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Side-channel attacks
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* =~ physical attack that decreases security
exponentially in the # of measurements



Noise (hardware countermeasures) 2
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Noise (hardware countermeasures)
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* Additive noise = cost X 2 = security X 2
= not a good (crypto) security parameter



Masking (noise amplification) 3
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e =~ secret sharing allows increasing security
exponentially in the # of shares (d)



Masking limitations 4
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* Problem: masking is hard to implement (noise &
) and is expensive (cost > d?)




Masking limitations 4

Leakage-resilient cryptography
~ can cryptographic design help?



Seed results 5

* Micali & Reyzin 2004
* Physically observable cryptography
* « Only computation leaks » assumption
e Used in all following works
* Indistinguishability # unpredictability (with L)
* Impact for encryption & authentication



Seed results 5

* Dziembowski & Pietrzak 2008
* Leakage-resilient cryptography
* First (nearly) practical stream cipher
construction analyzed in a formal model
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Stateful PRGs 6

e Most natural construction: forward-secure PRG




Stateful PRGs 6

* Re-keying impact: bounds the number of (noisy)
measurements per key (prevents averaging)



Stateless PRFs (or PRPs) 7

e Most natural construction: GGM tree
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Stateless PRFs (or PRPs) 7

* Re-keying impact: bounds the number of noise-
free observations per key (allows averaging)



The stateful / stateless separation

* Key recovery security (standard SCA):
PRG PRF

time complexity
(o]
o
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number of measurements % 10° data complexity

* « Bounded security » for the PRG only
* Despite proofs being similar (i.e., assumption issue)
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FOCS 2008 / Eurocrypt 2009 () 9

L1(ko,X0) La(kz,Xz)

Lz(k:,}ff) L4(k3,X3)

* L modeled as a polytime function => alternating
structure prevents « precomputation attack »



FOCS 2008 / Eurocrypt 2009 (11)

L1(ko,X0) La(kz,X2)

computation
(glitches)

* Note: looks artificial but is in fact funnily similar
to the idea of threshold implementations



CCS 2010

round 1 round 2 round 3

e Alternating randomness (to save key material)
* Unfortunately not sufficient (CHES 2012)...



CHES 2012

round 1 round 2 round 3

* Fresh randomness in each round
* Sound but expensive (generated after L)



CT-RSA 2013

round 1 round 2 round 3
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* Public randomness generated from a PRG
* (Non quantitative) proof in MiniCrypt



CCS 2010 again ()

* Most natural construction proven under a
(non standard) random oracle assumption
* L cannot query the random oracle



CCS 2010 again (Il)
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* ~ formalization of early re-keying attempts
e e.g., ASIACCS 2008: internal wall within AES

e e.g., early patents in the field from CRI
* (Where it was already clear that init. is challenging!)
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Bounded range
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* Unrealistic: leakages = Gbytes of data



Security against DPA
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* Not sufficient to prove anything



Key has high HILL pseudoentropy
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* Hard to guarantee (indistinguishability-based)



Wrapping up 19

* Finding sound ways to guarantee independence
between multiple PRG rounds and to bound
their leakage is notorioulsy difficult (!)



Wrapping up

* No perfectly satisfying solution so far

e e.g., assuming L polytime is not realistic but
no other restrictions seem to work

* 3 a gap between what proofs require and
what engineers can guarantee (evaluate)



Wrapping up

* Independent of concrete security (!)



* Introduction
* Natural PRGs/PRFs and separation result
* PRGs & theoretical challenges

* Ensuring independence

* Bounding the leakage

* The simulatable leakage attempt
* Protocols & practical challenges

* Authentication & encryption

* Authenticated encryption

* |nitialization issue
 Summary and conclusions



Looking for physical assumptions

 Main issue: leakage function is hard to model
* |t solves Maxwell’s equations
* But circuits give immediate solutions
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Looking for physical assumptions

= Just don’t model it!



Our setting (Crypto 2013)

(a) Give public I/O access to device & setup

L(k,x)




Our setting (Crypto 2013)

(b) Assume L(k,x) can be simulated

 Using the same HW as the target
* But without knowing the secret key k!



More formally 22

(o m. ) has simulatable leakages if 3 St such that
the bit b in the following game is hard to guess

Game g-sim(Adv, €@, Sbb) with k k* uniformly random

q queries response if b=0 response if b=1
Enc(x) @ (), S kx @ (X) | WX SHK x@ (x)
1 query response if b=0 response if b=1
Gen(x) St(z,x,k) St(z,x,k*)




More formally

o With S"(k,x© (x)) = L(k,x) (makes our results
dependent only on the number of calls to S*)



Block cipher leakage simulator

o Let L(k,x)=1[P(kx)||Ll°(k ©(x))
— [P corresponds to the first rounds of <>
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Block cipher leakage simulator

= Instantiate S-(k,x,y) = [P (k,x)| | [¢(k,y)



Why would this work?

