Leakage-Resilient Symmetric Cryptography (Overview of the ERC Project CRASH, part II)

François-Xavier Standaert UCL Crypto Group, Belgium INDOCRYPT, December 2016

- Introduction
- Natural PRGs/PRFs and separation result

practice

theor

racti

- PRGs & theoretical challenges
 - Ensuring independence
 - Bounding the leakage
 - The simulatable leakage attempt
- Protocols & practical challenges
 - Authentication & encryption
 - Authenticated encryption
 - Initialization issue
- Summary and conclusions

- Introduction
- Natural PRGs/PRFs and separation result
- PRGs & theoretical challenges
 - Ensuring independence
 - Bounding the leakage
 - The simulatable leakage attempt
- Protocols & practical challenges
 - Authentication & encryption
 - Authenticated encryption
 - Initialization issue
- Summary and conclusions

Side-channel attacks

 ≈ physical attack that decreases security exponentially in the # of measurements

Additive noise ≈ cost × 2 ⇒ security × 2
 ⇒ not a good (crypto) security parameter

 ≈ secret sharing allows increasing security exponentially in the # of shares (d)

Masking limitations

Problem: masking is hard to implement (noise & independence) and is <u>expensive</u> (cost > d²)

Problem: masking is hard to implement (noise & independence) and is <u>expensive</u> (cost > d²)

Seed results

- Micali & Reyzin 2004
 - Physically observable cryptography
 - « Only computation leaks » assumption
 - Used in all following works
 - Indistinguishability ≠ unpredictability (with L)
 - Impact for encryption & authentication

Seed results

- Micali & Reyzin 2004
 - Physically observable cryptography
 - « Only computation leaks » assumption
 Used in all following works
 - Indistinguishability ≠ unpredictability (with L)
 Impact for encryption & authentication
- Dziembowski & Pietrzak 2008
 - Leakage-resilient cryptography
 - First (nearly) practical stream cipher construction analyzed in a formal model

- Introduction
- Natural PRGs/PRFs and separation result
- PRGs & theoretical challenges
 - Ensuring independence
 - Bounding the leakage \approx noise
 - The simulatable leakage attempt
- Protocols & practical challenges
 - Authentication & encryption
 - Authenticated encryption
 - Initialization issue
- Summary and conclusions

- Introduction
- Natural PRGs/PRFs and separation result
- PRGs & theoretical challenges
 - Ensuring independence
 - Bounding the leakage
 - The simulatable leakage attempt
- Protocols & practical challenges
 - Authentication & encryption
 - Authenticated encryption
 - Initialization issue
- Summary and conclusions

• Most natural construction: forward-secure PRG

Stateful PRGs

• Most natural construction: forward-secure PRG

• Re-keying impact: bounds the number of (noisy) measurements per key (*prevents averaging*)

Stateless PRFs (or PRPs)

Most natural construction: GGM tree

Stateless PRFs (or PRPs)

• Most natural construction: GGM tree

 Re-keying impact: bounds the number of noisefree observations per key (allows averaging)

The stateful / stateless separation

• Key recovery security (standard SCA):

PRG

- « Bounded security » for the PRG only
 - Despite proofs being similar (i.e., assumption issue)

- Introduction
- Natural PRGs/PRFs and separation result
- PRGs & theoretical challenges
 - Ensuring independence
 - Bounding the leakage
 - The simulatable leakage attempt
- Protocols & practical challenges
 - Authentication & encryption
 - Authenticated encryption
 - Initialization issue
- Summary and conclusions

FOCS 2008 / Eurocrypt 2009 (I)

 L modeled as a polytime function => alternating structure prevents « precomputation attack »

FOCS 2008 / Eurocrypt 2009 (II)

 Note: looks artificial but is in fact funnily similar to the idea of threshold implementations

CCS 2010

- Alternating randomness (to save key material)
 - Unfortunately not sufficient (CHES 2012)...

