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Many searching problems allow time-memory tradeoffs. That is, if there are K possible
solutions to search over, the time-memory tradeoff allows the solution to be found in T
operations (time) with M words of memory, provided the time-memory product T ×M
equals K. Cryptanalytic attacks based on exhaustive key search are the typical context
where time-memory tradeoffs are applicable.

Due to large key sizes, exhaustive key search usually needs unrealistic computing pow-
ers and corresponds to a situation where T = K and M = 1. However, if the same
attack has to be carried out numerous times, it may be possible to execute the exhaus-
tive search in advance and store all the results in a memory. Once this precomputation
is done, the attack could be performed almost instantaneously, although in practice,
the method is not realistic because of the huge amount of memory needed: T = 1,
M = K. The aim of a time-memory tradeoff is to mount an attack that has a lower
online processing complexity than exhaustive key search and lower memory complexity
than a table lookup. The method can be used to invert any one-way function and was
originally presented by Hellman in [1].

1 The original method

Let EK(X) : 2n× 2k → 2n denote an encryption function of a n-bit plaintext X under
a k-bit secret key K. The time-memory tradeoff method needs to define function g that
maps ciphertexts to keys: g : 2n → 2k. If n > k, g it is a simple reduction function
that drops some bits from the ciphertexts (e.g. in the DES, n = 64, k = 56). If n < k,
g adds some constant bits. Then we define

f(K) = g(EK(P )) (1)

Where P is a fixed chosen plaintext. Computing f(K) is almost as simple as enci-
phering, but computing K from f(K) is equivalent to cryptanalysis. The time-memory
tradeoff method is composed of a precomputation task and an online attack that we
describe as follows.

Precomputation task: The cryptanalyst first chooses m different start points: SP1,
SP2,..., SPm from the key space. Then he computes encryption chains where Xi,0 = SPi

and Xi,j+1 = f(Xi,j), for 1 ≤ j ≤ t:
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To reduce the memory requirements, the cryptanalyst only stores start and end points
(SPi = Xi,0, EPi = Xi,t) and sorts the {SPi, EPi}m

i=1 on the end points. The sorted
table is stored as the result of this precomputation.

Online attack: Now we assume that someone has chosen a key K and the crypt-
analyst intercepts or is provided with C = EK(P ). Then he can apply the function g
to obtain Y = g(C) = f(K) and follows the algorithm:

Algorithm 1 Online attack
1. If Y = EPi, then either K = Xi,t−1 or EPi has more than one inverse image. We refer to this
latter event as a false alarm. If Y = EPi, the cryptanalyst therefore computes Xi,t−1 and checks
if it is the key, for example by seeing if it deciphers C into P
2. If Y is not an end point or a false alarm occurred, the cryptanalyst computes Y = f(Y ) and
restarts step 1.

Remark that the cryptanalyst needs to access the table lookup every time a new Y is
computed. If all m × t elements are different, the probability of success PS would be
m×t
2k . The actual probability of success depends on how the precomputed chains cover

the key space. Unfortunately, there is a chance that chains starting at different keys
collide and merge. The larger is a table, the higher is the probability that a new chain
merges with a previous one. Each merge reduces the number of distinct keys that are
actually covered by the table. If f is a random function, then the probability of success
is bounded by:

PStable ≥ 1
N

m∑

i=1

t−1∑

j=0

(1− it

N
)j+1 (3)

Equation 3 indicates that, for a fixed value of N , there is not much to be gained by
increasing m or t beyond the point at which mt2 = N . To obtain a high probability of
success, a more efficient method is to generate multiple tables using a different function
g for each table. The probability of success with r tables is:

PStot ≥ 1− (1− PStable)r (4)

Chains of different tables can collide, but not merge since the function g is different for
every table.

2 Distinguished points and rainbow tables

The idea of using distinguished points (DPs) in time-memory tradeoffs refers to Rivest
in [2]. If {0, 1}k is the key space, a DP property of order d is usually defined as an



easily checked property that holds for 2k−d different elements of {0, 1}k, e.g. having d
bits of the key locked to zero. In a time-memory tradeoff using DPs, the start and end
points of the precomputed chains fulfill a DP property. As a consequence, the chains
have variable length but detectable extreme points. This greatly reduces the number
of table lookups during the online attack from t to 1.

A remarkable property of the DP method is that mergers can be easily detected and
therefore, can possibly be rejected during the precomputation in order to build perfect
tables [3]. The major drawback of DPs is that they introduce variable chain lengths
and they are more difficult to analyze [4].

An alternative solution to reduce the number of table lookups is to use the rainbow
tables presented in [5]. That is to use a different function g for each point in a chain:
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Two rainbow chains can only merge if they collide at the same position. Other collisions
do not provoke a merge. The method is extremely easy to analyze and one rainbow
table may contain t times more chains than an original table. This reduces the number
of table lookups from t to 1.

As a consequence, rainbow tables are the easiest and most efficient way to perform
a time-memory tradeoff. DP methods have a more theoretical interest but may also be
used to detect collisions (e.g. of hash function) as suggested in [6, 7]
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