Simulatable leakages = DPA + 1/O’s leakages
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Summarizing 25

a. Attacks against g-sim. exploit the same leakages as

DPA if the traces are consistent with the 1/Q’s
- this is exactly what the simulator does

b. Additionally needs concatenation |

- OK if 4 leakage samples without interest: M\U\



Summarizing

c. g-sim. at least easier to guarantee than H™'*-



Summarizing

d. Engineering challenges

(constructive) Design alternative S-instances
(constructive) Given S- design € with g-sim. leakages
(destructive) Given S-and €@, break the g-sim. game

First instances falsified by Galea et al. (cfr. end of talk if time allows)



Most natural construction
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e Goal: remain secure after = 10° runs
e While relying on g-sim. for g=2

e Proving it was surprisingly difficult so far
e (seeslides 9 to 19 of this talk)



Proof idea #1: replacing lemma

Original view
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Proof idea #1: replacing lemma

a. Exploit the 2-sim. leakages assumption




Proof idea #1: replacing lemma

b. Exploit the BC = PRF assumption
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Proof idea #2: extend (hybrid argument) 28

Original view
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Proof idea #2: extend (hybrid argument) 28

a. Completely random view (/=4 callsto S")
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Proof idea #2: extend (hybrid argument) 28

b. Real view with random y. (/=4 callsto S")
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Proof idea #2: extend (hybrid argument) 28

b. Real view with random y. (/=4 callsto S")
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Theorem: yi= Un given yu,...,yi1,L(ko),L(k-2) if BC IS
a PRF and has 2-simulatable leakages

(with security degradation proportional to 2|)
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Pragmatic view

* A call to a stateless primitive is always needed
* For initialization / randomization
* For authentication and encryption



Pragmatic view

 But we can try to encrypt large messages with
a single call to this (more expensive) primitive



Pragmatic view

* And to use leakage-resilience otherwise
* i.e., use stateful primitives whenever possible
* And assume one call to a leak-free PRF



Example I: authentication

* Green: public value, orange: ephemeral secret,
red: long-term secret (protected with leak-free F*)



Example I: authentication

* T unforgeable even with leakage (during enc.)
e Security of 1-block = security of /-blocks
* & high concrete security levels expected

* Because it is an unpredictability game



Example Il: encryption

initialization

), >

BN

m1 \U C1 m: \U C:

* Similar reduction but lower concrete security
* Because it is an indistinguishability game



Encryption: definition issue

* Conceptual problem: distinguishing is always
easy if L is given in the challenge phase



Encryption: definition issue

* Theoretical approach: exclude L in the challenge
phase (which is not justified in practice)



Encryption: definition issue

* Our (pragmatic) approach: admit semantic
security is impossible. Leakage will always allow
distinguishing plaintexts/ciphertexts!



Encryption: definition issue

* CPA security reduction: security of R rounds
reduces to security of 1 round (independent of

what we can actualy achieve for 1 round)
* See our CCS 2015 paper for the details
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Composing LR-MAC & LR-Enc
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Composing LR-MAC & LR-Enc

v ms m
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 OK without misuse, forgery attacks with misuse:

JUu3-H1

* Fix IV and T, get k,' via DPA, pick m’, for i =
1:1 — 1 compute k; = Fy,__,(m;) and finaIIy
adjust the last message block m; = kz- (T)



An improved solution

r||ma||m:||ms

e Digest (i.e., hash), Tag and Encrypt (DTE)
* Prevents the previous forgery attack
* Encrypts the randomness (for CPA security)



An improved solution

r||ma||m:||ms

e Digest (i.e., hash), Tag and Encrypt (DTE)
e Still not fully misuse-resistant with leakage
* Probably impossible in the symmetric setting



An improved solution

r||ma||m:||ms

e Digest (i.e., hash), Tag and Encrypt (DTE)
* Ciphertext Integrity with Misuse & Leakage
* Best achievable in the symmetric setting?
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How to instantiate F*?

* Masking (= bitslice ciphers)

Vincent Grosso, Gaétan Leurent, Frangois-Xavier Standaert, Kerem Varici: LS-Designs: Bitslice
Encryption for Efficient Masked Software Implementations. FSE 2014: 18-37. Gilles Barthe, Francois
Dupressoir, Sebastian Faust, Benjamin Gregoire, Frangois-Xavier Standaert, Pierre-Yves Strub, Parallel
Implementations of Masking Schemes and the Bounded Moment Leakage Model, IACR e-Print 2016/912



How to instantiate F*?

* PRFs with non-standard assumptions

Marcel Medwed, Frangois-Xavier Standaert, Antoine Joux: Towards Super-Exponential Side-Channel
Security with Efficient Leakage-Resilient PRFs. CHES 2012: 193-212. Marcel Medwed, Frangois-Xavier
Standaert, Ventzi Nikov, Martin Feldhofer, Unknown-Input Attacks in the Parallel Setting: Improving the
Security and Performances of the CHES 2012 Leakage-Resilient PRF, ASIACRYPT 2016: 602-623



How to instantiate F*?