CHES 2012

- Fresh randomness in each round
 - Sound but expensive (generated after L)

CT-RSA 2013

- Public randomness generated from a PRG
 - (Non quantitative) proof in MiniCrypt

CCS 2010 again (I)

- Most natural construction proven under a (non standard) random oracle assumption
 - L cannot query the random oracle

CCS 2010 again (II)

- \approx formalization of early re-keying attempts
 - e.g., ASIACCS 2008: internal wall within AES
 - e.g., early patents in the field from CRI
 - (Where it was already clear that init. is challenging!)

- Introduction
- Natural PRGs/PRFs and separation result
- PRGs & theoretical challenges
 - Ensuring independence
 - Bounding the leakage
 - The simulatable leakage attempt
- Protocols & practical challenges
 - Authentication & encryption
 - Authenticated encryption
 - Initialization issue
- Summary and conclusions

Bounded range

• Unrealistic: leakages \approx Gbytes of data

Security against DPA

• Not sufficient to prove anything

Key has high HILL pseudoentropy

• Hard to guarantee (indistinguishability-based)

Wrapping up

 Finding sound ways to guarantee independence between multiple PRG rounds and to bound their leakage is notorioulsy difficult (!)

- Finding sound ways to guarantee independence between multiple PRG rounds and to bound their leakage is notorioulsy difficult (!)
- No perfectly satisfying solution so far
 - e.g., assuming L polytime is not realistic but no other restrictions seem to work
 - \exists a gap between what proofs require and what engineers can guarantee (evaluate)

Wrapping up

- Finding sound ways to guarantee independence between multiple PRG rounds and to bound their leakage is notorioulsy difficult (!)
- No perfectly satisfying solution so far
 - e.g., assuming L polytime is not realistic but no other restrictions seem to work
 - 3 a gap between what proofs require and what engineers can guarantee (evaluate)
 - Independent of concrete security (!)

- Introduction
- Natural PRGs/PRFs and separation result
- PRGs & theoretical challenges
 - Ensuring independence
 - Bounding the leakage
 - The simulatable leakage attempt
- Protocols & practical challenges
 - Authentication & encryption
 - Authenticated encryption
 - Initialization issue
- Summary and conclusions

Looking for physical assumptions

- Main issue: leakage function is hard to model
 - It solves Maxwell's equations
 - But circuits give immediate solutions

Looking for physical assumptions

- Main issue: leakage function is hard to model
 - It solves Maxwell's equations
 - But circuits give immediate solutions

 \Rightarrow Just don't model it!
(a) Give public I/O access to device & setup

(a) Give public I/O access to device & setup

(b) Assume L(k,x) can be simulated

- Using the same HW as the target
- But without knowing the secret key k!

 (\bullet, \blacksquare) has simulatable leakages if $\exists S^{L}$ such that the bit *b* in the following game is hard to guess

Game <i>q</i> -sim(Adv, , S ^L , b) with <i>k</i> , <i>k</i> * uniformly random		
<i>q</i> queries	response if <i>b</i> =0	response if <i>b</i> =1
Enc(x)	$\bigstar(x), S^{L}(\underline{k}, x, \bigstar(x))$	$\bigstar(x), S^{L}(k^*, x, \bigstar(x))$
1 query	response if <i>b</i> =0	response if <i>b</i> =1
Gen(x)	S ^L (z,x,k)	S ^L (<i>z</i> , <i>x</i> , k *)

(\bullet , \blacksquare) has simulatable leakages if $\exists S^{L}$ such that the bit *b* in the following game is hard to guess

Game q -sim(Adv, \clubsuit , S ^L ,b) with k, k^* uniformly random		
q queries	response if <i>b</i> =0	response if <i>b</i> =1
Enc(x)	$(x), S^{\perp}(\mathbf{k}, x, \mathbf{k})$	$(x), \mathbb{S}^{\perp}(k^*, x, \textcircled{(x)})$
1 query	response if <i>b</i> =0	response if <i>b</i> =1
Gen(x)	$S^{L}(z,x,\mathbf{k})$	$S^{L}(z,x,k^{*})$

