
An Analysis of the Learning Parity with Noise
Assumption Against Fault Attacks

Francesco Berti and François-Xavier Standaert.

ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.

Abstract. We provide a first security evaluation of LPN-based imple-
mentations against fault attacks. Our main result is to show that such
implementations inherently have good features to resist these attacks.
First, some prominent fault models (e.g. where an adversary flips bits
in an implementation) are ineffective against LPN. Second, attacks tak-
ing advantage of more advanced fault models (e.g. where an adversary
sets bits in an implementation) require significantly more samples than
against standard symmetric cryptographic primitives such as block ci-
phers. Furthermore, the sampling complexity of these attacks strongly
suffers from inaccurate fault insertion. Combined with the previous ob-
servation that the inner products computed in LPN implementations
have an interesting algebraic structure for side-channel resistance via
masking, these results therefore suggest LPN-based primitives as inter-
esting candidates for physically secure implementations.

1 Introduction

Fault attacks exploit the possibility to force erroneous computations in crypto-
graphic implementations [22]. In the context of symmetric cryptography, such
attacks usually give rise to extremely powerful key recoveries. For example, a
couple of random faults on the AES bytes are enough to recover its master
key [28]. The Learning Parity with Noise (LPN) problem is an emerging crypto-
graphic assumption that has been used to design various primitives over the last
years [27]. Typical examples of its applications include identification protocols
and MACs [8, 10, 15, 20, 21, 23, 24], but also PRGs, one-way functions [5], secret
and public key encryption schemes [11, 16]. However, despite their potential ap-
plication for low-cost embedded devices, and to the best of our knowledge, the
susceptibility of these primitives to fault attacks has not been studied yet.

In this paper, we propose a first investigation of the LPN assumption against
fault attacks. In order to keep our conclusions general, we evaluate the resistance
of two (serial and parallel) architectures for computing noisy inner products, that
reasonably reflect the design principles of real-world implementations. We also
study the impact of various types of faults against these architectures (i.e. bit
flips vs. set bits, single vs. multiple, with varying accuracies).

Our main conclusion is that LPN-based primitives are surprisingly resistant
against fault attacks by default. First, we can easily show that the most usual
transient fault model (i.e. where we flip bits in an implementation) does not



reveal more information than what would be obtained with standard (non phys-
ical) active attacks against LPN-based protocols. Second, even advanced fault
models, such as when the adversary is able to set bits to a given value, require
a substantial amount of fault to succeed. In the case of serial implementations,
we show that attacks based on a maximum likelihood strategy can be mounted
– yet succeed with significantly more samples than similar attacks against stan-
dard block ciphers such as the AES. Furthermore, these attacks strongly suffer
from inaccurate faults. In the case of parallel implementations, the situation is
even better (for the designer) as efficient attacks require multiple and accurate
faults, and breaking these implementation essentially boils down to analyzing
small LPN instances that require a large number of samples to be solved.

Since primitives based on LPN (and inner products) also have good properties
for protection against side-channel attacks [1, 12, 13, 26], our results therefore
open the way towards more concrete investigations of their implementations,
with low-cost security guarantees against both side-channel and fault attacks.

Admittedly, our general investigation of LPN implementations comes at the
cost of less specialized conclusions regarding applicability. Yet, and for example,
the proposed attacks can target the HB family of protocols [8, 14, 15, 21, 23].

2 Background

Let (Z2,⊕, ·) be the field of order 2 and consider the vector space Zn2 . Let k =
(k1, ..., kn) ∈ Z

n
2 be a secret vector and x = (x1, ..., xn) ∈ Z

n
2 be a random

vector. Let us denote by 〈x|k〉 the inner product of the vectors x and k in the

vector space Z
n
2 , that is 〈x|k〉 =

n⊕
i=1

(xi · ki). Let finally Berε be the Bernoulli

distribution with parameter ε (such that if e ← Berε, then Pr[e = 1] = ε and
Pr[e = 0] = 1− ε) We use the following definition of the LPN problem.

Definition 1 (LPN problem with parameter ε and dimension n). Con-
sider the distribution Dk,ε := {x ← Z

n
2 , ν ← Ber(1, ε) : (x, y := 〈x|k〉 ⊕ ν)}. Let

Ok,ε be an oracle outputting independent samples according to this distribution.
The LPNn

ε problem is to find the secret vector k having obtained samples from
the oracle. The LPN n

ε problem is said to be (q, t,m, θ)-hard to solve if for any
algorithm A, the following inequality holds:

Pr[k← Z
n
2 : AOk,ε(1n) = k] ≤ θ,

and A runs in time < t, memory < m and makes < q queries to Ok,ε.

We introduce the additional notation Q = {(xj , yj)}1≤j≤q to denote a set of q
outputs of the LPN oracle Ok,ε. In general, the LPN problem is believed to be
hard for adversaries interacting only with such an oracle [6, 19, 25].
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3 Evaluation settings

Our goal is to analyze the hardness of the LPN problem against fault attacks
[22]. In general, such physical attacks do not target the mathematical problems
but their implementation. Therefore, this section describes the types of imple-
mentation and the types of faults that we consider for this purpose.

