with different ¢t for PRESENT,
(r,N)=(28,1)

to the 29th round (r = 29) under nibble-based fault
model. Their results show that 8 fault injections can
reduce ¢(K) to 14.7. As to faults injected into a deep
round, e.g., r = 28, the fault propagation paths get
overlapped and the techniques in [26]], [27] are difficult
to work. The AFA in this paper is very generic and
the solver can automatically analyze all the faults along
the propagation path. Only one to two injections are
required for key recovery.

7.3 Application to Twofish

Twofish is a 128-bit Feistel structure block cipher, which
was one of the five AES finalists [15]. In this paper we
only consider Twofish with a key length of 128 bits. The
plaintext is split into four 32-bit words and XORed with
four words of the whitening key (one rotated by 1 bit
towards the left) and followed by 16 rounds. In each
round, two most significant input words (one rotated by
8 bits towards the left) are fed into the F' function. F' has
a g function followed by Pseudo-Hadamard Transform
(PHT) and key word addition (modulo 232). The ¢
function consists of four byte-wide key-dependent S-
Boxes followed by linear mixing operation with the 4 x4
MDS matrix. The two output words (one rotated by 1 bit
towards the right) of the F* function are then XORed with
the two least significant words of the round input. More
details can be found in [15].

Some features of Twofish are different from traditional
Feistel block ciphers (e.g.,, DES), which makes DFA
difficult to work. The first one is the PHT operation. Due
to modulo addition in PHT, it is impossible to obtain
a clear differential characteristic for DFA. The second
one is round key addition. Unlike other Feistel ciphers,
the round key addition in Twofish is not to the input
of S-Box. Even if the attacker retrieves the input-output
difference pair of an S-Box, he cannot retrieve the key.
The third one is key dependent S-Boxes. Each S-Box uses
two bytes that are associated with the key instead of one
byte in other block ciphers.

There is only one DFA work on Twofish [28]. As in
[28], we assume that one single byte fault is induced
into the last round input of Twofish. Then in ciphertext,

one byte in the left 64 bits and four bytes in the right
become faulty. For the key scheduling, we only build the
equation set of generating the key dependent S-Boxes,
eight words of the whitening key and the two words of
the last round key (2375KB script size, 26600 variables
and 100863 CNF equations). For the encryption, we only
build the equation set of the last round (each round
requires 9608 variables and 33704 CNF equations). 100
AFA executions were distributed on ten computers with
the same configuration. Our results show that under
Mode A, 280 fault injections (about 280MB script size)
can recover the secret key of Twofish in 24 hours with
95% probabilities. Compared with the 320 fault injections
and 8 hours offline analysis in [28], our AFA requires
less fault injections at the cost of time complexity. In our
attack, with 320 fault injections, the solving time remains
the same as the one with 280 fault injections. We infer
that it was caused by the increase in the script size.

8 CONCLUSION AND FUTURE WORK

This paper proposes a generic framework for algebraic
fault analysis on block ciphers. The framework could be
used to analyze the efficiency of different fault attacks, to
compare different scenarios, and to evaluate the factors
that may determine the solving time and the success rate.

First, we highlight a conceptual overview of the frame-
work. The important levels and roles are clarified, and
four functional parts and three workflow stages are
depicted. Second, we select LBlock as a start point to
illustrate how our framework can work on a specific
cipher, especially a lightweight one. To demonstrate
the flexibility of the framework, three scenarios are
exploited, which include injecting a fault to encryption,
to key scheduling, or to modify the rounds. Third, to
demonstrate the generic feature of our framework, more
fault attacks are conducted on different block ciphers
which are well known and have some typical structures.

Future work can be derived in different directions.
One possible area is to further improve the efficiency
of the framework. The current version still meets some
difficulties in AFA on deep round of extremely compli-
cated ciphers such as Twofish. With an enhanced solver,
more compact equation builders and other advanced
techniques, the AFA framework might work with more
rounds of Twofish.

ACKNOWLEDGMENT

This work was supported in part by the Major State
Basic Research Development Program (973 Plan) of
China under Grant 2013CB338004, the National Natural
Science Foundation of China under the grants
61173191,61272491,61202386,61309021,61472357,61571063,
the Zhejiang University Fundamental Research Funds
for the Central Universities under the grant
2015QNA5005, the Science and Technology on
Communication Security Laboratory under the grant
9140C110602150C11053 and the European Commission
through the ERC project 280141 (acronym CRASH).

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

REFERENCES

(1]
(2]

(3]
(4]
(5]

6]

(71
(8]

(9]

[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

H. B.-E. Hamid, H. Choukri, D. N. M. Tunstall, and C. Whelan,
“The sorcerer’s apprentice guide to fault attacks,” in FDTC, 2004.
D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults,” in EUROCRYPT
1997, pp. 37-51.

