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Abstract. Profiled DPA is an important and powerful type of side-
channel attacks (SCAs). Thanks to its profiling phase that learns the
leakage features from a controlled device, profiled DPA outperforms
many other types of SCA and are widely used in the security evalua-
tion of cryptographic devices. Typical profiling methods (such as linear
regression based ones) suffer from the overfitting issue which is often ne-
glected in previous works, i.e., the model characterizes details that are
specific to the dataset used to build it (and not the distribution we want
to capture). In this paper, we propose a novel profiling method based
on ridge regression and investigate its generalization ability (to mitigate
the overfitting issue) theoretically and by experiments. Further, based on
cross-validation, we present a parameter optimization method that finds
out the most suitable parameter for our ridge-based profiling. Finally, the
simulation-based and practical experiments show that ridge-based pro-
filing not only outperforms ‘classical’ and linear regression-based ones
(especially for nonlinear leakage functions), but also is a good candidate
for the robust profiling.

Keywords: Side-channel attack, Profiled DPA, Linear regression, Ridge regres-
sion, Cross-validation

1 Introduction

Side-channel attacks (SCAs) exploit the physical information leaked from the
implementation of a cryptographic algorithm, and they are usually more pow-
erful than brute-force attacks or classical cryptanalytic techniques that target
at the mathematical weakness of the underlying algorithm. Differential power
analysis (DPA), proposed by Kocher et al. [15], is a form of side-channel attack
that efficiently recovers the secret key from multiple (typically noisy) power con-
sumption measurements (on different plaintexts). Profiled DPA (e.g., [3, 20, 24])
adds a profiling phase (prior to the online exploitation phase) to the original



DPA and can be considered as a powerful class of power analysis. The profiling
phase learns the leakage function from the power consumption of a training de-
vice, and it can significantly enhance the performance of the subsequent online
exploitation phase, namely, the key recovery attack mounted against a similar
target device. We will focus on the profiling phase in this paper.

Chari et al. [3] proposed the first profiled DPA called template attacks, whose
profiling phase is based on multivariate Gaussian templates. We refer to the pro-
filing phase of templates attacks as classical profiling (following the terminology
in [24]). Later Schindler et al. [20] proposed a very promising profiled DPA that
uses linear regression (LR) as its profiling method (referred to as LR-based profil-
ing hereafter). Compared with classical profiling, LR-based profiling builds up a
model more efficiently with less number of measurements and it allows a tradeoff
between the profiling and online exploitation phases: more measurements used
in the profiling phase, less measurements needed in the exploitation phase [8, 22,
24]. However, the LR-based profiling suffers from the overfitting issue in prac-
tice. That is, noisy measurements in the profiling phase can result in a model
that describes mostly the noise instead of the actual leakage function. Thus, the
LR-based profiling may need more measurements than necessary. We mention
other profiling methods those based on agglomerative hierarchical clustering [25],
K-means [25] and different machine learning methods such as SVM [14, 16, 12],
random forests [16, 17], neural networks [19, 18], which enjoy additional features
or are more useful for specific data structures or have an overhead for the time
complexity. We are not extending this line of research any further.

In this paper, we propose a new profiling method (named ridge-based pro-
filing) based on ridge regression. By imposing a constraint on the coefficients
of linear regression, ridge regression is a good alternative to linear regression
with better performance on noisy data [11]. As the constraint (described by a
parameter) affects the performance of ridge-based profiling, we apply the K-fold
cross-validation to find out the most suitable constraint (i.e., the optimized pa-
rameter) for ridge-based profiling. We also conduct experiments of the above
parameter optimization in settings of various noise levels. Our results suggest
that the optimized parameter is related to the noise level of measurements (i.e.,
the optimized parameter increases with respect to the noise level).