3.1 LPN architectures

We consider serial and parallel architectures for the inner product computation
that has to be performed by LPN implementations. An example of serial (resp.
parallel) inner product computation is given in Figure 1 (resp. Figure 2). We use
the notation Sk,ε for serial implementations and the notation Pk,ε for parallel
ones. For simplicity, we will further denote the result of the AND and XOR inter-
mediate results involved in these inner product computations by the notations
Ai and Bj as represented in the figures. For an n-bit inner product computation,
we have n ANDs and n − 1 XORs in the serial architecture, and n ANDs and∑log2(n)−1
i=0 2i XORs in the parallel ones (the latter equals n − 1 if n is a power

of 2). For serial architectures, the depth of an intermediate XOR is its index,
while for parallel ones, the depth of an intermediate XOR is blog2(j)c.
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Fig. 1. Serial inner product architecture.

3.2 Fault models

Based on the previous (generic) architectures, we will consider an adversary who
does not only observe the outputs of the implementations Sk,ε or Pk,ε (for which
the security would be identical as long as their result is XORed with a Bernoulli
noise), but is also able to inject faults during their execution.

More precisely, we consider an adversary who is able to manipulate the inter-
mediate results Ai’s and Bj ’s. As generally considered in the literature on fault
attacks, we will consider the following features for this adversary:
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Fig. 2. Parallel inner product architecture.

1. Fault model: the adversary can either flip a bit or set it (to 0 or 1).
2. Fault accuracy: the adversary can either choose exactly the index of the

intermediate ANDs and XORs he targets, or choose a set of indices so that
the fault randomly happens on one of them (according to some distribution),
which reflect the higher complexity of injecting accurate faults [3].

3. Fault cardinality: the adversary can inject a single fault or multiple faults.

4 Flipping bits is (mostly) useless

We first observe that there are two possible options to flip bits in the inner
product architectures of Figures 1 and 2, namely targeting the ANDs inputs or
targeting the XORs inputs and outputs. When targeting the ANDs inputs, one
can affect either the public challenges x’s or the key k. In this respect:

1. Flipping key bits does not modify the security of the LPN problem. In stan-
dard LPN every challenge x provides the adversary with a parity equation of
the key bits. In this faulty version, one (or several) key bit(s) of this parity
equation will simply be XORed with 1 (which is equally informative).

2. Flipping challenge bits is equivalent to a man-in-the-middle attack like the
one on [14]. So while these attacks have to be considered at the protocol level
(e.g. with [15]), they do not target the implementation of the inner product
computations and we consider them out of the scope of this paper.

So we are essentially left with the case where we target the XORs inputs and
outputs. In this context, we start with the observation that for our two architec-
tures, Sk,ε and Pk,ε, flipping a bit at any place of the computation is equivalent
to performing ⊕1 at the end of the computation of the inner product. This sim-
ply results from the commutativity and associativity of the group operation ⊕.
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Next, we have that an adversary exploiting this kind of faults can observe out-
puts of the form 〈x|k〉⊕ν⊕1 rather than 〈x|k〉⊕ν in a standard LPN problem.
In other words, the adversary can observe the distribution Dk,1−ε rather than
Dk,ε. The complexity of solving the LPN problem is identical in both cases since
one can trivially produce the samples of one distribution with the other.

So the important fault model where we flip bits is in fact quite irrelevant to
attack LPN implementations, since it does not provide the adversary with better
advantage than active (e.g. man-in-the-middle) attacks exploiting careful mod-
ifications of the challenges. In particular, flipping bits during the intermediate
computations of serial or parallel inner product implementations is useless.

5 Setting bits in serial implementations

We now analyze the security of the serial LPN implementation in case an adver-
sary can take advantage of the (more informative) model where bits are set to
zero. Essentially, such faults allow the adversary to simplify the LPN problem to
small LPN instances (of size n′ < n) and to exploit an extend-and-prune strat-
egy similar to the one of [9]. Concretely, there are two possible situations that
can occur. Either the resulting instances are so small that one can implement
optimal attacks against LPN, where one just applies a maximum likelihood ap-
proach to recover key nibbles one by one. In this case, n′ is small enough to be
enumerated and the attack is in fact reminiscent of the template attacks used in
the context of side-channel analysis [9]. Otherwise, the instances are such that
n′ is still too large to be exhaustively analyzed, in which case efficient algorithms
such as [6, 19, 25] have to be exploited. We will see that the optimal strategy is
easily applicable against serial implementations of LPN, while the more efficient
ones will be required to evaluate parallel implementations in Section 6.