E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in CRYPTO 1997, pp. 513-525.

T. Courtois, D. Ware, and K. Jackson, “Fault algebraic attacks on
inner rounds of DES,” in eSmart 2010.

N. T. Courtois and J. Pieprzyk, “Cryptanalysis of block ciphers
with overdefined systems of equations,” in ASIACRYPT 2002, pp.
267-287.

X. Zhao, S. Guo, F. Zhang, T. Wang, Z. Shi, and K. Ji, “Algebraic
differential fault attacks on LED using a single fault injection,” in
IACR Cryptology ePrint Archive, 2012.

P. Jovanovic, M. Kreuzer, and I. Polian, “An algebraic fault attack
on the LED block cipher,” in IACR Cryptology ePrint Archive, 2012.
F. Zhang, X. Zhao, S. Guo, T. Wang, and Z. Shi, “Improved
algebraic fault analysis: A case study on piccolo and applications
to other lightweight block ciphers,” in COSADE 2014, pp. 62-79.
X. Zhao, S. Guo, E. Zhang, Z. Shi, C. Ma, and T. Wang, “Improving
and evaluating differential fault analysis on LED with algebraic
techniques,” in FDTC, 2013, pp. 41-51.

W. Wu and L. Zhang, “LBlock: a lightweight block cipher,” in
ACNS, 2011, pp. 327-344.

H. Choukri and M. Tunstall, “Round reduction using faults,” in
FDTC, 2015, pp. 13-24.

A. Dehbaoui, A. P. Mirbaha, N. Moro, J. M. Dutertre, and A. Tria,
“Electromagnetic glitch on the AES round counter,” in COSADE
2013, pp. 17-31.

NIST, “Data encryption standard,” in Federal Information Processing
Standards Publications, May 1977.

A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, PRESENT: An ultra-
lightweight block cipher. Springer, 2007.

B. Schneier and]. Kelsey, “Twofish: A 128-bit block cipher,” http:
/ /www.schneier.com/paper-twofish-paper.pdf,

X. Zhao, S. Guo, F. Zhang, T. Wang, Z. Shi, and D. G. Chujiao Ma,
“Algebraic fault analysis on GOST for key recovery and reverse
engineering,” in FDTC, 2014, pp. 29-39.

F-X. Standaert, T. Malkin, and M. Yung, “A unified framework
for the analysis of side-channel key recovery attacks,” in
EUROCRYPT, 2009, pp. 443-461.

M. Cazorla, K. Marquet, and M. Minier, “Survey and benchmark
of lightweight block ciphers for wireless sensor networks,” in
SECRYPT, 2013, pp. 543-548.

D. Dinu, Y. L. Corre, D. Khovratovich, L. Perrin, J. Grobschadl,
and A. Biryukov, “Triathlon of lightweight block ciphers for the
internet of things.” IACR Cryptology ePrint Archive, 2015/209.

L. Zhao, T. Nishide, and K. Sakurai, “Differential fault analysis of
full LBlock,” in COSADE, 2012, pp. 135-150.

K. Jeong, C. Lee, and J. I. Lim, “Improved differential fault
analysis on lightweight block cipher LBlock for wireless sensor
networks,” EURASIP Journal on Wireless Communications and
Networking, vol. 2013, no. 151, pp. 1-9, 2013.

H. Chen and L. Fan, “Integral based fault attack on LBlock,” in
ICISC, 2014, pp. 227-240.

W. Li, J. Zhao., X. Zhao, and]. Zhu, “Algebraic fault analysis
on LBlock under nibble-based fault model,” in IMCCC, 2013, pp.
1525-1529.

L. Knudsen and C. Miolane, “Counting equations in algebraic
attacks on block ciphers,” International Journal of Information
Security, vol. 9, no. 2, pp. 127-135, 2010.

M. Rivain, “Differential fault analysis on DES middle rounds,” in
CHES, 2009, pp. 457-469.

J. Li and D. Gu, “Differential fault analysis on PRESENT,” in
CHINACRYPT, 2009, pp. 3-13.

X. Zhao, S. Guo, and F. Zhang, “Fault-propagate pattern based
dfa on PRESENT and PRINTcipher,” Wuhan University Journal of
Natural Sciences, vol. 17, no. 6, pp. 485-493, 2012.