• With $S^{L}(k,x, (x)) \stackrel{\text{\tiny def}}{=} L(k,x)$ (makes our results dependent only on the number of calls to S^{L})

Block cipher leakage simulator

- Let $L(k,x) = l^p(k,x) | | l^c(k, \ll(x))$
 - l^p corresponds to the first rounds of
 - l^c corresponds to the last rounds of

Block cipher leakage simulator

- Let $L(k,x) = l^{p}(k,x) | | l^{c}(k, \blacktriangleleft(x))$
 - l^p corresponds to the first rounds of
 - l^c corresponds to the last rounds of \blacktriangleleft

\Rightarrow Instantiate S^L(k,x,y) = $l^p(k,x) || l^c(k,y)$

Simulatable leakages \approx DPA + I/O's leakages

Summarizing

- Attacks against q-sim. exploit the same leakages as а. DPA if the traces are consistent with the I/O's - this is exactly what the simulator does
- b. Additionally needs concatenation

- OK if \exists leakage samples without interest:

Summarizing

- a. Attacks against q-sim. exploit the same leakages as DPA if the traces are consistent with the I/O's this is exactly what the simulator does
 b. Additionally needs concatenation OK if ∃ leakage samples without interest:
- c. q-sim. at least easier to guarantee than H^{HILL}

Summarizing

- a. Attacks against q-sim. exploit the same leakages as DPA if the traces are consistent with the I/O's this is exactly what the simulator does
 b. Additionally needs concatenation OK if ∃ leakage samples without interest:
- c. q-sim. at least easier to guarantee than H^{HILL}
- d. Engineering challenges

(constructive) Design alternative S^{L} instances (constructive) Given S^{L} , design \bigstar with *q*-sim. leakages (destructive) Given S^{L} and \bigstar , break the *q*-sim. game First instances falsified by Galea et al. (cfr. end of talk if time allows)

- Goal: remain secure after $\approx 10^6$ runs
- While relying on *q*-sim. for *q*=2
- Proving it was surprisingly difficult so far
 - (see slides 9 to 19 of this talk)

Original view

Proof idea #1: replacing lemma

a. Exploit the 2-sim. leakages assumption

b. Exploit the BC \approx PRF assumption

Original view

a. Completely random view (I=4 calls to S^{\perp})

b. Real view with random y_4 (/=4 calls to S^{\perp})

b. Real view with random y_4 (/=4 calls to S^{\perp})

Theorem: $y_l \approx U_n$ given $y_1, \dots, y_{l-1}, L(k_0), L(k_{l-2})$ if BC is a PRF and has 2-simulatable leakages

(with security degradation proportional to 21)

Outline

- Introduction
- Natural PRGs/PRFs and separation result
- PRGs & theoretical challenges
 - Ensuring independence
 - Bounding the leakage
 - The simulatable leakage attempt
- Protocols & practical challenges
 - Authentication & encryption
 - Authenticated encryption
 - Initialization issue
- Summary and conclusions

Pragmatic view

- A call to a stateless primitive is always needed
 - For initialization / randomization
 - For authentication and encryption

Pragmatic view

- A call to a stateless primitive is always needed
 - For initialization / randomization
 - For authentication and encryption
- But we can try to encrypt large messages with a single call to this (more expensive) primitive

Pragmatic view

- A call to a stateless primitive is always needed
 - For initialization / randomization
 - For authentication and encryption
- But we can try to encrypt large messages with a single call to this (more expensive) primitive
- And to use leakage-resilience otherwise
 - i.e., use stateful primitives whenever possible
 - And assume one call to a leak-free PRF

• Green: public value, orange: ephemeral secret, red: long-term secret (protected with leak-free F*)

- Green: public value, orange: ephemeral secret, red: long-term secret (protected with leak-free F*)
- au unforgeable even with leakage (during enc.)
- Security of 1-block \approx security of *I*-blocks
- & high concrete security levels expected
 - Because it is an unpredictability game

Example II: encryption

- Similar reduction but lower concrete security
 - Because it is an indistinguishability game

Encryption: definition issue

• Conceptual problem: distinguishing is always easy if L is given in the challenge phase

- Conceptual problem: distinguishing is always easy if L is given in the challenge phase
- Theoretical approach: exclude L in the challenge phase (which is not justified in practice)

- Conceptual problem: distinguishing is always easy if L is given in the challenge phase
- Theoretical approach: exclude L in the challenge phase (which is not justified in practice)
- Our (pragmatic) approach: admit semantic security is impossible. Leakage will always allow distinguishing plaintexts/ciphertexts!

