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Abstract Side-channel attacks generally rely on the

availability of good leakage models to extract sensitive

information from cryptographic implementations. The

recently introduced leakage certification tests aim to

guarantee that this condition is fulfilled based on sound

statistical arguments. They are important ingredients

in the evaluation of leaking devices since they allow a

good separation between engineering challenges (how to

produce clean measurements) and cryptographic ones

(how to exploit these measurements). In this paper, we

propose an alternative leakage certification test that is

significantly simpler to implement than the previous

proposal from Eurocrypt 2014. This gain admittedly

comes at the cost of a couple of heuristic (yet reason-

able) assumptions on the leakage distribution. To con-

firm its relevance, we first show that it allows confirm-

ing previous results of leakage certification. We then put

forward that it leads to additional and useful intuitions

regarding the information losses caused by incorrect as-

sumptions in leakage modeling.

Keywords Side-channel analysis, security evaluations.

1 Introduction

Side-channel attacks are an important threat against

the security of modern embedded devices. As a result,

the search for efficient approaches to secure crypto-

graphic implementations against such attacks has been

an ongoing process over the last 15 years. Sound tools

for quantifying physical leakages are a central ingredi-

ent for this purpose, since they are necessary to balance
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the implementation cost of concrete countermeasures

with the security improvements they provide. Hence,

while early countermeasures came with proposals of se-

curity evaluations that were sometimes specialized to

the countermeasure, more recent works have investi-

gated the possibility to consider evaluation methods

that generally apply to any countermeasure. The uni-

fied evaluation framework proposed at Eurocrypt 2009

is a popular attempt in this direction [26]. It suggests

to analyze cryptographic implementations with a com-

bination of information theoretic and security metrics.

The first ones aim at measuring the (worst-case) infor-

mation leakage independent of the adversary exploiting

it, and are typically instantiated with the Mutual Infor-

mation (MI). The second ones aim at quantifying how

efficiently an adversary can take advantage of this leak-

age in order to turn it into (e.g.) a key recovery, and

are typically instantiated with a success rate.

In this context, an important observation is that

most side-channel attacks, and in particular any stan-

dard Differential Power Analysis (DPA) attack, require

a leakage model [15]. This model usually corresponds to

an estimation of the leakage Probability Density Func-

tion (PDF), possibly simplified to certain statistical

moments. Since the exact distribution of (e.g.) power

consumption or electromagnetic radiation measurements

is generally unknown, it raises the problem that any

physical security evaluation is possibly biased by model

errors. In other words, security evaluations ideally re-

quire a perfect leakage model (so that all the infor-

mation is extracted from the measurements). But in

practice models are never perfect, so that the quality

of the evaluation may highly depend on the quality of

the evaluator. This intuition can be captured with the

notion of Perceived Information (PI), that is nothing
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else than an estimation of the MI biased by the side-

channel evaluator’s model [21]. Namely, the MI cap-

tures the worst-case security level of an implementa-

tion, as it corresponds to an (hypothetical) adversary

who can perfectly profile the leakage PDF. By contrast,

the PI captures its practical counterpart, where actual

(statistical) estimation procedures are used by an eval-

uator, in order to profile the leakage PDF.

Picking up on this problem, Durvaux et al. intro-

duced first “leakage certification” methods at Euro-

crypt 2014 [9]. Intuitively, leakage certification starts

from the fact that actual leakage models are obtained

via PDF estimation, which may lead to both estimation

and assumption errors. As a result, and since it seems

hard to enforce that such estimated models are perfect,

the best that one can hope is to guarantee that they

are “good enough”. For estimation errors, this is eas-

ily verified using standard cross–validation techniques

(in general, estimation errors can anyway be made ar-

bitrarily small by measuring more). For assumption er-

rors, things are more difficult since detecting them re-

quires to find out whether the estimated model is close

to an (unknown) perfect model. Interestingly, the Euro-

crypt 2014 paper showed that indirect approaches allow

determining if this condition is respected, essentially

by comparing the model errors caused by incorrect as-

sumptions to estimation errors. That is, let us assume

that an evaluator is given a set of leakage measure-

ments to quantify the security of a leaking implemen-

tation. As long as the assumption errors measured from

these traces remain small in front of the estimation er-

rors, the evaluator is sure that any improvement of his

(possibly imperfect) assumptions will not lead to no-

ticeable degradations of the estimated security level –

since the impact of improved assumptions will essen-

tially be hidden by the estimation errors. By contrast,

once the assumption errors become significant in front

of estimation ones, it means that an improved model is

required to extract all the information from the mea-

surements. Hence, leakage certification allows ensuring

that the modeling part of an evaluation is sound (i.e.

depends on the implementation – not the evaluator).

In practice, the leakage certification test in [9] re-

quires a number of technical ingredients. Namely, the

evaluator first has to characterize the leakages of the

target implementation with a sampled (cumulative) dis-

tance distribution, and to characterize his model with a

simulated (cumulative) distance distribution. Working

with distances allows exploiting a univariate goodness–

of–fit test even for leakages of large dimensionalities

(i.e. it allows comparing the univariate distances be-

tween multivariate leakages rather than comparing the

multivariate leakages directly). The Cramér–von–Mises

divergence is used as a comparison tool in the Euro-

crypt 2014 paper. Qualitatively, large divergences be-

tween the sampled and simulated distributions essen-

tially mean that the assumptions are imperfect. Quan-

titatively, the evaluator then has to determine whether

such divergences are significant, by verifying whether

they can be explained by assumption errors. This re-

quires computing the p-values when testing the hy-

pothesis that the estimated model is correct (which

again requires computing many simulated cumulative

distance distributions). Summarizing, the beauty of this

approach lies in the fact that it only relies on non-

parametric estimations and requires no assumptions on

the underlying leakage distributions. But this also comes

at the cost of quite computationally intensive tools.

In this paper, we analyze solutions to mitigate the

latter drawback, by investigating whether (computa-

tionally) cheaper and (conceptually) simpler certifica-

tion procedures can be obtained at the cost of mild as-

sumptions on the statistical distributions in hand. Two

natural options directly come to mind for this purpose,

that both aim to avoid dealing with the (expensive to

characterize) cumulative leakage distributions directly.