We analyze the ridge-based profiling both in theory and by experiments. Our
theoretical investigation aims to answer the question:

Why, how and when is ridge-based profiling better?

where ‘why’ aims to justify the improvement of ridge-based profiling over LR-
based one, ‘how’ and ‘when’ analyze to which extent and under what condition an
improvement can be achieved. Then for a comprehensive comparison, we evaluate
the performances of classical, LR-based and ridge-based profiling in simulation-
based experiments on various settings, which shows the improvement of ridge-
based profiling and confirm the theoretical analysis, At last, we conduct the
practical experiments on the FPGA implementation. The results are consistent
to the ones of simulation-based experiments, and furthermore, they show that



the ridge-based profiling can tolerate (some) differences between profiling and
exploitation traces, resulting in a type of robust profiling [25]. Therefore, on one
hand, our results can be considered as an improvement of [3], [20] and [24]. And
on the other hand, we extend the related works which applied the stepwise and
ridge regressions to the non-profiled setting [23, 26].

2 Background

Following the ‘divide-and-conquer’ strategy, a profiled DPA attack breaks down
a secret key into a number of subkeys of small length and recovers them in-
dependently. Let X be a vector of some (partial) plaintext in consideration,
i.e., X = (Xi)i∈{1,...,n}, where n is the number of measurements and Xi cor-
responds to the (partial) plaintext of i-th measurement. Let k be a hypothesis
subkey, let Fk : Fm2 → Fm2 be a target function, where m is the bit length
of Xi, and thus the intermediate value Zi,k = Fk(Xi) is called a target and
Zk = Fk(X) = (Zi,k)i∈{1,...,N} is the target vector obtained by applying Fk to
X component-wise.

The leakage of a target can be scattered over several points in a measure-
ment’s power consumption. Let Lj : Fm2 → R be the leakage function at jth
point and let Ti be a vector of power consumption points whose target is Zi,k∗ .

We have T ji = Lj ◦ Zi,k∗ + εj and T j = L ◦ Zk∗ + εj , where ◦ denotes function
composition, k∗ is the correct subkey key and εj denotes probabilistic noise.
A trace ti is the combination of power consumption Ti and plaintext Xi, i.e.,
ti = (Ti, Xi). Let the function Mj : Fm2 → R be the model that approximates the
determinate part of leakage function Lj , namely, T ji ≈ Mj ◦Fk∗(Xi) + εj .

5 The
model is obtained by learning from the profiled device in the profiling phase.

Profiled DPA can be divided into two phases: profiling phase and online
exploitation phase. In the rest of this section, we recall these two phases. Our
presentation is largely based on the (excellent) introduction provided in [24].

2.1 Profiling phase

The aim of the profiling phase is to ‘learn’ the leakage functions Lj and the noises
εj for all the points. We briefly introduce classical and LR-based profilings below.

Classical profiling. Classical profiling is the profiling phase of template
attacks [3] and it views the leakage of each intermediate value as a a vector
of random values following the multivariate Gaussian distribution, i.e., Tz ∼
N(µz, Σz), where Tz is the power consumption (points) given the associated
intermediate target being z. The adversary ‘learns’ the physical leakages by
finding the p × 1 sample mean µ̂z and the p × p sample covariance Σ̂z for all
the target z on the profiling device. Finally, the intermediate value-conditioned
leakages is N(µ̂z, Σ̂z) for the intermediate value z. As suggested in [4], we assume
the noise distribution of different intermediate targets to be equal and use the
same covariance estimates (across all intermediate targets).

5 We often omit the superscript ‘j’ in Lj , Mj and εj for succinctness.



Linear regression-based profiling. LR-based profiling [20] uses the s-
tochastic model of the following form: M(Zi) = α0 +

∑
u∈Fm

2
αuZ

u
i + ε, where

coefficients αu ∈ R, Zi = Zi,k∗ , zu denotes monomial
∏m
j=1 z

uj

j , and zj (resp.,

uj) refers to the jth bit of z (resp., u). The degree of the model is the highest
degree of the non-zero terms in polynomial M(Zi). Define the set Ud = {u|u ∈
Fm2 ,HW(u) ≤ d} (where HW : Fm2 → Z is the Hamming weight function), then
we denote αd = (αu)u∈Ud

as the vector of coefficients with degree d, which is es-
timated from Ud = (Zui )i∈{1,2,...,N},u∈Ud

and T using ordinary least squares, i.e.,
αd = (UT

d Ud)
−1UT

d T , where (Zui )i∈{1,2,...,N},u∈U is a matrix with (i,u) being
row and column indices respectively, and UT

d is the transposition of Ud.