- Conceptual problem: distinguishing is always easy if L is given in the challenge phase
- Theoretical approach: exclude L in the challenge phase (which is not justified in practice)
- Our (pragmatic) approach: admit semantic security is impossible. Leakage will always allow distinguishing plaintexts/ciphertexts!
- CPA security reduction: security of R rounds reduces to security of 1 round (independent of what we can actualy achieve for 1 round)
 - See our CCS 2015 paper for the details

Outline

- Introduction
- Natural PRGs/PRFs and separation result
- PRGs & theoretical challenges
 - Ensuring independence
 - Bounding the leakage
 - The simulatable leakage attempt
- Protocols & practical challenges
 - Authentication & encryption
 - Authenticated encryption
 - Initialization issue
- Summary and conclusions

Composing LR-MAC & LR-Enc

• OK without misuse

Composing LR-MAC & LR-Enc

- OK without misuse, *forgery* attacks with misuse:
 - Fix IV and τ , get k_0' via DPA, pick m', for i = 1: l 1 compute $k'_i = F_{k_{i-1}'}(m_i)$ and finally adjust the last message block $m_l = F_{k_{l-1}'}^{-1}(\tau)$

An improved solution

- Digest (i.e., hash), Tag and Encrypt (DTE)
 - Prevents the previous forgery attack
 - Encrypts the randomness (for CPA security)

An improved solution

- Digest (i.e., hash), Tag and Encrypt (DTE)
 - Still not fully misuse-resistant with leakage
 - Probably impossible in the symmetric setting

An improved solution

- Digest (i.e., hash), Tag and Encrypt (DTE)
 - Ciphertext Integrity with Misuse & Leakage
 - Best achievable in the symmetric setting?

Outline

- Introduction
- Natural PRGs/PRFs and separation result
- PRGs & theoretical challenges
 - Ensuring independence
 - Bounding the leakage
 - The simulatable leakage attempt
- Protocols & practical challenges
 - Authentication & encryption
 - Authenticated encryption
 - Initialization issue
- Summary and conclusions
• Masking (⇒ bitslice ciphers)

Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici: *LS-Designs: Bitslice Encryption for Efficient Masked Software Implementations*. FSE 2014: 18-37. Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Gregoire, François-Xavier Standaert, Pierre-Yves Strub, *Parallel Implementations of Masking Schemes and the Bounded Moment Leakage Model*, IACR e-Print 2016/912

• Masking (⇒ bitslice ciphers)

Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici: *LS-Designs: Bitslice Encryption for Efficient Masked Software Implementations*. FSE 2014: 18-37. Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Gregoire, François-Xavier Standaert, Pierre-Yves Strub, *Parallel Implementations of Masking Schemes and the Bounded Moment Leakage Model*, IACR e-Print 2016/912

• PRFs with non-standard assumptions

Marcel Medwed, François-Xavier Standaert, Antoine Joux: *Towards Super-Exponential Side-Channel Security with Efficient Leakage-Resilient PRFs*. CHES 2012: 193-212. Marcel Medwed, François-Xavier Standaert, Ventzi Nikov, Martin Feldhofer, *Unknown-Input Attacks in the Parallel Setting: Improving the Security and Performances of the CHES 2012 Leakage-Resilient PRF*, ASIACRYPT 2016: 602-623

• Masking (⇒ bitslice ciphers)

Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici: *LS-Designs: Bitslice Encryption for Efficient Masked Software Implementations*. FSE 2014: 18-37. Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Gregoire, François-Xavier Standaert, Pierre-Yves Strub, *Parallel Implementations of Masking Schemes and the Bounded Moment Leakage Model*, IACR e-Print 2016/912