 Key homomorphism & fresh re-keying

Christoph Dobraunig, Francois Koeune, Stefan Mangard, Florian Mendel, Frangois-Xavier Standaert:
Towards Fresh and Hybrid Re-Keying Schemes with Beyond Birthday Security. CARDIS 2015: 225-241



A recent proposal (Crypto 2016)

fresh re-keying

msk
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A recent proposal (Crypto 2016)

msk

} DPA resistance (masking)

} 7777

X —» (T)BCSk X)) [—> vy } SPA resistance (shuffling)

fresh re-keying

sjusawadlinbai abeyes|

* Cryptographically strong re-keying function
* sk =< R,msk >= )(< R, msk; >)



A recent proposal (Crypto 2016)

msk

A

} DPA resistance (masking)

7777

fresh re-keying

X —» (T)Bcsk(x) ——» y } SPA resistance (shuffling)

* Security based on hard lattice problems
* Simple & efficient: all computations in Z,m

sjusawadlinbai abeyes|
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Conclusions

* Concretely, leakage-resilience is effective and
efficient for stateful primitives such as PRGs



Conclusions

* Protection of stateless primitives such as PRFs
and PRPs is much more challenging



Conclusions

* Pragmatic solution: minimize the number of
(leak-free) stateless primitives in leakage-
resilient encryption and authentication



Open problems

* Sound (empirically falsifiable) assumptions
* e.g. new instances of leakage simulators



Open problems

* Can we better formalize CPA security with L?



Open problems

* Leakage-resilient decryption & tag verification
* Excluded from the analysis so far
* Mostly because of IV control by the Adv.



And more generally

* Tools, formal methods, automation, ...



And more generally

* Design against physical defaults
* Independence issues (glitches, transitions, ...)



And more generally

 Advanced masking schemes
e e.g., inner product based (beyond probing security)



And more generally

e Security without obscurity
* Needed for high security design/evaluation



Security evaluation tools

standard practice

attack-based evaluations
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Security evaluation tools

standard practice




Security evaluation tools

standard practice

transparency

S
helps evaluations
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THANKS

http://perso.uclouvain.be/fstandae/
http://perso.uclouvain.be/fstandae/PUBLIS/184.pdf
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Additional slides

(leakage simulators & the Bristol distinguisher)




Background

« Split & Concatenate Simulator (CRYPTO 2013)
L(x, k,y) ~ L(x, k, y*)||L(x* k,y)

AR RARR AR RN RN



Background

 Longo Galea et al (ASIACRYPT 2014): 3 correlation
between samples within real traces (e.g. p > 0.5)
... that are significantly reduced in simulated ones
= Allows distinguishing!



Background

* Proposed solution: very noisy implementations, but it
scales badly: noise arbitrarily reduced with averaging



Background

Can we do better?



Origin of the intra-trace correlation

- Algorithmic? Unlikely: p(x, Sbox(x)) « 0.5



Origin of the intra-trace correlation

 Physical then = let’s use a simple physical model



Origin of the intra-trace correlation

 Physical then = let’s use a simple physical model

L(x,k,y) =6(x,k,y) + N

\ )
|

signal noise




Origin of the intra-trace correlation

= Does the correlation come from signal or noise?



Origin of the intra-trace correlation

* In particular for large parallel implementations
(since we know 8-bit AES implementations can be
broken in one trace anyway — see SASCA paper)



Repeating experiments with a 65nm ASIC

* Intra-trace correlation (real traces, sample 500)
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Repeating experiments with a 65nm ASIC

* Intra-trace correlation (real traces, sample 500)
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Repeating experiments with a 65nm ASIC

cross-correlation

cross-correlation

Intra-trace correlation (real traces, sample 500)
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Repeating experiments with a 65nm ASIC
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A first improvement

e Sliding simulator

Lix,k,y) - I + L(x* k,y) 4



A first improvement

e Sliding simulator
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A first improvement

e Sliding simulator

L(x, E,y*)- A + L(x*,E,y) . A

« Real traces
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A first Improvement

e Sliding simulator

Lix,k,y) - I + L(x* k,y) 4

« Real traces
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Another idea: separate signal and noise

« Sliding signal + noise simulator
5O, k,y) I + 6(x"k,y) M +N



Another idea: separate signal and noise

« Sliding signal + noise simulator
5O, k,y) I + 6(x"k,y) M +N
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Another idea: separate signal and noise

« Sliding signal + noise simulator
5O, k,y) I + 6(x"k,y) M +N

‘—» avg. trace <—| l
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Another idea: separate signal and noise

« Sliding signal + noise simulator
5O, k,y) I + 6(x"k,y) M +N

‘—» avg. trace <—| l

avg. trace — single trace
 Real traces

cross-correlation

« Simulated traces

cross-correlation




Another idea: separate signal and noise

cross-correlation

cross-correlation

Sliding signal + noise simulator
5O, k,y) I + 6(x"k,y) M +N

‘—» avg. trace <—|

Real traces

l

avg. trace — single trace

Simulated traces