In the LR-based profiling phase, the adversary chooses the degree of model
and calculates the coefficients α of the profiling device. Then, the p× p sample
covariance Σ̂ is computed assuming the noise distributions are identical for var-
ious values of intermediate. Finally, the intermediate value-conditioned leakages
is N(α̂0 +

∑
u∈Ud

α̂uz
u
i , Σ̂) for the intermediate value z.

2.2 Online exploitation phase

Bayesian key recovery. If the covariance matrix is symmetric and positive
definite, a p-dimensional multivariate Gaussian distribution N(µ,Σ) has the fol-
lowing density function:

f(x) =
1

(2π)d/2|Σ|1/2
exp (−1

2
(x− µ)TΣ−1(x− µ)) . (1)

Therefore, we can describe Bayesian key recovery as follows:

1. Acquire n traces (Ti, Xi), each of p points, for 1 ≤ i ≤ n from the target
device.

2. Make a subkey guess k and compute the corresponding intermediate target
Zi,k = Fk(Xi) for 1 ≤ i ≤ n.

3. Calculate the log likelihood:
∏n
i=1 log(fi,k(Ti)), where fi,k(·) is the density

function associated with the intermediate target Zi,k.

4. The log likelihood should be maximum upon correct key guess (which can
be decided after repeating the above for all possible subkey guesses).

Correlation DPA. Correlation DPA employs a simple (univariate) online
exploitation strategy, and it finds the subkey guess under which the correlation
between the determinate part of the template (e.g., Mclassical(z) = µ̂z in ‘clas-
sical’ profiling and MLR(z) = α̂0 +

∑
u∈Fm

2
α̂uz

u
i in LR-based profiling) and the

(univariate) leakage is maximized, namely,

kguess = argmax
k

ρ(M(Zi,k), Ti) (2)

where ρ is the Pearson’s coefficient.



3 Ridge-based profiling

In this section, we introduce our ridge-based profiling and give a formal analysis.
We consider only the deterministic part of the model, and meanwhile the sample
variance Σ̂ is considered the same way as LR-based profiling.

3.1 Construction

Our new profiling (for each power consumption point) can be see as a general-
ization of LR-based profiling by explicitly imposing penalty on the coefficients’
size, formally,

α̂ridged
def
= argmin

α

N∑
i=1

(
Ti −Mridge

d (Zi)

)2

,

subject to
∑
u∈Ud

α2
u ≤ s.

(3)

An equivalent formulation to above is (see [11] for detailed derivation):

α̂ridged = argmin
α

( N∑
i=1

(Ti −Mridge
d (Zi))

2
+ λ

∑
u∈Ud

α2
u

)
, (4)

whose optimal solution is given by:

α̂ridged = (UT
d Ud + λId)

−1UT
d T, (5)

where Ud, Ud and Zi are defined in Section 2.1, matrix Id is the |Ud| × |Ud|
identity matrix and |Ud| denotes the cardinality of Ud.

Parameter optimization. As illustrated above, there is an undetermined
parameter (i.e., λ), the choice of which affects the performance of the profil-
ing. For each power consumption point, we propose a method to choose the
optimized parameter based on the K-fold6 cross-validation technique from s-
tatistical learning. We mention that cross-validation was already used in the
field of side-channel attack (for different purposes), such as evaluation of side-
channel security [6] and unprofiled DPA [23]. Algorithm 1 finds the optimized
parameter using cross-validation, where we omit the subscript d (the degree) for
succinctness.