In this section, our goal is to analyze the security of serial LPN implementa-
tions against fault attacks in function of their main parameters. This naturally
includes the LPN size parameter n and noise parameter ε. Additionally, we will
consider the computational power of the adversary c (which corresponds to the
number of key guesses he is able to make in a maximum likelihood attack), and
the accuracy of the faults that we capture with a parameter ∆, which is the the
number of positions on which the fault can be inserted according to some dis-
tribution: ∆ = 1 means that the adversary can exactly select the position of the
fault, ∆ = 2 means that the support of the distribution is 2, . . . Based on these
notations, we will consider an extend-and-prune strategy, where the adversary
performs n

d attacks against key nibbles of d = log2(c) bits (for convenience, we
assume c to be a power of 2). Following, we will first evaluate the success rate of
an attack against a single key nibble and then its generalization to full keys. For
simplicity, we will describe our attacks against single key nibbles using notations
corresponding to the first key nibble. In case of accurate attacks (with ∆ = 1),
this means that the fault is set on bit Bd+1 of Figure 1. In case of inaccurate
attack, the fault will be set on positions ranging from Bd−∆+2 to Bd+1.
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In practice, performing extend-and-prune attacks essentially requires to max-
imize the probability of each key nibble k∗ after observing q queries of the form
(xj , yj). For this purpose, we will start with the simple case of accurate fault
attacks without computation and then investigate the more complex cases where
the adversary exploits computation and the fault is not perfectly accurate. We
will additionally combine different types of results. Namely, we will consider ex-
perimental attacks, that we will first explain based on exact formulas and then
approximate using simple statistical tools, in order to gain intuition about how
our main parameters influence the success rate of the attacks.

Remark 1. We next consider the fault distribution of inaccurate attacks to be
uniform over ∆ positions, which seems a natural first step to gain intuition
about the impact of such inaccuracies. Indeed, the main goal in this paper is
to put forward the interesting properties of LPN implementations against fault
analysis based on standard models. Conceptually, there is nothing that prevents
the following attacks to be applied to any type of distribution if they are given to
the adversary. In case of concrete implementations, this would then require some
kind of profiling, which we leave as an interesting scope for further research.

5.1 Accurate fault attacks without computation

In this simplest case, we perform extend-and-prune by dividing the key in blocks
of a single bit, and repeat this process n times. We first show how to isolate and
recover the first key bit k1, then how to isolate and recover the jth key bit kj ,
knowing the key bits k1, k2, . . . , kj−1. For this purpose, we set the output of the
B2 XOR to zero, and collect samples corresponding to plaintexts x with x1 = 1.
Setting this bit to zero implies that the output of the faulty computation is y :=
x1 ·k1⊕ν, and using plaintexts x whose x1 = 1 implies that y = k1⊕ν (the other
plaintexts do not reveal any information). Since both k1 and ν ∈ Z2, we obtain k1
with probability 1− ε and 1⊕ k1 with probability ε. Hence, we directly recover
the key by performing a majority vote based on the collected samples, where
votes for the wrong candidates can be simulated by a binomial random variable
of parameters q (number of votes obtained) and ε (probability of obtaining that
vote). We can compute the success rate of this process. Let Φ(s, q, ε) be the
cumulative function valued at sample s of the binomial distribution B(q, ε) and
φ(s, q, ε) be the corresponding probability mass function. The probability that
the good candidate wins is the probability that the wrong candidate obtains less
than half votes (and one half if the number of votes is tied), so that:

SR1(q, ε) = Φ
(q

2
, q, ε

)
− 1

2
· φ
(q

2
, q, ε

)
.

Figure 3 (1-bit nibble curves) illustrates that this theoretical success rate nicely
matches the experimental one obtained based on 1000 independent experiments.
By experiments, we mean simulated fault analyses, where the adversary performs
template attacks with perfect models Pr[k∗|xi, yi] obtained via theoretical pre-
diction and confirmed by concrete profiling from xi, yi samples. Note that for
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Fig. 3. Accurate fault attacks against a single key nibble.

such small nibbles, the success rate curve has a stepped (i.e. non continuous)
shape which is due to the aforementioned possibility of tied votes.

Next, and knowing the first j − 1 key bits, we can recover the jth one by
setting the output of the Bj+1 XOR to zero, and collecting plaintexts whose xj =

1. As before, from the faulty computation we obtain y := xj ·kj⊕
(
j−1
⊕
i=1

xi · ki
)
⊕ν.

Since we know the first j−1 key bits (and plaintext bits), we can easily subtract
them, so that we are able to obtain z := xj · kj ⊕ ν. Using only plaintexts whose
xj = 1 we obtain z = kj ⊕ ν, i.e. the same situation as before, so we can recover
the key bit kj in the same way. We finally compute the success rate SRn(q, ε) of
the full key recovery process. For this purpose, we consider the simple strategy
where we aim for a perfect pruning, i.e. we require single-nibble success rates
such that no error will harm the full key recovery. In this case, the global success
rate equals the probability of not doing errors at every step:

SRn(q, ε) = SR1(q, ε)n.

If Ns(n, ε, θ) is the minimum number of samples such that SR1(Ns(n, ε, θ), ε) ≥
n
√
θ, so that SRn(Ns(n, ε, θ), ε) ≥ θ, we obtain that we need 2 · Ns(n, ε, θ) · n

samples to recover the full key with probability ≥ θ. The factor 2 is due to the
fact that at each (j-th) step we discard the plaintexts whose xj = 0.

Remark 2. A natural extension of the perfect pruning in this subsection would
be to keep a list of the most likely keys for several key nibbles, e.g. thanks to
enumeration [31]. The exploitation of computing power by considering larger key
nibbles in the next subsection makes a first step in this direction.