One possibility is to “summarize” the leakage distribu-

tion with its MI/PI estimates (since they can be used

as indicators of the side-channel security level, as now

proven in [7]). Another one is to analyze this distribu-

tion “moments by moments”, motivated by the recent

results in [18]. In both cases, and following the approach

in [9], the main idea remains to compare actual leakage

samples generated by a leaking implementation with
hypothetical ones generated with the evaluator’s model.

Surprisingly, we show that the first approach cannot

work, because of situations where model errors in one

statistical moment (e.g. the mean) are reflected in an-

other statistical moment (e.g. the variance), which typ-

ically arises when using the popular stochastic models

in [22], and actually corresponds to the context of epis-

temic noise discussed in [13]. More interestingly, we also

show that a moment-based approach provides excel-

lent results under reasonable assumptions, and can bor-

row from the “leakage detection tests” that are already

used by evaluation laboratories [11,16,8]. The resulting

leakage certification method is significantly faster than

the Eurocrypt 2014 one (and allows reproducing its ex-

periments). We also show that it easily generalizes to

masked implementations, and enables extracting very

useful intuitions on the origin of the leakages. Even-

tually, our new tools lead to simple heuristics to ap-

proximate the information loss due to incorrect leakage

models, which remained an open problem in [9].
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Summarizing, we simplify leakage certification into

a set of easy–to–implement procedures, hopefully more

attractive for evaluation laboratories, of which we make

the prototype implementations available as open source

to facilitate their dissemination [1].

Cautionary note. This paper is about leakage certi-

fication, which is a different problem than the leakage

detection one discussed in [11,16,8] (despite we indeed

borrow some tools from leakage detection to simplify

leakage certification). In this respect, Goodwill et al.’s

non specific t-test is a natural approach to leakage de-

tection, and allows determining if there is “some” leak-

age in an implementation, independent of whether it

can be exploited (e.g. how many traces do you need to

attack). By contrast, leakage certification aims to guar-

antee that a leakage model that can be exploited in an

attack (and, e.g. can be used to determine a key re-

covery success rate) is close enough to the true leakage

model. That is, it aims to make evaluators confident

that their attacks are close enough to the worst-case

ones. So leakage detection and certification are essen-

tially complementary. Note that leakage models (and

certification) are needed in any attempt to connect side-

channel analysis with cryptographic security guarantees

(e.g. in leakage resilience [10]), where we will always

need an accurate evaluation of the security level, or to

build security graphs such as introduced in [30].

Notations. Capital letters are for random variables,

small caps for realizations, hats for estimations, sans

serif fonts for functions and calligraphic ones for sets.

2 Background

2.1 Measurement setups

Our software experiments are based on measurements

of an AES Furious implementation1 run by an 8-bit At-

mel AVR (ATMega644P) microcontroller at a 20 MHz

clock frequency. We monitored the voltage variations

across a 22 Ω resistor introduced in the supply cir-

cuit of our target chip. Acquisitions were performed us-

ing a Lecroy WaveRunner HRO 66 oscilloscope running

at 625 Msamples/second and providing 8-bit samples.

In practice, our evaluations focused on the leakage of

the first AES master key byte (but would apply iden-

tically to any other enumerable target). Leakage traces

were produced according to the following procedure.

Let x and s be our target input plaintext byte and

subkey, and y = x ⊕ s. For each of the 256 values of

y, we generated 1000 encryption traces, where the rest

1 Available at http://point-at-infinity.org/avraes/.

of the plaintext and key was random (i.e. we generated

256 000 traces in total, with plaintexts of the shape p =

x||r1|| . . . ||r15, keys of the shape κ = s||r16|| . . . ||r30,

and the ri’s denoting uniformly random bytes). In or-

der to reduce the memory cost of our evaluations, we

only stored the leakage corresponding to the 2 first AES

rounds (as the dependencies in our target byte y = x⊕s
typically vanish after the first round, because of the

strong diffusion properties of the AES). We will denote

the 1000 encryption traces obtained from a plaintext p

including the target byte x under a key κ including the

subkey s as: AESκs(px) liy (with i ∈ [1; 1000]). Even-

tually, whenever accessing the points of these traces, we

will use the notation liy(τ) (with τ ∈ [1; 10 000], typi-

cally). Subscripts and superscripts are omitted when

clear from the context.

Our hardware experiments are based on a similar

setup, but consider a masked (threshold) implementa-

tion of PRESENT similar to the Profile-4 design de-

scribed in [19]. The leakage in such hardware implemen-

tations is mostly determined by the distance between

two consecutive values in a target register R. Hence, we

generated traces lit (with i ∈ [1; 100 000]) for the 256

possible transitions t =: R(x1⊕s)→ R(x2⊕s) between

4-bit intermediate results of the PRESENT S-box com-

putations. This larger evaluation set was motivated by

the protected nature and larger noise of this implemen-

tation. Because of similar memory constraints as in the

software case, we limited our measurements to the first

PRESENT round. These measurements were taken at a

500 Msamples/second, using the SAKURA-G board [2].

Our target device is a SPARTAN-6 FPGA.

2.2 PDF estimation methods

Side-channel attacks such as the standard DPA described

in [15] require a leakage model. In general, such models

correspond to estimations of the leakage PDF (possi-

bly simplified to certain statistical moments). In the

following, we will consider two important PDF estima-

tion techniques for this purpose. For convenience, we

describe them with a profiling based on intermediate

values y’s as considered in our software experiments,

but these tools can be applied similarly to the transi-

tions t’s considered in our hardware experiments.

Gaussian templates. The Template Attack (TA) in [5]

approximates the leakages using a set of normal distri-

butions. It assumes that each intermediate computation

generates Gaussian-distributed samples. In our typical

scenario where the targets follow a key addition, we

consequently use: P̂rmodel[ly|s, x] ≈ P̂rmodel[ly|s ⊕ x] ∼
N (µy, σ

2
y), where the “hat” notation is used to denote
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the estimation of a statistic. This approach requires es-

timating the sample means and variances for each value

y = x ⊕ s (and mean vectors / covariance matrices in

case of multivariate attacks). We denote the construc-

tion of such a model with P̂r
ta

model ← L
p
Y , where LpY is a

set of Np traces used for profiling.