We sketch the algorithm below. We first choose a set of candidate parameters
(up to some accuracy), and then split profiling traces into K parts C{1...K} of
roughly equal size. For each part Ci, we compute the coefficients αλ,i using the
remaining K − 1 parts from the trace set, and calculate the goodness-of-fit Rλ,i
using the traces in Ci, which is a measurement of similarity between estimated

6 We shall not confuse K with k in online exploitation phase, where K is a parameter
as in the “K-fold cross-validation” and k is a subkey hypothesis.



power consumption and the actual power consumption T .7 We then get the
average goodness-of-fit Rλ = (

∑K
i=1Rλ,i)/K for the each candidate parameter

λ in consideration. Finally, we return the parameter with the highest averaged
goodness-of-fit.

Algorithm 1 finding the optimized parameter

Require: profiling traces ti = {Ti, xi} where i ∈ {1, ..., N}; the number of parts K;
the true key k∗; the set of candidate parameters Λ;

Ensure: λ̂ as the optimized parameter for the subkey;
1: for i = 1; i <= K; i++ do
2: Ci = {tK∗(i−1)+1, ..., tK∗i}
3: end for
4: for all λ such that λ ∈ Λ do
5: for i = 1; i <= K; i++ do
6: Compute the αλ,i using the traces in Cj , where j ∈ {1. . .K} \ {i}
7: Calculate the goodness-of-fit Rλ,i from Ci
8: end for
9: Rλ = (

∑K
i=1Rλ,i)/K

10: end for
11: λ̂ = argmaxλRλ

3.2 Theoretical analysis

In this sub-section, we investigate the improvement of ridge-based profiling (over
LR-based one) theoretically. We first answer the ‘why’ and ‘how’ questions by
analyze the sampling variance of model’s coefficients. Then we answer the ‘when’
question by studying the way that the coefficients shrink in the ridge-based
profiling.

Why and how is ridge-based profiling better? For simplicity we consider
the univariate leakage, where the leakage of the i-th trace is Ti = L ◦ Zi,k∗ + ε.
Since the coefficients learned from the LR-based (resp., ridge-based) profiling
determine the model (by definition), varying the coefficients will affect stability
of the performance. The variance-covariance matrix of the coefficients learned
from the LR-based (resp., ridge-based) profiling are given by [13, Equation 4.8]:

Var(αlrd ) = (UT
d Ud)

−1σ2 (6)

Var(αridged ) = WUT
d UdWσ2 (7)

7 We use the coefficient of determination to measure the goodness-of-fit in this paper,
i.e., R =

∑Nt
i=1(T̂i − Ti)

2/
∑Nt
i=1(Ti −

∑Nt
i=1 Ti)

2, where T̂ is the estimated power
consumption and Nt is the trace number in Ci.



where W = (UT
d Ud+λId)

−1 and σ2 is the variance of noise ε, which is identical
for both LR-based and ridge-based profilings.

Without loss of generality, we fix σ2 = 1 and the target values to be bytes,
then compare Var(αlrd ) to Var(αridged ). Figure 1 shows that the variances goes up
with the increase of d and the decrease of λ. For the same degree and parameter,
the variance learned from ridge-based profiling are much lower than the ones from
LR-based profiling, thus the former has a more stable performance and is less
prone to noise. Thus, to avoid overfitting one may use a large λ, but then it may
result in a biased model, i.e., the difference between the leakage function and the
model becomes more significant, which also decreases performance. Therefore,
for best performance we need to choose a judicious value for λ by reaching a
tradeoff between bias and coefficients’ variance. To this end, we propose to use
the cross-validation method in parameter optimization (see Section 3.1).
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Fig. 1. The variances of the coefficients for different degrees (of the model) and λ. The
upper-left, upper-right, lower-left, and lower-right figures correspond to the cases for
d = 1, d = 2, d = 4, and d = 8 respectively.