5.2 Accurate fault attacks with computation

We now show how to extend the previous attack by taking advantage of com-
putational power. That is, instead of recovering the key bits one by one, we
try to recover larger key nibbles one by one. For this purpose, and assuming a
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computational power of c = 2d, we set the output of the Bd+1 XOR to zero,

thus obtaining y :=

(
d
⊕
i=1
xi · ki

)
⊕ ν from the faulty computation. As before we

can observe that we have to discard the plaintexts (x1, ..., xd) = (0, ..., 0), which
appear with probability 1

2d
, because they do not reveal any information. Fur-

thermore, we observe that for a wrong subkey candidate k∗, the probability that

y = (x1, ..., xd) · (k∗1 , ..., k∗d) is η = (1− ε) 2n−1−1
2n−1 + ε 2

n−1

2n−1 , while this probability is
1− ε for the good subkey candidate. Therefore, for each possible subkey k∗ we
can count the number of samples for which y = (x1, ..., xd) · (k∗1 , ..., k∗d), which
should be maximum for the good subkey candidate when a sufficient number of
samples are observed. Unfortunately, although we can assume that number of
right answers for a wrong key candidate is a binomial of parameters q (number of
samples obtained) and η, whilst this second parameter is 1− ε for the good sub-
key, we cannot assume that these binomial random variables are independent,
since they are produced with the same challenges xi’s. Yet, denoting them as
Bk∗ and under this independence assumption, we can approximate the success
rate of an accurate fault attack against a d-bit nibble as:

SRd(q, ε, d) '
∏

k∗∈Zd2
k∗ 6=k

Pr [Bk∗(q, η) � Bk(q, 1− ε)] ,

where we ignore the possibility of ties for simplicity. As illustrated in Figure 3
for the larger nibbles, such a formula indeed provides a good approximation of
the experimental success rates. Naturally, the positive impact of exploiting more
computing power is not obvious in this figure, since it considers a single nibble
recovery. In order to recover the other key nibbles, we then proceed as in the
previous section and compute:

SRn(q, ε, d) = SRd(q, ε)
n
d , (1)

since we have n
d blocks of d bits to recover.1 Again, if Ns(

n
d , ε, θ, d) is the

minimum number of samples such that SRd(Ns(
n
d , ε, θ), ε) ≥

n
√
θd, so that

SRn(Ns(
n
d , ε, θ), ε)

n
d ≥ θ, we obtain that we need 2d

2d−1 · Ns(
n
d , ε, θ) ·

n
d sam-

ples to recover the whole key with probability ≥ θ. The factor 2d

2d−1 is due to the
fact that at each step, we discar the plaintexts of which the bits corresponding
to the target key nibble are all zeros (that occur with probability 1

2d
).

Figure 4 illustrates the evolution of the success rate against a 1024-bit key,
for ε = 0.125 and ε = 0.25 and computing powers ranging from 8-bit (which is
instantaneously computed on a single desktop computed) to 32-bit. This time
we clearly see the positive impact of exploiting computation from the data com-
plexity point-of-view. We also observe the same “saturation effect” as when

1 Intuitively, the independence assumption is reasonable since what we require is that
for each key candidate k∗ there exists enough plaintexts belonging to Zd

2 \ V (〈x|k⊕
k∗〉), with V (〈x|k⊕ k∗〉) the hyperplane defined by the equation 〈x|k⊕ k∗〉 = 0.
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Fig. 4. Accurate fault attacks against a n = 1024-bit key.

exploiting enumeration in divide-and-conquer side-channel attacks [31], which
typically suggests to limit the nibble size to 32 bits. Eventually, and interest-
ingly, these results highlight that breaking a serial LPN implementation with
accurate fault attacks requires a significantly larger number of faulty samples
than for standard cryptographic primitives such as block ciphers [4, 28].

5.3 Inaccurate fault attacks without computation

We next extend the previous analyses where the adversary cannot perfectly
control the position of his faults. Again, we start with the simple case where we
do not use any computation and want to recover the key bit by bit. In order
to illustrate the intuitions behind inaccurate fault insertion, we start with an
example where ∆ = 2 and we generalize it afterwards. Furthermore, and as
previously, we only consider plaintexts x such that x1 = 1.

Example with ∆ = 2. Let us suppose that the faulty computation gives y :=
k1⊕ν with probability 1

2 and y := k1⊕x2 ·k2⊕ν with probability 1
2 . Denoting

W ' B(1, 12 ), we can write this outcome in a compact way as:

y := k1 ⊕ w (x2 · k2)⊕ ν.

Since we do not know the value of the bit k2, we then have 2 possibilities:

– if k2 = 0, y = k1 ⊕ ν,
– if k2 = 1, y = k1 ⊕ w · x2 ⊕ ν.

In the first case (k2 = 0), we directly have Pr [y = k1] = 1− ε = 1
2 + 1−2ε

2 .
In the second case (k2 = 1), Pr [y = k1] becomes:

Pr [w = 0, ν = 0] + Pr [w = 1, x2 = 0, ν = 0] + Pr [w = 1, x2 = 1, ν = 1] = (∗) .