Regression-based models. To reduce the data com-

plexity of the profiling, an alternative approach pro-

posed by Schindler et al. is to exploit Linear Regression

(LR) [22]. In this case, a stochastic model θ̂(y) is used to

approximate the leakage function and built from a lin-

ear basis g(y) = {g0(y), ..., gB−1(y)} chosen by the ad-

versary/evaluator (usually gi(y) are monomials in the

bits of y). Evaluating θ̂(y) boils down to estimating the

coefficients αi such that the vector θ̂(y) =
∑
i αigi(y) is

a least-square approximation of the measured leakages

Ly. In general, an interesting feature of such models is

that they allow trading profiling efforts for online at-

tack complexity, by adapting the basis g(y). That is, a

simpler model with fewer parameters will converge for

smaller values of Np, but a more complex model can

potentially approximate the real leakage function more

accurately. Compared to Gaussian templates, another

feature of this approach is that only a single variance

(or covariance matrix) is estimated for capturing the

noise (i.e. it relies on an assumption of homoscedastic

errors). Again, we denote the constructions of such a

model with P̂r
lr

model ← L
p
Y .

2.3 Evaluation metrics

In this subsection, we recall a couple of useful evaluation

metrics that have been introduced in previous works

on side-channel attacks and countermeasures. For con-

venience, we again express these metrics for software

(value-based) profiling. But they can straightforwardly

adapted to the transition-based case.

Correlation coefficient. In view of the popularity of

the Correlation Power Analysis (CPA) distinguisher in

the literature [4], a natural candidate evaluation metric

is Pearson’s correlation coefficient. In the non-profiled

setting, an a-priori (e.g. Hamming weight) model is

used for computing the metric. The evaluator then es-

timates the correlation between his measured leakages

and the modeled leakages of a target intermediate value.

In our AES example, it leads to ρ̂(LY (τ),modelcpa(Y )).

In practice, this estimation is performed by sampling

(i.e. measuring) Nt test traces from the leakage distri-

bution (we denote the set of these Nt test traces as LtY ).

Next, and in order to avoid possible biases due to an

incorrect a-priori choice of leakage model, a natural so-

lution is to extend the previous proposal to the profiled

setting. In this case, the evaluator will start by estimat-

ing a model from Np profiling traces: ˆmodelcpa ← LpY
(with LpY ⊥⊥ LtY ). In practice, ˆmodelcpa can be seen as a

simplification of the previous Gaussian templates, that

only includes estimates for the first-order moments of

the leakages. That is, for any time sample τ , we have
ˆmodelcpa(y) = m̂1

y(τ) = Êi(L
i
y(τ)), with m̂1

y a first-order

moment and Ê the sample mean operator.

Mutual and perceived information. In theory, the

worst-case security level of an implementation can be

measured with a MI metric. Taking advantage of the

notations in Section 2.1 and considering the standard

case where a key byte S is targeted, it amounts to esti-

mate the following quantity:

MI(S; X,L) = H[S] +
∑
s∈S

Pr[s]
∑
x∈X

Pr[x] ·∑
liy∈Lt

Prchip[l
i
y|s, x]. log2 Prchip[s|x, liy]. (1)

When summing over all s and x values, and a suffi-

ciently large number of leakages, the estimation tends to

the correct MI. Yet, as mentioned in introduction, the

chip distribution Prchip[l
i
y|s, x] is generally unknown to

the evaluator. So in practice, the best that we can hope

is to compute the following PI:

P̂I(S; X,L) = H[S] +
∑
s∈S

Pr[s]
∑
x∈X

Pr[x] ·∑
liy∈Lt

Prchip[l
i
y|s, x]. log2 P̂rmodel[s|x, liy], (2)

where P̂rmodel ← LpY is typically obtained using the pre-

vious Gaussian templates or LR-based models. Under

the assumption that the model is properly estimated,

it is shown in [15] that the CPA and PI metrics are es-

sentially equivalent in the context of standard univari-

ate side-channel attacks (i.e. exploiting a single leakage

point liy(τ) at a time). By contrast, only the PI natu-

rally extends to multivariate attacks. It can be inter-

preted as the amount of information leakage that will

be exploited by an adversary using an estimated model.

So just as the MI is a good predictor for the success rate

of an ideal TA exploiting the perfect model Prchip, the

PI is a good predictor for the success rate of an ac-

tual TA exploiting the “best available” model P̂rmodel
obtained thanks to profiling.

Moments-correlating DPA. Eventually, and in or-

der to extend the CPA distinguisher to higher-order

moments, the Moments-Correlating Profiled DPA (MCP-

DPA) has been introduced in [18]. It features essentially



Towards Easy Leakage Certification 5

the same steps as a profiled CPA. The only difference

is that the adversary first estimates dth-order statis-

tical moments with his profiling traces, and then uses
ˆmodel

d

mcp−dpa(y) = m̂d
y(τ), with m̂d

y a dth-order moment.

For concreteness, we will consider d’s up to four (i.e. the

sample mean for d = 1, variance for d = 2, skewness

for d = 3 and kurtosis for d = 4), which allows us

discussing the relevant case-study of a masked imple-

mentation with two shares. Yet, the tool naturally ex-

tends to any d. One useful feature of this distinguisher

is that it embeds the same “metric” intuition as CPA:

the higher the correlation estimated with MCP-DPA,

the more efficient the corresponding attack exploiting a

moment of given order.

2.4 Estimating a metric with cross–validation

Estimating a metric α from a leaking implementation

holds in two steps. First, a model has to be estimated

from a set of profiling traces Lp: ˆmodel← Lp. Second,

a set of test traces Lt (following the true distribution

Prchip) is used to estimate the metric: α̂← (Lt, ˆmodel).

As a result, two main types of errors can arise. First,

the number of traces in the profiling set may be too low

to estimate the model accurately (which corresponds

to estimation errors). Second, the model may not be

able to accurately predict the distribution of samples in

the test set, even after intensive profiling (which then

corresponds to assumption errors).