How the coefficients shrink in the ridge-based profiling? As described
before, the ridge-based profiling enforces a general constraint

∑
u∈U α

2
u < s on

the coefficients of Mk, but it is not clear how each individual coefficient αu
shrinks (e.g., which coefficient shrinks more than the others). In [23], an inter-
esting connection between the degree of a term Zui,k in Mk (i.e., the Hamming
Weight of u) and the amount of shrinkage of its coefficient αu is shown. See the
following for a brief introduction and a conclusion of the analysis, and we refer
to [23] for more details.

The principal components of Ud are a set of linearly independent vectors
obtained by applying an orthogonal transformation to Ud, i.e., Pd = UdVd,
where the columns of matrix Vd are called directions of the (respective) principal
components. An interesting property is that among the columns of Vd, the first
one, denoted V 1

d (the direction of P 1
d ), has the maximal correlation to coefficient

vector αd. Figure 2(a) and Figure 2(b) depict the direction of the first principal
component V 1

8 and the degrees of terms in U8 respectively, and they represent
a high similarity (albeit in a converse manner). Quantitatively, the Pearson’s
coefficient between V 1

8 and the corresponding vector of degrees is −0.9704, which
is a nearly perfect negative correlation. Therefore, we establish the connection
that αu is conversely proportional to the Hamming weight of u. Above analysis
is based on the d = 8 setting, for the other degrees (1 to 7), similar results can
be obtained. To summarize, the more Hamming weight that u has, the less αu
contributes to the model. Therefore, ridge-based distinguisher is consistent with
the leakage functions that consist of more low degree terms.

Another observation is that the improvement of ridge-based profiling (over
LR-based one) is significant only for non-linear models (used for profiling). We
can see that for the model of degree 1 the u(s) of all coefficients have same
Hamming weight, and thus every coefficient contributes equally to the model.
That is, the coefficients shrink equally in this setting, which leads to comparable
performance for both ridge-based and LR-based profilings. However, we stress
that the degree of the model (for profiling) is not the same as (and typically
no less than) that of the leakage function, and ridge-based profiling can just
still enjoy performance improvement for linear leakage functions by setting the
degree of model to be greater than 1. We refer to Section 4.1, where we will
show that the ridge-based profiling outperforms the LR-based one for leakage
function of degree 1 and model of degree 4.

4 Experimental Results

4.1 Simulation-based experiments

In this section, we evaluate the ridge-based, LR-based and classical profiling for
univariate leakage functions with different degrees and randomized coefficients
in the setting of simulated traces. We target at AES-128’s first S-box of the first
round with an 8-bit subkey (recall that AES-128’s first round key is the same
as its encryption key). We do the following trace pre-processing to facilitate the
profiling: we average the traces based on their the input (an 8-bit plaintext) and
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Fig. 2. The similarity between the direction of the first principle component V 1
8 and

the degrees of terms in U8

use the resulting 256 mean power traces to mount the profiling. This reduces
noise and the number of traces needed for profiling (as otherwise the running
time goes unnecessarily high with a large number of ‘raw’ traces).

Finding the optimized parameter. At the beginning of ridge-based profiling,
the adversary should first find the optimized parameter (i.e., the λ). We evaluate
parameter optimization algorithm from Section 3.1. We consider the settings
whose the degrees (of both leakage function and model) are fixed to 4 and under
different signal-noise ratios (SNRs) (0.5, 0.1, 1). Let the set of parameter choices
be Λ = {0.1, 1, 10, 50, 200, 800, 2000, 8000}, for which we conduct the parameter
optimization algorithm 100 times (each time with a different random leakage
function). For a fair comparison, we normalized8 the averaged goodness-of-fits
(of each experiment) and plot them in Figure 3. We also highlight the mean
of the averaged goodness-of-fits with red bold line. This confirms the intuition
that the optimized parameter (which corresponds to each setting’s minimum
averaged goodness-of-fit) decreases with SNR.