Since in LPN we obtain uniformly random samples, we have Pr [x2 = 1] =
Pr [x2 = 0] = 1

2 . Further relying on the fact that the noise, the position of the
fault and x2 are independent, we obtain:

(∗) =
1

2
(1− ε) +

1

2

1

2
(1− ε) +

1

2

1

2
(ε) =

1− ε
2

+
1

4
=

3− 2ε

4
=

1

2
+

1− 2ε

4
.
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This example leads to the main observation that despite we only target the
first key bit k1, the bias2 that can be exploited in the attack actually depends
on the other key bits that can be “covered” by the inaccurate faults (i.e. of
which the index is lower than ∆ + 1), namely k2 in the previous case. This
leads to two important consequences. First, the success rate of inaccurate fault
attacks against LPN is key-dependent. That is, there are (worst-case) keys that
are more difficult to distinguish than others. Hence, we will next consider both
average and worst-case success rates. Second, the fact that we target a single key
bit while the faults actually cover several key bits inevitably makes our attack
suboptimal, because of an imperfect model. This naturally gives incentive for
considering attacks with computation as in the next section, since we can build
perfect models again when c > ∆. Interestingly, despite suboptimal the attacks
without computation are functional, because the impact of the modeled key bit
k1 dominates over the impact of the other key bits in the bias expression.

Note that the success rate to recover the full key can be computed with the
same formula as in the accurate case, by adapting the biases. Worst-case partial
success rates have to be considered for perfect pruning (since in this case we
want to recover each key nibble with probability one), while the average success
rate could be exploited in the advanced strategies mentioned in Remark 2.

General case. Let ∆ be the number of possible position of the fault. That is the
fault can be in the output of the Bi XOR where i = 2, ...,∆+1. Let r ← [2, ...,∆]
be the actual position of a fault for one sample y. Let finally P := [p1, ..., p∆]
be the vector of the probabilities pi that the fault is at the output of the Bi+1

XOR (in our uniform errors case, pi = 1
∆ ). As previously, we have that if a fault

occurs at the output of the B2 XOR, we obtain y = k1 ⊕ ν, whilst if it is at the

output of the Br+1 XOR, we obtain y = k1 ⊕
(

r
⊕
i=2
xi · ki

)
⊕ ν. For simplicity,

we start by looking at the case where k2 = 1, in which Pr

[
r
⊕
i=2
xi · ki = 0

]
= 1

2 =

Pr

[
r
⊕
i=2
xi · ki = 1

]
for all r’s. Using the notation W = B(1, 1−p1), we can see an

output of the faulty computation as y := k1 ⊕ w
(

r
⊕
i=2
xi · ki

)
⊕ ν and compute:

Pr [y = k1] = Pr [w = 0, ν = 0]

+ Pr

[
w = 1,

(
r
⊕
i=2
xi · ki

)
= 0, ν = 0

]
+ Pr

[
w = 1,

(
r
⊕
i=2
xi · ki

)
= 1, ν = 1

]
,

= p1(1− ε) + (1− p1)
1− ε

2
+
ε

2
(1− p1),

2 Defined as the distance from the uniform probability 1
2
.
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Fig. 5. Inaccurate fault attacks against a single key nibble with ∆ = 4.

= p1(1− ε) +
1− p1

2
=

1

2
+
p1 − 2p1ε

2
,

=
1

2
+ p1

1− 2ε

2
. (2)

From this equation, we clearly see that the inaccuracy of the fault decreases the
bias by a factor p1 = 1

∆ . Let us now look at the cases where k2 = 0. Then, for any
δ ∈ [2, ∆] we have that if (k2, ..., kδ) = (0, ..., 0) and the fault is at the output of
the Bi+1 XOR with i = 2, ..., δ, the output y equals to k1⊕ ν (i.e. is the same as
if the fault is at the output of the B2 XOR). So this case is captured by replacing

p1 in Equation (2) by
δ∑
i=1

pi. Since this sum is larger than p1, Pr [y = k1] will be

larger too and we will have a larger bias. More generally, it is easy to see that
the increase of the bias depends only on the position of the first 1 in the key bits
(k2, ..., k∆). That is, the lowest bias is found for keys such that k2 = 1, followed
by keys such that (k2, k3) = 01 which have a slightly larger bias, . . .

Based on the previous observations, we are finally able to compute Pr [y = k1]
for all possible keys. For this purpose, we define a vector ki,j := (ki, ..., kj), such
that we have 2 keys with Pr [y = k1] = 1− ε (i.e. the 2 keys such that k2,∆ = 0),
2 keys with Pr [y = k1] = 1 − ε − pn 1−2ε

2 (i.e. the 2 keys such that k2,∆−1 = 0
and k∆ = 1), 4 keys with Pr [y = k1] = 1 − ε − (p∆ + p∆−1) 1−2ε

2 (i.e. the 4
keys such that k2,∆−2 = 0 and k∆−1 = 1, . . . ), until we have 2∆−1 keys with

Pr [y = k1] = 1 − ε −
(
∆∑
i=2

pi

)
1−2ε
2 = 1

2 + p1
1−2ε
2 . Hence, we can compute the

average success rate in function of SR1(q, ε) as defined in Section 5.2:

SR1(q, ε, P ) :=
1

2∆

2 · SR1(q, ε) +

∆−1∑
i=1

2i · SR1

q, ε+ (

∆∑
j=∆−i

pj)(1− 2ε)