In order to verify that estimations in a security

evaluation are sufficiently accurate, the solution used

in [9] is to exploit cross–validation. In general, this

technique allows gauging how well a predictive (here

leakage) model performs in practice. For k-fold cross–

validations, the set of evaluation traces L is first split

into k (non overlapping) sets L(i) of approximately the

same size. Let us define the profiling sets L(j)
p =

⋃
i 6=j L(i)

and the test sets L(j)
t = L \ L(j)

p . The sample metric is

then repeatedly computed k times for 1 ≤ j ≤ k as

follows. First, we build a model from a profiling set:

ˆmodel
(j) ← L(j)

p . Then we estimate the metric with

the associated test set α̂(j) ← (L(j)
t , ˆmodel

(j)
). Cross–

validation protects evaluators from obtaining too op-

timistic sample metric values due to over-fitting, since

the test computations are always performed with an

independent data set. Finally, the k outputs can be av-

eraged in order to get an unbiased metric estimate, and

their spread characterizes the result’s accuracy.

3 A motivating negative result

As mentioned in introduction, detecting assumption er-

rors is generally more challenging than detecting es-

timation errors (which is easily done with the previ-

ous cross–validation). Intuitively, it requires to investi-

gate the likelihood that samples obtained from a leak-

ing device can indeed be explained by an estimated

model, which requires a (multivariate) goodness–of–fit

test. Since such tests are computationally intensive, an

appealing alternative would be to check whether the

samples obtained from the leaking device lead to a PI

that is at least close enough to the MI: this would guar-

antee a good estimation of the security level. But we

again face the problem that the MI is unknown, which

imposes trying indirect approaches. That is, we would

need an metric counterpart to the sampled simulated

distance distribution in [9], which would typically cor-

respond to the following definition of Hypothetical (mu-

tual) Information (HI):

ĤI(S; X,L) = H[S] +
∑
s∈S

Pr[s]
∑
x∈X

Pr[x] ·∑
liy∈Lt

P̂rmodel[l
i
y|s, x]. log2 P̂rmodel[s|x, liy]. (3)

Intuitively, this HI corresponds to the amount of infor-

mation that would be extracted from an hypothetical

implementation that would exactly leak according to

the model P̂rmodel. In itself, the HI is useless to the eval-

uator, as it is actually disconnected from the chip distri-

bution. For example, even a totally incorrect model (i.e.

leading to a negative PI) would lead to a positive HI. By

contrast, we could hope that as long as the HI and PI

are “close”, the assumption errors are “small enough”

for the number of measurements considered in the se-

curity evaluation. Furthermore, we could use a simple

hypothesis test to detect non-closeness. For a number

of traces N in the evaluation set, this would require

to compute estimates P̂I(S;X,L)(j) and ĤI(S;X,L)(j)

with cross–validation, and to check whether these es-

timates come from different (univariate) distributions.

If they significantly differ, we would conclude that the

model exhibits assumption errors that degrade the es-

timated security level, in a similar fashion as in [9].

Unfortunately, and despite it can detect certain as-

sumption errors, this approach cannot succeed in gen-

eral. A simple counter–example can be explained in

the context of LR. Say an adversary estimates a model

with a linear basis, which leads to significant differences

between the actual (mean) leakages and the ones sug-

gested by the model. Then, because of the homoscedas-

tic error assumption, the single variance of the LR-

based model will reflect this error (i.e. capture both
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physical noise and model error). As a result, whenever

this type of error increases, the PI will decrease (as ex-

pected) but the HI will also decrease (contrary to the

MI). So testing the consistency between the PI and HI

estimates will not reveal the inconsistencies between the

PI estimates and the true MI.

4 A new method to detect assumption errors

Despite negative, the previous counter–example sug-

gests two interesting tracks for simplifying leakage cer-

tification tests. First, summarizing a complete distri-

bution into representative metrics (e.g. such as the PI)

allows taking advantage of simpler statistical tests. Sec-

ond, since the fact that the homoscedastic errors as-

sumption is not fulfilled implies that errors made in

the estimation of certain statistical moments (or more

generally, parameters) of a distribution are reflected in

other statistical moments of this distribution, a natural

approach is to test the relevance of a model “moment by

moment”. That is, for a number of traces N in an evalu-

ation set, one could verify that the moments estimated

from actual leakage samples are hard to tell apart from

the moments estimated from the model (with the same

number of samples N). Based on this idea, our simpli-

fied method to detect assumption errors will be based

on the following two hypotheses (one strictly necessary

and the other optional but simplifying).

1. The leakage distribution is well represented by its

statistical moments. This corresponds to the classi-

cal “moment problem” in statistics, for which there

exist counter-examples (e.g. the log-normal distribu-

tion is not uniquely characterized by its moments).

So our (informal) assumption is that these counter-

examples will not be significant for our experiments.

2. The sampled estimates of our statistical moments

are approximately Gaussian-distributed. This directly

derives from the central limit theorem and actually

depends on the number of samples used in the es-

timations (which will become sufficient as the leak-

ages become more noisy, e.g. in the case of protected

implementations that are most relevant in practice).

Let us add a few words of motivation for those assump-

tions. First recall that we know from the previous re-

sults in [9] that leakage certification is possible without

such assumptions, at the cost of somewhat involved sta-

tistical reasoning and estimations. So it seems natural

to investigate alternative (heuristic) paths allowing to

reach similar conclusions. As will be shown next, this is

indeed the case of our simplified approach for a couple

of relevant scenarios. Second, statistical moments are at

the core of the reasoning regarding the masking coun-

termeasure. That is, the security order of an implemen-

tation is generally defined as the lowest informative mo-

ment in the leakage distribution (minus one) – see [7] for

an extensive discussion of this issue. Besides, many con-

crete (profiled and non-profiled) side-channel attacks

are based (implicitly or explicitly) on parametric PDF

estimation techniques that rely on the estimation of

moments (e.g. the Gaussian templates and LR-based

models in Section 2.2, but also second-order attacks

such as [6,20]). So a certificative approach based on an

analysis of moments seems well founded in these cases.2

Eventually, contradictions of this first hypothesis imply

potential false negatives in leakage certification, but no

false positives. So it remains that any detected assump-

tion error requires model improvement by the evaluator.

Overall, and maybe most importantly, we believe that

the following tools open interesting research avenues re-

garding the intuitive evaluation of leaking devices based

on their moments.

As for the Gaussian assumption, our motivation is

even more pragmatic, and relates to the observation

that simple t-tests are becoming de facto standards in

the preliminary evaluation of leaking devices [11,16,23].