A comparison of different profilings in simulation-based experiments
We compare different profilings (i.e., classical, LR-based and ridge-based pro-
filing) using two metrics, namely, theoretical information and guessing entropy.
The former computes the Perceived Information (PI) [6] between the secret vari-
able and its leakage, and the latter combines the correlation DPA with the model
built from one of three different profilings above and mounts the attack 100 times
(each time with a different random leakage function) to compute the averaged
ranking of the real key.

8 We apply the averaged goodness-of-fit for normalization, i.e., norm(Rλ) = (Rλ −
mean(R)/(max(R) − min(R))), where mean(R) is the average of {Rλ}λ∈Λ and
norm(·) is the normalization function.
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Fig. 3. Averaged goodness-of-fits and their mean values, with SNR = 0.1 (left-hand),
0.5 (middle), 1 (right-hand).

Figure 4 compares the Perceived Information and guessing entropies (as func-
tions of the number of profiling traces) for different degrees of leakage function.
The left-hand three sub-figures show the Perceived Information and the right-
hand ones present the guessing entropies. The two sub-figures of the same row
correspond to the Perceived Information and guessing entropy for leakage func-
tions of the same degree respectively. Intuitively, the PI is an information the-
oretic metric that relates to the success rate of a profiled adversary using the
estimated model obtained thanks to LR-based or ridge-based regression [5]. So
it is the most revealing metric for comparing profiling phases [22]. In particular,
the left parts of Figure 4 exhibit both the informativeness of the model after
sufficient profiling (i.e. the final Y axis values) and the efficiency of the profiling
(i.e. how fast we converge towards this value). The guessing entropy metric is
used as a confirmation that this intuition is matched and could be computed for
any number of traces in the exploitation phase. In the profiling phase, we choose
the same degree for the model and the leakage function. For all scenarios, the
two metrics are consistent: the PI increases and the guessing entropies approach-
es to 1 with the increase of the number of traces. As clear from the PI figures,
the ridge-based profiling performs better than the other two ones in all settings
except for the d = 1 setting. More precisely, it generally has a better convergence
speed, without any significant reduction of the final informativeness. Meanwhile
the performance of LR-based profiling lies in between classical and ridge-based
ones and it is largely affected by the degree of the leakage function. These ob-
servations confirm the theoretical analysis in Section 3.2. The guessing entropies
computed in function of the number of profiling traces (for a fixed number of at-
tack traces) confirm these trends. For completeness, we also provide an example
of the guessing entropies computed in function of the number of attack traces
(for a fixed number of profiling traces) in Appendix A.

Note that the typical scenario we are interested in is when the adversary has
no knowledge about the actual degree of the leakage function for his profiling.
In this case, our results show that he may use a conservative estimate about
the degree of the model in the profiling phase without loosing efficiency (i.e.
speed of convergence). To reflect this case, we also conduct experiments where
the estimated degree of the model is higher that its actual value. That is, we
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Fig. 4. A comparison of Perceived Information and guessing entropies (in functions of
the number of profiling traces) for different degrees of leakage function, where the rows
correspond to degrees 1, 4 and 8 respectively.

simulate the traces with leakage functions of degrees 1 and 2 and then conduct
the above experiments assuming a model of degree 4 for profiling. As shown in
Figure 5, the performance of ridge-based profiling is again significantly better.
Therefore, our results show that an adversary (or an evaluation laboratory) can



simply use a ‘conservatively’ estimated degree in ridge-based profiling, instead
of running an enumeration on its possible values.

Fig. 5. The Perceived Information and guessing entropies with ‘conservatively’ degree
of model for different numbers of exploitation traces, where the rows correspond to
degrees of leakage function 1 and 2 respectively, and the degree of both models is 4.