 .
We confirm that this prediction of the average success rate, and worst-case suc-
cess rate SR1

(
q, 12 −

p1
2 (1− 2ε)

)
, matches experimental results in Figure 5.
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Impact on the number of samples. We conclude this section by looking at
the impact of a reduced bias due to inaccurate faults on the number of samples
needed to perform successful attacks. For this purpose, we first recall that the
success rate is the probability that the wrong key nibble (here bit) receives more
votes than the good one. (to make this discussion simpler, we omit the case
of ties). The number of votes for the wrong key nibble made with q samples
is represented by a binomial random variable X ∼ B(q, η) of parameter η :=
1
2 −

p1−2p1ε
2 . We know that we have a confidence interval of level α for this

random variable, that is
[
ηq − kα

2 , ηq + kα
2

]
, and we want that all the values in

this interval are lower than q
2 . So we need that:

ηq +
kα
2
σ(X) �

q

2
,

kα
2

√
q(η)(1− η) � q

(
1

2
− η
)
,

kα
2

√
η − η2
1
2 − η

�
√
q.

Defining τ := 1
2−η we have η−η2 = 1

4−τ
2 and the previous inequality becomes:

q2 
k2α
4

1
4 − τ

2

τ2


k2α
4τ2

.

So we observe that if we multiply the bias τ by a factor 1
∆ (as caused by ∆-

inaccurate faults), we need to multiply the number of samples by a factor ∆2.

Note that one possible way to mitigate the inaccuracy of the faults would
be to filter the challenges so that in case there are ∆ possible places for the
fault, the adversary only keeps challenges such that the first ∆ coordinates are
(1, 0, ..., 0). Yet, this filtering increases the data complexity exponentially (in 2∆)
while the previous treatment of inaccuracies only does it quadratically.

5.4 Inaccurate fault attacks with computation

We finally investigate the practically important case where the adversary can
only insert fault with a limited accuracy, but where he has a computational
power c = 2d that can compensate the inaccuracy parameter ∆, meaning that
he can insert fault at positions ranging from Bd−∆+2 to Bd+1 with d > ∆. As
previously discussed, this again allows us to mount optimal attacks.

Concretely, and in order to simplify our treatment, we will again apply a
strategy similar to the template attack in [9]. For this purpose, a straightforward
approach would be to build templates directly from the samples (xi, yi)

q
i=1 of

a “faulty LPN oracle”, which is expensive since for characterizing d-bit partial
inner products, we need to build templates for the 22d combinations of input and
key. Luckily, it is actually possible to build such templates more efficiently. For
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this purpose, let again P := (pd−∆+2, . . . , pd+1) be the vector of probabilities pi
that the fault is at the output of the Bi+1 XOR, and pix,k∗ be the probability
that putting the fault at the output of the Bi+1 XOR we obtain a 1. Clearly

pix,k∗ = 1 − ε if
i
⊕
j=1

xj · k∗j = 1 and ε if
i
⊕
j=1

xj · k∗j = 0. So by the law of total

probability, we have Pr

[
y

(f)
= 1

]
=

d∑
i=d−∆+1

pi · pix,k∗ , where the (f) superscript

is for faulty inner product outputs, which can be written in a compact way as:

Pr

[
y

(f)
= 〈x|k∗〉 = 1

]
=

d∑
i=d−∆+1

pi

(
(1− ε)

i
⊕
j=1

xj · k∗j + ε(1⊕
i
⊕
j=1

xj · k∗j )

)
.

Using the previous templates, we can now compute
q∏
i=1

Pr [yi|k∗,xi] for every

candidate k∗ and look for the one maximizing the likelihood of the noisy samples

yi. By defining px,k∗ := Pr

[
y

(f)
= 〈x|k∗〉 = 1

]
, we have Pr [yi|k∗,xi] = yi ·pxi,k∗ +

(1 − yi) · (1 − pxi,k∗). We can observe that Pr [0|k∗,xi] = Pr [1|k∗,xi] = 1
2

iff pxi,k∗ = 1
2 . Note that as in the previous section, there are keys that are

easier/harder to attack depending on the value of their corresponding bias.

Next, we can define the statistical distance between two key candidates as:

d(k∗,k∗∗) :=
∑

x∈Zd2\0

∣∣∣∣Pr

[
y

(f)
= 〈x|k∗〉 = 1

]
− Pr

[
y

(f)
= 〈x|k∗∗〉 = 1

]∣∣∣∣, (3)

and use it to compute the probability to distinguish the good key from an in-
correct one. Here, we note that in theory, we should compute the probability to
distinguish the correct key from all the incorrect ones. Yet, this would require
characterizing the closeness of all the key candidates. For simplicity, we will com-
pute an upper bound on the success rate, where we only compute the probability
to distinguish the correct key from its nearest neighbour, i.e. the key candidate
k⊕ 01 for which we have flipped only the last bit of the correct key. As will be
confirmed in our following experiments, this provides a good approximation of
the actual success rate when the probability of success gets close to one. Note
that for this key candidate, the probabilities in Equation (3) are are equal for
2d−1 − 1 plaintexts (namely, those for which 〈x|01〉 = 0 = 〈x|k∗∗ ⊕ k∗〉), and

their difference is (1− 2ε)
n∑
i=d

pi for the 2d−1 remaining samples.