So we find it appealing to rely on statistical tools that

are already widespread in the CHES community, and to

connect them with leakage certification. As will be clear

next, this allows us to use the same evaluation method

for statistical moments of different orders. However, we

insist that it is perfectly feasible to refine our approach

by using a well adapted test for each statistical moment

(e.g. F-test for variances, . . . ).

4.1 Test specification

The main idea behind our new leakage certification

method is to compare (actual) dth-order moments m̂d
y

estimated from the leakages with (simulated) dth-order

moments m̃d
y estimated from the evaluator’s model P̂rmodel

(by sampling this model). Thanks to our second as-

sumption, this comparison can simply be performed

based on Student’s t-test. For this purpose, we need

multiple estimations of the moments m̂d
y and m̃d

y, that

2 Note that theoretical approches to guarantee that a dis-
tribution is well characterized by its moments (such as Car-
leman’s condition [25]) typically apply when considering an
infinite number of them and in general, no distribution is de-
termined by a finite number of moments. So the restriction of
our reasoning to specific classes of meaningful distributions
is in fact necessary for our approach to be sound. Besides,
note also that non-parametric PDF estimations may not suf-
fer from assumption errors (at the cost of a significantly in-
creased estimation cost), so are out of scope here.
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Fig. 1: Gaussian leakages, Gaussian model, error in the estimated mean.

we obtain thanks to an approach inspired from Sec-

tion 2.4 (although there is no cross–validation involved

here). More precisely, we start by splitting the full set

of evaluation traces L into k (non overlapping) sets of

approximately the same size L(j), with 1 ≤ j ≤ k.

From these k subsets, we produce k estimates of (ac-

tual) dth-order moments m̂
d,(j)
y , each of them from a set

L(j). We then produce a set of simulated traces L̃ that

has the same size and corresponds to the same inter-

mediate values as the real evaluation set L, but where

the leakages are sampled according to the model that

we want to evaluate. In other words, we first build the

model P̂rmodel ← L, and then generate a simulated set

of traces L̃ ← P̂rmodel. Based on L̃, we produce k esti-

mates of (simulated) dth-order moments m̃
d,(j)
y , each of

them from a set L̃(j), as done for the real set of eval-

uation traces. From these real and simulated moments

estimates, we compute the following quantities:

µ̂dy = Êj(m̂
d,(j)
y ), σ̂dy =

√
v̂arj(m̂

d,(j)
y ),

µ̃dy = Êj(m̃
d,(j)
y ), σ̃dy =

√
v̂arj(m̃

d,(j)
y ),

where v̂ar is the sample variance operator. Eventually,

we simply estimate the t statistic (next denoted with

∆d
y) as follows:

∆d
y =

µ̂dy − µ̃dy√
(σ̂d

y)
2+(σ̃d

y)
2

k

.

The p-value of this t statistic within the associated Stu-

dent’s distribution returns the probability that the ob-

served difference is the result of estimations issues:

p = 2× (1− CDFt(|∆d
y|, df )),

where CDFt is the Student’s t cumulative distribution

function, and df is its number of freedom degrees.3 In

other words, a small p-value indicates that the model

is incorrect with high probability. Concretely, the only

parameter to set in this test is the number of non over-

lapping sets k. Following [9], we used k = 10 which is

a rather standard value in the literature. Note that in-

creasing k has very limited impact on the accuracy of

our conclusions since all variance estimates in the t-test

are normalized by k. By contast it increases the time

complexity of the test (so keeping k reasonably small is

in general a good strategy).

5 Simulated experiments

In order to validate our moment-based certification, we

first analyze a couple of simulated experiments, where

we can control the assumption errors. In particular, and

in order to keep these simulations reasonably close to

concrete attacks, we consider four distinct scenarios. In

the first one (reported in Figure 1) we investigate er-

rors in the mean of the model distribution. The upper

part of the figure represents a non-parametric estimate

of the true leakage distribution (with histograms) and

a leakage model P̂rmodel following a Gaussian distribu-

tion. The middle part of the figure represents the es-

timated moments m̂
d,(j)
y (in blue) and m̃

d,(j)
y (in red),

in function of the number of traces used for their es-

timation, from which we clearly see the error in the

3 Student’s t distribution is a parametric probability den-
sity function whose only parameter is its number of freedom
degrees, that can be directly derived from k and the previous
σ estimates as: df = (k−1)× [(σ̂d

y)2 +(σ̃d
y)2]2/[(σ̂d

y)4 +(σ̃d
y)4].
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Fig. 2: Results of the new leakage certification test for software measurements.

mean. The lower part of the figure represents the evo-

lution of our test’s p-value in function of the number

of traces used for certification. As expected, we directly

detect an error in the mean (reflected by a very small

p-value for this moment), whereas the p-values of the

other moments remain erratic, reflecting the fact that

(hypothetical) assumption errors are not significant in

front of estimation errors (i.e. do not lead to significant

information losses) for those moments. Similar figures

corresponding to model errors in the variance, skewness

and kurtosis are reported in Appendix A, Figures 9, 10

and 11. The last two cases typically correspond to the

setting of a masked implementation for which the true

distribution is a mixture [28].

These results confirm the simplicity of the method.

As the number of measurements in the evaluation set

increases, we are able to detect the assumption errors in

all cases. The only difference between the applications

to different moments is that errors on higher-order mo-

ments may be more difficult to detect as the noise in-

creases. This difference is caused by the same argument

that justifies the relevance of the higher-order mask-

ing countermeasure. Namely, the sampling complexity

when estimating the moments of a sufficiently noisy dis-

tribution increases exponentially in d. However, this is

not a limitation of the certification test: if such errors

are not detected for a given evaluation set, it just means

that their impact is still small in front of assumption

errors at this stage of the evaluation. Besides, we note

that the respective relevance of the model errors on dif-

ferent moments will be further discussed in Section 7.

6 Software experiments

In order to obtain a fair comparison with the results

provided in [9], we first applied our new leakage cer-

tification method to the same case-study. Namely, we

used the measurement setup from Section 2.1 and eval-

uated the relevance of two important profiling meth-

ods, namely the Gaussian TA and LR, for the most

informative time sample in our leakage traces (i.e. with

maximum PI).