S. Ali and D. Mukhopadhyay, “Differential fault analysis of
Twofish,” in Inscrypt, 2013, pp. 10-28.

Fan Zhang was born in 1978. He received
his Ph.D. degree in Department of Comput-
er Science and Engineering from University of
Connecticut in 2012. He is currently working in
the College of Information Science and Electrical
Engineering, Zhejiang University. He is also with
the Science and Technology on Communication
Security Laboratory. His research interests in-
clude side channel analysis and fault analysis in
cryptography, cyber security, computer architec-

ture and sensor network.))
Shize Guo was born in 1964. He received his

Ph.D. degree in Harbin Institute of Technology in
1989 and his M.S. and B.S. degrees from Ord-
nance Engineering College, China, in 1991 and
1988, respectively. He is currently a researcher
in Institute of North Electronic Equipment and
also a Professor in Beijing University of Post and
Telecommunications. His main research interest
includes information technology and information
security.

Xinjie Zhao received his Ph.D., M.S. and B.S.
degrees in Ordnance Engineering College in
2012, 2009 and 2006, respectively. He is cur-
rently working in Institute of North Electronic
Equipment. His main research interest includes
side channel analysis, fault analysis and com-
bined analysis in cryptography. He won the best
paper award in COSADE 2012 and the out-
standing doctoral dissertation award in Hebei
province.

Tao Wang was born in 1964. He received his
Ph.D. degree in computer application from In-
stitute of Computing Technology Chinese A-
cademy of Sciences in 1996 and masters de-
gree in computer application from Ordnance
Engineering College in 1990. He is currently a
Professor in Ordnance Engineering College. His
research interests include information security
and cryptography.

Jian Yang is currently a Ph.D. student of Com-
puter Science and Engineering at University of
Notre Dame. He received his Bachelor degree of
Engineering from College of Information Science
and Electrical Engineering, Zhejiang University.
His research interests focus on hardware secu-
rity and mobile computing.

Francois-Xavier Standaert was born in Brus-
sels, Belgium in 1978. He received the Electrical
Engineering degree and PhD degree from the
Universite catholique de Louvain, respectively
in June 2001 and June 2004. His research
interests include digital electronics, FPGAs and
cryptographic hardware, low power implementa-
tions for constrained environments, the design
and cryptanalysis of symmetric cryptographic
primitives, physical security issues in general
and side-channel analysis in particular.

Dawu Gu is a full professor at Shanghai Jiao
Tong University in Computer Science and En-
gineering Department. He received from Xidian
university of China his B.S. degree in applied
mathematics in 1992, M.S. in 1995, and Ph.D.
degree in 1998 both in cryptography. His curren-
t research interests include cryptography, side
channel attack, and software security. He leads
the Laboratory of Cryptology and Computer Se-
curity (LoCCS) at SJTU.

http://www.schneier.com/paper-twofish-paper.pdf
http://www.schneier.com/paper-twofish-paper.pdf

	Introduction
	Background
	Motivation
	Our Work

	Proposed AFA Framework
	The Target Level
	The Adversary Level
	The fault injector
	The fault model describer and its equation builder
	The cipher describer and its equation builder
	The machine solver

	The Evaluator Level
	Actual security metric
	Approximate information metric

	Preliminaries of AFA on LBlock
	The Cipher of LBlock
	Related Fault Attacks on LBlock
	Building the Equation Set for LBlock
	Representing the overall encryption
	Representing AK
	Representing SB
	Representing PM
	Representing l-bit left cyclic shift

	Building the Equation Set for Faults
	Representing the fault with known t
	Representing the fault with unknown t

	Equation Solving Strategies

	Application to LBlock: Fault Injection to Encryption (Scenario 1)
	Fault Model
	AFA Procedure
	Case Study 1: Bit-based Fault Model
	The location t is unknown
	The location t is known

	Case Study 2: Nibble-based Fault Model
	Case Study 3: Byte-based Fault Model
	Comparisons with Previous Work

	Application to LBlock: Fault Injection to Key Scheduling (Scenario 2)
	Fault Model
	AFA Procedure
	Case Study 1: Bit-based Fault Model
	Case Study 2: Nibble-based Fault Model
	Case Study 3: Byte-based Fault Model

	Application to LBlock: Fault Injection for Round Modification (Scenario 3)
	Fault Model
	AFA Procedure
	Case Study 1: Injecting Faults to Modify rmax
	Case 1: r'max 32
	Case 2: r'max < 32

	Case Study 2: Injecting Faults to Modify rc
	Case 1: rc'<rc<rmax
	Case 2: rc<rc'<rmax
	Case 3: rc<rmax<rc'

	Extensions to Other Block Ciphers
	Application to DES
	Application to PRESENT
	Application to Twofish

	Conclusion and Future Work
	References
	Biographies
	Fan Zhang
	Shize Guo
	Xinjie Zhao
	Tao Wang
	Jian Yang
	Francois-Xavier Standaert
	Dawu Gu