In order to estimate the success rate, we now use to tools from [9], where the
authors solved exactly this problem in the case of a template attack in which
they try to distinguish two candidate subkeys k∗1,k

∗
2, using q leakage samples

and assuming a Gaussian noise leading to an error probability:

Pr
err

:=
1

2
erfc

(
Θ

2
√

2

)
,
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with Θ2 := (M1 − M2)TΣ−1q (M1 − M2) and Mi is the vector containing the
average value of q samples for the key k∗i and Σq is the corresponding covariance
matrix, modeling the noise distribution in these q samples. They additionally
assume that the noise of every sample is iid for both candidate keys.

We simply apply this formula to the good subkey k and its nearest subkey k∗

(i.e. k⊕ 01), by taking the samples y1, ..., yq and modeling them as a Bernoulli
distribution Ber(pk,xi), with i = 1, ..., q. Denoting M1 := Mk and M2 := Mk∗ ,
we have M1 =

(
pk,x1

, ..., pk,xq
)

and M2 =
(
pk∗,x1

, ..., pk∗,xq

)
. Therefore, on

average, we find that 2n−1−1
2n−1 q coordinates of these vectors are the same, and

the others are ±pd+1
1−2ε
2 . This means that for the vector [M1 −M2] we have

approximately 2n−1−1
2n−1 q 0s and the remaining coordinates are pd+1

1−2ε
2 .

As for the covariance matrix, this is where key dependencies come into play.
For simplicity, we only considered the worst-case (which is needed to compute
the full key recovery success rate of our extend-and-prune strategy). Hence, we
simply set it to a maximum Σ = 1 · 1

4 . As a result, we directly obtain the
following bound of the success rate for worst-case keys and d-bit nibbles:

SRd(q, ε, P ) ≈ 1− 1

2
erfc

(
Θ

2
√

2

)
,

with Θ = 2
√
S(q)pd+1

1−2ε
2 if we define S(q) := bq 2n−1−1

2n−1 c. As previously men-

tioned, and clear from Figure 6, it starts from 1
2 since we only distinguish two

keys, and gets close to the actual success rate as the number of samples increases.
We can then directly use Equation (1) from Section 5.2 to obtain the bounds
on the full key success rate of Figure 7. Figure 8 in Appendix A additionally
provides results for ∆ = 8 which confirms the simple intuition of inaccurate
fault attacks without computation, that the data complexity of these attacks is
proportional to ∆2. In all cases, this data complexity is remarkably high.

Remark 3. The case of multiple faults is not very interesting in the context of
serial implementation, since it is only the first bit set to zero (starting from the
LSB) which matters in this case (as it cancels the effect of other faults).

Remark 4. The intermediate contexts, where the adversary exploits computation
but his computational power c = 2d does not allow him to cover the full range
of the possible faults (i.e. when 1 < d < ∆) could be analyzed with the same
methodology as in this section, by simply adapting the distributions in hand.
However, and as in the context of inaccurate fault attacks without computations
discussed in Section 5.3, it would then lead to suboptimal attacks.

6 Setting bits in parallel implementations

In this section, we complement the previous results with a discussion of the
security of parallel LPN implementations against fault attacks. Interestingly,
this discussion can be quite succint, since we can re-use most of the tools in
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Fig. 6. Inaccurate fault attacks against a single key nibble with ∆ = 4.

Fig. 7. Inaccurate fault attacks against a n = 1024-bit key with ∆ = 4.

the previous section. Essentially, the main difference between serial and parallel
implementations is that the latter ones can only be attacked efficiently in case
adversaries can insert multiple and accurate faults. Hence, we will start our
discussion with a description of these attacks. Then, we will argue why accuracy
is in fact strictly needed in the case of parallel implementations, by looking at
simple examples of (not too) inaccurate fault attacks with small ∆’s.

Multiple and accurate faults. Say we consider a n-bit parallel LPN architec-
ture of depth t (i.e. n = 2t). Assuming that an adversary can insert m accurate
faults, the best strategy is to cancel the left bit of the top node (i.e. B10 in Fig-
ure 2), then cancel the left bit of the top node in the remaining right branch (i.e.
B110 in Figure 2), . . . , so that one obtains samples of a reduced LPN problem of
size n′ = 2t−m. If the fault cardinality is such that n′ gets below 32 (which would
correspond to a very powerful adversary), then the maximum likelihood attacks
in the previous section directly apply. Otherwise, the (more realistic) adversary
can only consider these smaller LPN instances and try to solve them with stan-
dard algorithms such as BKW [6], LF [25] or based on covering codes [19]. The
complexities of some (efficient) attacks, borrowed from the recent work of Bogos
et al. [7], can be found in Table 1 (where we report on classical values for the