4.2 Experiments on real FPGA implementation

We carry out experiments on the SAKURA-X which running the AES on Xilinx
FPGA devices Kintex-7 (XC7K70T/160T/325T). We amplified the signal using
a (customized) LANGER PA 303N amplifier, providing 30dB of gain. Then
we measure the (absolute value of) power consumptions of the first round S-
box output, using a LeCroy waverunner 610Zi digital oscilloscope at a sampling
rate of 1 GHz. Figure 6 shows the averaged trace9 of the measurements of first

9 We shall not confuse the ‘averaged trace’ with the ‘256 mean power traces’, where
the former one is the mean of all the power traces which is only for the presentation



round, we marked the leakage regions of the intermediate variable (i.e., the S-box
output) in the figure and target them in our following attacks. We can see that
the intermediate variable leaks in both region A and B similarly. Additionally,
for each region, we apply the principal component analysis (PCA) to compact
measurements [1, 2, 21], then only target the point of first principal component.
And before the profiling, we perform the pre-processing, whose results are 256
mean traces of single point. In the following, to better illustrate the improvement
of our new proposed method, we conduct two experiments for two different
settings, in which we always profile on points of region A but attack (do the
exploitation) on points of different regions.

Leaking 
Points

A B

first principal 
component after PCA

256  (single point) 
mean traces after 

pre-processing 

1st & 2nd settings

profiling 

first principal 
component after PCA

2nd setting

exploitation

1st setting

exploitation

Fig. 6. The average trace of the measurements and the leaking points.

First, we assume a common setting (the 1st setting in Figure 6) where the
profiling and exploitation points are perfect aligned, thus we use the same region
(i.e., region A) for both profiling and exploitation. Figure 7(a) shows the guessing
entropies (as functions of the number of profiling traces) for ridge-based with
different degrees power model in this setting. The parameter (i.e., λ = 8000)
is chosen by means of the cross-validation as simulation-based experiments. We
present the guessing entropies of the LR-based profiling with power model of
degree 1 as the base line, since (in our attack scenario) it outperforms the LR-
based profiling with higher degree as well as the classical one. We can see that
the degree of the leakage function of our implementation is around 2. The result
shows that (under this implementation) the ridge-based profiling with power
model of degree 2 is the best one and perform better than the LR-based one

of the measurements. And the latter one, as the result of pre-processing, is the means
of the traces of same corresponding plaintext.



(with power model of degree 1), which is consistent to the results of simulation-
based experiments and theoretical analysis.

Further, we conduct another experiments to show that our new method can
be used as a type of robust profiling [25], which can tolerate (some) differences
between profiling and exploitation traces in a more realistic setting. As shown
in figure 6 (the 2nd setting), we profile on the points in A and attack (do the
exploitation) on the points in B. We aim to show how the miss-alignment of
the points affects the ridge-based profiling. Figure 7(b) presents the guessing
entropies (as functions of the number of profiling traces) for ridge-based with
different degrees power model. We choose a larger parameter λ = 500000 by
using the parameter optimization process in section 3.1. We also add the LR-
based profiling (with power model of degree 1) as the base line. The results show
that the performance of ridge-based profiling is better than the LR-based one,
which means that the performance of the new profiling method is better robust
than LR-based one to the distortions between profiling and exploitation points.

(a) standard scenario (b) scenario of robust profiling

Fig. 7. A comparison of guessing entropy (in functions of the number of profiling traces)
for FPGA implementation.

5 Conclusion

In this paper, we propose a new profiled differential power analysis based on
ridge regression. Our theoretical analysis and experiments double confirm that
the proposed profiling method has better performance than LR-based one by
using a more stable (to avoid overfitting) and has a good potential to be a
type of robust profiling. In view of the importance of profiled based side-channel
analysis in security evaluations, these results show ridge-based profiling can allow
laboratories to save significant factors in the number of traces they need to build
a satisfying leakage model.
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A Guessing entropies of fixing the profiling trace number

Figure 8 shows the guessing entropies (as functions of the number of exploitation
traces) for different degrees of leakage function. The results are consistent to
Section 4.1.
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Fig. 8. The guessing entropies with the degrees of 1, 4 and 8 for different numbers of
exploitation traces.