The main difference with the previous simulated ex-

periments is that we now have to test 256 models in-

dependently (each of them corresponding to a target

intermediate value y = x ⊕ s). Our results are repre-

sented in Figure 2, where we plot the p-values output

by our different t-tests in greyscale, for four statistical

moments (i.e. the mean, variance, skewness and kurto-

sis). That is, each line in this plot corresponds to the

lower part of the previous figures (1, 9, 10, 11). A look

at the first two moments essentially confirms the con-

clusions of Durvaux et al. More precisely, the Gaussian

templates capture the measured leakages quite accu-

rately (for the 256,000 traces in our evaluation set). By

contrast, the linear regression quickly exhibits incon-

sistences. Interestingly, assumption errors appear both

in the means and in the variances, which corresponds

to the expected intuition. That is, errors in the means

are detected because for most target intermediate val-

ues, the actual leakage cannot be accurately predicted

by a linear combination of the S-box output bits.4 And

errors in the variances appear because the LR-based

4 This happens for the selected time sample because of
pipelining effects in the AVR microcontroller. Note that as
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Fig. 3: MCP-DPA results for software measurements (with 256 × 1000 traces).

models rely on the homoscedastic error assumption and

capture both physical noise and noise due to assump-

tion errors in a single term.

By contrast, and quite intriguingly, a look at the last

two moments (i.e. skewness and kurtosis) also shows

some differences with the results in [9]. That is, we re-

mark that even for Gaussian templates, small model er-

rors appear in these higher-order moments. This essen-

tially corresponds to the fact that our measured leak-

ages do not have perfectly key-independent skewness

and kurtosis, as we assume in Gaussian PDF estima-

tions. This last observation naturally raises the ques-

tion whether these errors are significant, i.e. do they

contradict the results of the Eurocrypt 2014 leakage
certification test? In the next section, we show that it

is not the case, and re-conciliate both approaches by

investigating the respective informativeness of the four

moments in our new test.

7 Quantifying the information loss

Since Figure 2 suggests the existence of (small) model

errors in our Gaussian templates, that are due to an in-

correct characterization of the third- and fourth-order

moments in our leakage traces, we now want to inves-

tigate whether these errors are leading to significant

information losses. Fortunately, our “per-moment” ap-

proach to leakage certification also allows simple inves-

tigations in this direction (which heuristically answers

one of the open questions in [9], about the information

in [9], the linear model did not exhibit any assumption error
for other time samples given the amount of measured traces.

loss due to model errors). In particular, we can simply

use the MCP-DPA mentioned in Section 2.3 for this

purpose. Roughly, this tool computes the correlation

between a simplified model (that corresponds to dth-

order moments of the leakage distribution) to samples

raised to the power d (centered or standardized if we

consider centered and standardized moments). As dis-

cussed in [18], the resulting estimated correlation fea-

tures a “metric intuition”: the higher the value of the

MCP-DPA distinguisher computed for an order d, the

more efficient the MCP-DPA attack exploiting this sta-

tistical order of the leakage distribution. Hence, com-

puting the value of the MCP-DPA distinguisher for dif-

ferent values of d should solve our problem, i.e. deter-

mine whether the moments for which assumption errors

are detected are (among) the most informative ones.

Concretely, we start by applying MCP-DPA in the

traditional sense and exploit cross–validation for this

purpose, this time following exactly Section 2.4. That

is, the set of evaluation traces L is again split into k

(non overlapping) sets L(i) of approximately the same

size, and we use profiling sets L(j)
p =

⋃
i 6=j L(i) and test

sets L(j)
t = L \ L(j)

p . We then repeatedly compute the

dth-order moments m̂
d,(j)
y ← L(j)

p , and the dth-order

MCP-DPA distinguisher:

MCP-DPA(j)(d) = ρ̂
(
M̂

d,(j)
Y , (Ly)d ← L(j)

t

)
.

As previously mentioned, it corresponds to the sample

correlation between the random variable representing

the estimated moments M̂d
Y , and the random variable

corresponding to the leakage samples coming from the

test set Ly ← L(j)
t , raised to power d (possibly centered
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or standardized if we consider centered and standard-

ized moments). The k = 10 estimates for this MCP-

DPA metric are represented in the top part of Figure 3.

We additionally considered two slightly tweaked ver-

sions of MCP-DPA, where we rather estimate Gaus-

sian TA (resp. LR-based) models P̂r
ta

model (resp. P̂r
lr

model),

and consider the two (resp. one) key-dependent mo-

ments from these models to compute the metric. These

tweaked MCP-DPAs are represented in the middle (resp.

lower) part of the figure. Our main observations are as

follows. First, the upper part of the figure suggests that

the most informative moments in our leakage traces are

the mean and variance. There is indeed a small amount

of information in the skewness and kurtosis. But by con-

sidering the classical rule–of–thumb that the number of

samplesNs required to perform a successful correlation-

based attack is inversely proportional to the square of

its correlation coefficient, that is:

Ns ≈
c

ρ̂
(
M̂d
Y , (Ly)d

)2 ,
with c a small constant, we can see that the additional

information gain in these higher-order moments is very

limited in our context. For example the value of the

mean-based MCP-DPA distinguisher (for which no as-

sumption errors are detected) is worth ≈ 0.74 in the

figure, and the value of the kurtosis-based MCP-DPA

distinguisher (for which assumption errors are detected)

is worth ≈ 0.02. Considering these two moments as

independent information channels, the loss caused by

the assumption errors on the kurtosis can be approx-

imated as 0.742

0.742+0.022 ≈ 0.999, meaning that improv-

ing the model so that the kurtosis is well characterized

could only (and ideally) lead to an attack requiring this

fraction of Ns to succeed (that is close to 1). This obser-

vation backs up the conclusions of the generic leakage

certification test in [9] that Gaussian templates are suf-

ficiently accurate for our evaluation set. Next, we see

that TA-based and LR-based MCP-DPA yield no in-

formation in the higher-order moments, which trivially

derives from the fact that they rely on a Gaussian as-

sumption. Eventually, and quite interestingly, we note

that the information loss between LR-based models and

TA-based models can be approximated thanks to the

correlation between their moments. For example, and

considering the means in Figure 3, we can compute the

value of the LR-based MCP-DPA distinguisher – worth

≈ 0.48 in the figure – by multiplying the value of the

TA-based MCP-DPA distinguisher – worth ≈ 0.74 –

by ρ̂(M̂d,ta
Y , M̂d,lr

Y ) – worth ≈ 0.65 in our experiments

(i.e. by taking advantage of the “product rule” for the

correlation coefficient in [27]).