15



parameter ε, namely 1
8 and 1

4 ). Note that various other tradeoffs between data,
time and memory complexity could be investigated. We list attacks with opti-
mized time complexities since the main reason to abandon maximum likelihood
attacks is that their time complexity becomes untractable for large n′ values. In
this respect, the only important conclusion of this table is that the overall com-
plexity of fault attacks against LPN anyway becomes larger when leaving the
maximum likelihood paradigm, and holds in general. This confirms the excellent
properties of parallel LPN implementations against fault attacks.

n′ ε a b # of samples memory time

64 0.125 4 16 17.65 23.65 25.65

64 0.25 4 16 22.60 28.60 30.60

128 0.125 5 26 28.01 35.01 37.33

128 0.25 4 32 33.59 40.59 42.59

256 0.125 6 43 45.32 53.32 55.91

256 0.25 5 52 54.00 62.00 64.32

512 0.125 7 74 76.59 85.59 88.39

512 0.25 6 86 88.32 97.32 99.91

Table 1. Complexitites to solve LPN with the LF1 algorithm log 2 scale (a and b are
technical parameters representing the number of blocks and the block size in LF1).

On the need of accuracy. Let us now consider a similar architecture and an
adversary who can only insert a single (slightly) inaccurate fault with ∆ = 2.
Then, the best strategy will be to hit either the left or the right bit of the top
node (i.e. B10 or B11 in Figure 2). Based on a reasoning similar to the one in
Section 5.3 (recall the example with ∆ = 2), the adversary will then have to
solve a n′ = 512-bit LPN problem, with a probability 1

2 + 1−2ε
2 · 12 (i.e. a halved

bias) which is essentially as hard to solve as the original one. Furthermore, if
the inaccuracy extends to more stages of the parallel LPN implementation, then
any fault that occurs in an “already cancelled” branch of the implementation is
lost. Hence, we have that accurate faults are in fact strictly necessary to carry
out successful fault attacks against parallel LPN implementations.

7 Fault attacks against the randomness

Before to conclude the paper, we finally note that all the attacks considered so
far exploited non-permanent faults targeting inner product computations. Yet,
in view of the probabilistic nature of the LPN assumption, a natural question to
ask is whether directly targeting the randomness would not be more fruitful for
the adversary. For example, and assuming that one can observe noisy samples
of the form y = 〈x|k〉 ⊕ ν, it is clear that a single permanent fault canceling ν
allows breaking the LPN assumption with approximately n samples.

In this respect, we first mention that such permanent faults are generally
harder to inject, and most of the literature on fault analysis focuses on non-
permanent faults [17]. Hence, the good features of LPN implementations against
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fault attacks detailed in the previous sections are certainly a meaningful first step
in the understanding of their physical security properties. Admittedly, perma-
nent faults need to be prevented, and finding solutions to ensure this condition
is an interesting scope for further research. Yet, we also note that this is a quite
general issue and a requirement for the security of many cryptographic imple-
mentations relying on good randomness. For example, a single permanent fault
on the randomness used in masked implementation directly breaks the unifor-
mity property that is need for masking to deliver security guarantees [18].

Besides, the previous attack against the randomness generation can obviously
be carried out with non-permanent faults, just by repeating them n times. Yet,
here again, the accuracy of the fault insertion has to be high. Indeed, with perfect
accuracy, the adversary will observe samples such that Pr[y = 〈x|k〉|∆ = 1] = 1.
By contrast, as soon as the accuracy decreases, the samples become noisy again
and their exploitation requires BKW-like algorithms to break LPN. In general,
we have Pr[y = 〈x|k〉|∆] = ∆+1

2∆ , meaning that already for ∆ = 2, we have ε = 1
4 ,

therefore confirming the positive observations in the previous sections.

8 Conclusion and open problems

Our results show that fault attacks against LPN implementations (especially
parallel ones) are significantly more challenging than similar attacks against
standard symmetric cryptographic primitives such as block ciphers. Indeed they
can only succeed if accurate fault insertion based on “set bit” models is possible,
and even in this case, have quite high sampling requirements. For illustration,
we analyzed some of the mainstream fault models. Yet, our evaluations are quite
generic and could easily be extended to other fault models, leading to similar
intuitions. For example, since it is mainly the position of the last erroneous bit
that influences fault attacks against LPN, burst errors could be directly captured.
This naturally suggests the further investigation of LPN implementations as an
interesting research direction. Open problems include the study of advanced
attack paths, e.g. going beyond the simple extend-and-prune strategy that we
considered as a first step, or more challenging scenarii, e.g. if the faults and their
positions follow an unknown (or imperfectly profiled) distribution. Real world
experiments would naturally be interesting too, in order to evaluate the extent
to which the conclusions of our generic analyses apply to actual devices. In this
respect, it is worth mentioning that in concrete fault attacks, it may also happen
that no fault occurs at all. Since in the context of LPN (where the challenges
are always different) there is no direct way to verify whether a fault actually
occurred, this could make the attack even harder (typically, increase the bias).
In view of the algebraic structure of the inner products carried out by LPN
implementations, combining them with error detection/correction tools appears
as a natural goal as well (to further amplify the good properties of LPN with
respect to fault attacks). Eventually, the extension of our work towards other
learning problems such as LWE [30] or LWR [2] is certainly worth attention.
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A Additional figures

Fig. 8. Inaccurate fault attacks against a n = 1024-bit key with ∆ = 8.
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