• PRFs with non-standard assumptions

Marcel Medwed, François-Xavier Standaert, Antoine Joux: *Towards Super-Exponential Side-Channel Security with Efficient Leakage-Resilient PRFs*. CHES 2012: 193-212. Marcel Medwed, François-Xavier Standaert, Ventzi Nikov, Martin Feldhofer, *Unknown-Input Attacks in the Parallel Setting: Improving the Security and Performances of the CHES 2012 Leakage-Resilient PRF*, ASIACRYPT 2016: 602-623

• Key homomorphism & fresh re-keying

Christoph Dobraunig, François Koeune, Stefan Mangard, Florian Mendel, François-Xavier Standaert: *Towards Fresh and Hybrid Re-Keying Schemes with Beyond Birthday Security*. CARDIS 2015: 225-241

A recent proposal (Crypto 2016)

A recent proposal (Crypto 2016)

- Cryptographically strong re-keying function
 - sk =< **R**, msk >= $\sum (< \mathbf{R}, msk_i >)$

A recent proposal (Crypto 2016)

- Cryptographically strong re-keying function
 sk =< **R**, msk >= ∑(< **R**, msk_i >)
- Security based on hard lattice problems
- Simple & efficient: all computations in Z_{2^m}

Outline

- Introduction
- Natural PRGs/PRFs and separation result
- PRGs & theoretical challenges
 - Ensuring independence
 - Bounding the leakage
 - The simulatable leakage attempt
- Protocols & practical challenges
 - Authentication & encryption
 - Authenticated encryption
 - Initialization issue
- Summary and conclusions

• Concretely, leakage-resilience is effective and efficient for stateful primitives such as PRGs

- Concretely, leakage-resilience is effective and efficient for stateful primitives such as PRGs
- Protection of stateless primitives such as PRFs and PRPs is much more challenging

- Concretely, leakage-resilience is effective and efficient for stateful primitives such as PRGs
- Protection of stateless primitives such as PRFs and PRPs is much more challenging
- Pragmatic solution: minimize the number of (leak-free) stateless primitives in leakageresilient encryption and authentication

- Sound (empirically falsifiable) assumptions
 - e.g. new instances of leakage simulators

- Sound (empirically falsifiable) assumptions
 e.g. new instances of leakage simulators
- Can we better formalize CPA security with L?

- Sound (empirically falsifiable) assumptions
 e.g. new instances of leakage simulators
- Can we better formalize CPA security with L?
- Leakage-resilient decryption & tag verification
 - Excluded from the analysis so far
 - Mostly because of IV control by the Adv.

• Tools, formal methods, automation, ...

• Tools, formal methods, automation, ...

- Design against physical defaults
 - Independence issues (glitches, transitions, ...)

- Tools, formal methods, automation, ...
- Design against physical defaults
 - Independence issues (glitches, transitions, ...)
- Advanced masking schemes
 - e.g., inner product based (beyond probing security)

- Tools, formal methods, automation, ...
- Design against physical defaults
 - Independence issues (glitches, transitions, ...)
- Advanced masking schemes
 - e.g., inner product based (beyond probing security)
- Security without obscurity
 - Needed for high security design/evaluation

standard practice

attack-based evaluations

Security evaluation tools

standard practice

attack-based evaluations

Security evaluation tools

success probability

standard practice

helps evaluations

attack-based evaluations

proof-based evaluations

THANKS

http://perso.uclouvain.be/fstandae/

http://perso.uclouvain.be/fstandae/PUBLIS/184.pdf

Additional slides (leakage simulators & the Bristol distinguisher)

• Split & Concatenate Simulator (CRYPTO 2013) $L(x, k, y) \approx L(x, \tilde{k}, y^*) || L(x^*, \tilde{k}, y)$

- Split & Concatenate Simulator (CRYPTO 2013) $L(x, k, y) \approx L(x, \tilde{k}, y^*) || L(x^*, \tilde{k}, y)$
- Longo Galea et al (ASIACRYPT 2014): ∃ correlation between samples *within* real traces (e.g. ρ > 0.5) ... that are significantly reduced in simulated ones ⇒ Allows distinguishing!