Those last tools are admittedly informal. In par-

ticular, it is important to insist that the use of the

correlation coefficient as an information theoretic met-

ric only holds for relatively noisy distributions (i.e. low

correlation coefficient values) [15]. Yet, we believe they

provide a useful variety of heuristics allowing evalua-

tors to analyze the results of their certification tests.

In particular, they lead to easy–to–exploit intuitions

regarding the impact of model errors detected in mo-

ments of a given order. As discussed in the beginning of

Section 4, further formalizing these findings, and pos-

sibly putting forward relevant scenarios where our sim-

plified approach leads to significant shortcomings, is an

interesting scope for further research. Meanwhile, the

next section describes an open source code to demon-

strate the implementation efficiency of our new certi-

fication tests, and Section 9 complements these find-

ings by showing that the proposed certification method

applies too in the more challenging context of (unpro-

tected and) masked hardware implementations.

8 Open source code

The previous experiments can be carried out thanks to

five scripts and function files (in the Matlab format .m)

available from [1] and described next:

1. main.m. This top-level script loads the leakage sam-

ples, changes their format, and calls the certification

and display functions. The samples need to be for-

matted because the code is vectorised for efficiency:

samples usually come as a disordered vector, i.e. re-
gardless of the target intermediate values. We re-

shape this sample vector into a matrix of which each

column corresponds to an intermediate value. That

is, a Nt-by-256 matrix is created if 8-bit values are

investigated (with Nt samples per target value).

2. moment based analysis.m. This function detects

assumption errors with our new certification test.

For a given number of samples, the first four mo-

ments are computed from the leakage samples and

then compared to the moments simulated from the

two considered models, i.e. Gaussain templates and

LR-based. In order to avoid overfitting, we use cross-

validation each iteration. This function produces the

results reported in Figure 2.

3. plot grey graphs.m. This script displays the p-

values as in Figure 2.

4. mcpdpa.m. This function performs the MCP-DPA

part of our analysis, which is only computed for the

maximum number of samples per target interme-

diate values (i.e. Nt). Cross-validation is again ex-
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Fig. 4: Results of the new leakage certification test for masked hardware.

ploited in order to avoid overfitting. This function

produces the results reported in Figure 3.

5. plot mcpdpa.m. This last script displays the MCP-

DPA analysis of Figure 3.

Two files in the Matlab data format .mat are included

in the demonstration code. The first file, aes sbox.mat,

is a table corresponding to the AES S-box execution,

and is solely used to build the linear regression model.

The second file, traces.mat, is a file containing the

leakage samples in a vector traces, and the associated

target intermediate value y = x⊕ k in a vector y.

From the time complexity point–of–view, this code

is considerably more efficient than the previous solu-

tion from [9]. Strict comparisons are hard to obtain

since our current implementations are prototype ones,

and further optimizations could be investigated. But

roughly speaking, generating leakage certification plots

for 256 leakage models as in Figure 2 is completed in

seconds of computations on a standard desktop com-

puter, whereas it typically took hours with the Euro-

crypt 2014 tools. Since the cost of our heuristic leakage

certification method is essentially similar to the one of

a CPA, it can easily be applied on full leakage traces,

in particular if some high performance computing can

be exploited to take advantage of the parallel nature of

the certification problem [17].

9 Hardware experiments

As usual in the evaluation of masked implementations,

we first ran a preliminary test by setting the masks

to constant null values, which actually corresponds to

the case of an unprotected FPGA implementation of

PRESENT. As mentioned in Section 2, the main differ-

ence between this hardware case study and the previous

software one is that the leakages now depend on tran-

sitions between consecutive values in a target register.

For the rest, the details about such attacks and their

relation with the underlying architecture (that can be

found in [18,19]) are not necessary to understand our

following discussions. As expected, the results of this

preliminary test were essentially similar to the ones of

the unprotected software case. That is, we did not de-

tect assumption errors for the Gaussian templates with

up to 256,000 measurements, while some errors could

be detected in the LR-based attacks. The only inter-

esting bit of information from this context is the lower

MCP-DPA values observed in Appendix A, Figure 12,

which can be associated to a higher noise level.

We next moved to the more meaningful case with

random masks activated, for which the leakage certifi-
cation results are given in Figure 4. Two main obser-

vations can be extracted from these plots. First, and

as previously, LR-based attacks exhibit model errors

in the first two moments, that are not detected with

Gaussian templates. Second, and more importantly, we

see that strong errors are detected for the skewness

and kurtosis, already quite early in our evaluation set.

This is expected since these two moments are not cap-

tured at all, neither by our Gaussian templates, nor by

LR-based attacks. However, since the information in

a (first-order) threshold implementation should lie in

higher-order (at least > 1) statistical moments, it nat-

urally raises the question whether this model imperfec-

tion is critical from a security evaluation point–of–view.

In order to answer this question, we again performed

MCP-DPA attacks for different statistical orders, as

represented in Figure 5. Interestingly, the upper plot

shows that, while there is no information in the first-

order moments (as guaranteed by the first-order secu-
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Fig. 5: MCP-DPA results for masked hardware (with 256 × 50,000 traces).

rity property of threshold implementations), there is

indeed information in all the other moments. So we are

actually in a case where the leakage certification test

suggests improvements, and tells the evaluator that his

(Gaussian) templates are not sufficient to extract all the

information, while LR-based attacks could not succeed

at all (since they do estimate a single variance for all

the profiled transitions). This raises interesting scopes

for further research, since profiling methods that easily

incorporate such higher-moments have not been much

explored in the side-channel literature so far [3,24].

Besides, another useful observation arises if, rather

than simply plotting the asymptotic MCP-DPA val-

ues, we also plot the Relative Distinguishing Margin

(RDM), defined in [31] as the distance between the cor-

rect key distinguisher value and the value for the high-

est ranked alternative. As illustrated by the lower plot

of Figure 5, this RDM is larger for the skewness than

for the variance. This means that while the variance

is the most informative moment overall (i.e. assuming

some enumeration is possible as a post-processing after

the attack [29]), the skewness is more useful in case the

adversary has to recover the key thanks to side-channel

measurements exclusively (since the nearest rival cap-

tured by the RDM is usually the most difficult to dis-

tinguish from the good key).