- Split & Concatenate Simulator (CRYPTO 2013) $L(x, k, y) \approx L(x, \tilde{k}, y^*)||L(x^*, \tilde{k}, y)$
- Longo Galea et al (ASIACRYPT 2014): ∃ correlation between samples *within* real traces (e.g. ρ > 0.5) ... that are significantly reduced in simulated ones ⇒ Allows distinguishing!
- Proposed solution: very noisy implementations, *but it scales badly*: noise arbitrarily reduced with averaging

- Split & Concatenate Simulator (CRYPTO 2013) $L(x, k, y) \approx L(x, \tilde{k}, y^*)||L(x^*, \tilde{k}, y)$
- Longo Galea et al (ASIACRYPT 2014): ∃ correlation between samples *within* real traces (e.g. ρ > 0.5) ... that are significantly reduced in simulated ones ⇒ Allows distinguishing!
- Proposed solution: very noisy implementations, *but it scales badly*: noise arbitrarily reduced with averaging

Can we do better?

• Algorithmic? Unlikely: $\rho(x, \text{Sbox}(x)) \ll 0.5$

- Algorithmic? Unlikely: $\rho(x, \text{Sbox}(x)) \ll 0.5$
- Physical then \Rightarrow let's use a simple physical model

- Algorithmic? Unlikely: $\rho(x, \text{Sbox}(x)) \ll 0.5$
- Physical then \Rightarrow let's use a simple physical model

- Algorithmic? Unlikely: $\rho(x, \text{Sbox}(x)) \ll 0.5$
- Physical then \Rightarrow let's use a simple physical model

$$L(x, k, y) = \delta(x, k, y) + N$$

signal noise

 \Rightarrow Does the correlation come from signal or noise?

- Algorithmic? Unlikely: $\rho(x, \text{Sbox}(x)) \ll 0.5$
- Physical then \Rightarrow let's use a simple physical model

$$L(x, k, y) = \delta(x, k, y) + N$$

signal noise

 \Rightarrow Does the correlation come from signal or noise?

 In particular for *large parallel implementations* (since we know 8-bit AES implementations can be broken in one trace anyway – see SASCA paper)

Intra-trace correlation (real traces, sample 500)

• Intra-trace correlation (real traces, sample 500)

Same, with simulated traces $L(x, \tilde{k}, y^*)||L(x^*, \tilde{k}, y)|$

Intra-trace correlation (real traces, sample 500)

• Same, with simulated traces $L(x, \tilde{k}, y^*) || L(x^*, \tilde{k}, y)$

& fake simulated traces $\delta(x, k, y) + N_1 || \delta(x, k, y) + N_2$

Intra-trace correlation (real traces, sample 500)

A first improvement

• Sliding simulator

 $L(x, \tilde{k}, y^*) \cdot \square + L(x^*, \tilde{k}, y) \cdot \square$
A first improvement

Sliding simulator

$$L(x, \tilde{k}, y^*) \cdot \blacktriangleright + L(x^*, \tilde{k}, y) \cdot \checkmark$$

A first improvement

Sliding simulator

$$L(x, \tilde{k}, y^*) \cdot \square + L(x^*, \tilde{k}, y) \cdot \checkmark$$

Real traces

Simulated traces

A first improvement

Sliding simulator

$$L(x, \tilde{k}, y^*) \cdot \square + L(x^*, \tilde{k}, y) \cdot \checkmark$$

• Sliding signal + noise simulator $\hat{\delta}(x, \tilde{k}, y^*) \cdot \mathbf{k} + \hat{\delta}(x^*, \tilde{k}, y) \cdot \mathbf{k} + N$

• Sliding signal + noise simulator

• Sliding signal + noise simulator

• Sliding signal + noise simulator

Real traces

Simulated traces

• Sliding signal + noise simulator