Summarizing, these experiments confirm the appli-

cability of our easy leakage certification tests in the

practically-relevant case study of a threshold implemen-

tation (that is representative of state–of–the–art mask-

ing schemes). They also put forward that combining

MCP-DPA evaluations with the estimation of a RDM

metric allows extracting additional intuitions regarding

the information vs. computation tradeoff that is inher-

ent to any side-channel attack.

10 More simulations

The previous results put forward that our certification

test is handy to detect assumption errors in unpro-

tected and masked implementations. Yet, we were also

considering simple modeling tools (i.e. Gaussian tem-

plates and linear regression) which essentially work by

estimating statistical moments. Before to conclude this

work, we finally wanted to investigate what happens in

case more complex models are considered.

For this purpose, we again investigated masked im-

plementation, but this time exploiting the Gaussian

mixture modeling described in [28]. Namely we consid-

ered a simulated setting where a secret s is split into 2

or 3 shares (i.e. s = s0⊕ s1 or s = s0⊕ s1⊕ s2). During

profiling, the adversary gets a noisy sum of (Hamming

weight) leakages for all the shares and the shares values
(i.e. the randomness s0, s1, s2), so that he can estimate

the exact model distribution as:

P̂rmodel[ls|s] =
∑

s0,s1,s2∈S
P̂rmodel[ls|s, s0, s1, s2].

Then, during the attack, he only has access to the noisy

sum of leakages (which emulates the parallel implemen-

tation of the previous section). One interesting feature

of this setting is that there are less secrets (namely 2n)

than there are Gaussian templates to estimate when

building the mixture (namely 22n or 23n for the 2-

share and 3-share examples). So we can expect that

estimating the Gaussian mixture model will be more

complex than just estimating moments (as with the

simpler Gaussian templates).5

5 We considered simulated measurements for two main rea-
sons. First, and as in Section 5, it allows us to control,
and therefore to accurately understand, the observed leak-
ages (e.g. we are sure that the Gaussian mixture modeling
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Fig. 6: Results of the new leakage certification test with masked simulations (3 shares).

The results of our new certification test for a 4-bit

secret split in 3 shares are in Figure 6. As previously, the

Gaussian profiling exhibits model errors in the skewness

and kurtosis that are not captured by its templates.

Since the only informative moment in this case is the

skewness (see the lower part of Figure 8), it directly

implies that this model is unable to extract information

from the simulated masked implementation. This is also

witnessed by plotting the convergence of the PI metric,

in the lower part of Figure 7, and intuitively by looking

at the distribution in Appendix A, Figure 13.

More interestingly, we see that for the Gaussian

mixture profiling, there are actually model errors de-

tected in the mean and variance for low number of

traces, that vanish as this number of traces increases.

This in fact corresponds to the aforementioned expecta-

tion that the estimation of a complex (here, Gaussian

mixture) model may be more measurement intensive

than the estimation of its statistical moments. In such

cases, the leakage certification tool even allows detec-

tion estimation errors. Quite naturally, this observation

is confirmed by looking at the (lower) PI plot of Fig-

ure 7. It in fact quite nicely matches it since the satu-

ration of the PI curve for the Gaussian mixture model

(roughly) corresponds to the number of traces for which

no errors are detected anymore in Figure 6.

is perfect / without assumption errors). Second, concretely
estimating Gaussian mixtures for our hardware masked
implementations with transition-based leakages would be
measurement-intensive (since we would typically need to
build templates for 212×212 transitions). Note that an alter-
native would be to consider the LR-based profiling from [14],
which we leave as an interesting scope for further research.
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Fig. 7: Convergence of the PI for the Gaussian and Gaussian
mixture profiling (simulated measurements).

We performed similar experiments for the 2-share

masking, with similar intuitions. The most striking ob-

servation in this case relates to the information lying in

the variance of the leakage distribution that is captured

by the Gaussian templates. Since our experiments were

carried out for a low noise level, such that the Gaussian

and Gaussian mixture models significantly differ (see

again Figure 13 in Appendix A), it implies that the

latter model allows extracting more information (see

the top of Figure 7). This is in line with the previ-

ous results in [12] where such an improved information

extraction difference was also exhibited for low noise

levels (while it typically vanishes with larger noise lev-

els, since the Gaussian mixture then becomes close to

Gaussian). Eventually, the result of the leakage certi-

fication for the 2-share experiment is also reported in
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Fig. 8: MCP-DPA results for masked simulations.

Appendix A, Figure 14, and the corresponding MCP-

DPA result is in the top of Figure 8. In this respect,

note that the correlation-based rule-of-thumb given in

Section 7 is not accurate here, as reflected by the larger

PI difference between the Gaussian and Gaussian mix-

ture profiling than suggested by the MCP-DPA values.

As previously mentioned, this is simply due to the (too)

low noise levels for the equivalence between the PI and

correlation metrics to be accurate.

11 Conclusion

The evaluation of leaking devices against DPA attacks

exploiting statistical models of leakage distributions im-

plies answering two orthogonal questions: (1) is the

model used in the attack/evaluation correct? (2) how

informative is the model used in the attack/evaluation?

The second question is highly investigated. It relates to

the concrete security level of an implementation given a

model, e.g. measured with a number of samples needed

to recover the key. The first question is much less inves-

tigated and relates to the risk of a “false sense of secu-

rity”, i.e. evaluations based on non-informative models

despite informative leakages. Leakage certification al-

lows evaluators to guarantee that the models used in

their DPA attacks are sufficiently accurate. The simple

tests we provide in this paper makes it possible to easily

integrate leakage certification in actual toolchains. We

hope these results open the way towards globally sound

evaluations for leaking devices, where one first guaran-

tees that the models used in the attacks are correct, and

then evaluates their informativeness, which boil downs

to compute their corresponding PI [7].

Interesting scopes for further research include the

extension of the tools in this paper to more case stud-

ies of protected implementations with higher-order and

multivariate leakages, and the investigation of the pro-

filing errors due to the characterization of different de-

vices, possibly affected by variability [21].
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Fig. 13: Exemplary leakage distributions for masked simulations.
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