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Abstract. We revisit the side-channel attacks with Brain-Computer In-
terfaces (BCIs) first put forward by Martinovic et al. at the USENIX
2012 Security Symposium. For this purpose, we propose a comprehensive
investigation of concrete adversaries trying to extract a PIN code from
electroencephalogram signals. Overall, our results confirm the possibility
of partial PIN recovery with high probability of success in a more quan-
tified manner (i.e., entropy reductions), and put forward the challenges
of full PIN recovery. They also highlight that the attack complexities
can significantly vary in function of the adversarial capabilities (e.g., su-
pervised / profiled vs. unsupervised / non-profiled), hence leading to an
interesting tradeoff between their efficiency and practical relevance. We
then show that similar attack techniques can be used to threat the pri-
vacy of BCI users. We finally use our experiments to discuss the impact
of such attacks for the security and privacy of BCI applications at large,
and the important emerging societal challenges they raise.

1 Introduction

State-of-the-art. The increasing deployment of Brain Computer Interfaces
(BCIs) allowing to control devices based on cerebral activity has been a per-
manent trend over the last decade. While originally specialized to the medical
domain (e.g., [13,22]), such interfaces can now be found in a variety of applica-
tions. Notorious examples include drowsiness estimation for safety driving [19]
and gaming [9]. Quite naturally, these new capabilities come with new security
and privacy issues, since the signals BCIs exploit can generally be used to extract
various types of sensitive information [7,15]. For example, at the USENIX 2012
Security Symposium, Martinovic et al. showed empirical evidence that electroen-
cephalogram (EEG) signals can be exploited in simple, yet effective attacks to
(partially) extract private information such as credit card numbers, PIN codes,
dates of birth and locations of residence from users [21]. These impressive results
leveraged a broad literature in neuroscience, which established the possibility to
extract such private information (e.g., see [14] for lie detection and [16] for neu-
ral markers of religious convictions). Or less invasively, they can be connected
to linguistic research on the reactions of the brain to semantic associations and
incongruities (e.g., [17,18,6]). All these threats gain concrete relevance with the
availability of EEG-based gaming devices to the general public [1,2].



Motivation & goals. Based on this state-of-the-art, the next step is to push the
evaluation of the side-channel threat model in the context of BCI-based applica-
tions further. In this respect, the seminal work of Martinovic et al. clearly puts
forward the existence of an exploitable bias for various types of private informa-
tion extraction. But quantifying the impact of this bias in advanced adversarial
contexts was left as an important challenge. Typical questions include:

– Can we exactly extract private information with high success rate by increas-
ing the number of observations in side-channel attacks exploiting BCIs?

– How does the effectiveness of unsupervised (aka non-profiled) side-channel
attacks exploiting BCIs compare to supervised (aka profiled) ones?

– How efficiently can an adversary build a sufficiently accurate model for su-
pervised (aka profiled) side-channel attacks exploiting BCIs?

Interestingly, these are typically questions that have been intensively studied in
the context of side-channel attacks against cryptographic devices (see [20] for
an engineering survey and the proceedings of the CHES conference for regular
advances in the field [3]). In particular, a recurring problem in the analysis of such
implementations is to determine their worst-case security level, in order to bound
the probability of success of any adversary in the most accurate manner [27].
This implies very different challenges than in the standard cryptographic setting,
since the efficiency of such physical attacks highly depends on the adversary’s
understanding and knowledge of his target device. Hence, a variety of tools have
been developed in order to ensure that side-channel security evaluations are
“good enough” (as described next). Our goal in this paper is to investigate the
applicability of such tools in order to answer the previous questions regarding
the efficiency and impact of side-channel attacks against the human brain.

Contributions. For this purpose, we propose an in-depth study of (a variation
of) one of the case studies in [21], namely side-channel PIN code recovery at-
tacks, that share some similarities with key recovery attacks against embedded
devices. In this respect, our contributions are threefold. After a description of
our experimental settings (Section 2), we first describe a methodology allowing
us to analyze the informativeness of EEG signals and their impact on security
with confidence (Section 3). While this methodology indeed borrows tools from
the field of side-channel attacks against cryptographic implementations, it also
deals with new constraints (e.g., the limited amount of observations available for
the evaluations, and the less regular distribution of these observations, for which
a very systematic and principled approach is particularly important). Second,
we provide a comprehensive experimental evaluation of our side-channel attacks
against the human brain using this methodology (Section 4). We combine in-
formation theoretic and security analyzes in the supervised / profiled and unsu-
pervised / non-profiled contexts, provide quantified estimates for the complexity
of the attacks, and pay a particular attention to the stability of and confidence
in our results. We conclude by discussing consequences the consequences of our
work for the security and privacy of BCI-based applications Section 5).
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Admittedly, and as will be discussed in detail next, our results can be seen as
positive or negative. That is, we show in the same time that partial information
about PINs can be extracted with confidence, and that full PIN extractions are
challenging because of the high cardinality of the target and risks of false positive.
So they should mostly be viewed as a warning flag that such partial information
is possible and may become critical when the cardinality of the target decreases
and/or large amounts of data are available to the adversary. 1

2 Experimental setting, threat model and limitations

In our experiments, eight people (next denoted as users) agreed to provide the
4-digit PIN code that they consider the most significant to them, meaning the
one they use the most frequently in their daily life. This PIN code was given
by the users before the experiment started, stored during the experiment, and
deleted afterward for confidentiality reasons. Five other random 4-digit codes
were generated for each user (meaning a total of six 4-digit codes per user).

Each (real or random) PIN was then shown on a computer exactly 150 times
to each user (in a random order), meaning a total of 900 events for which we
recorded the EEG signal in sets of 300, together with a tag T ranging from
1 to 6 (with T = 1 the correct PIN and T = 2 to 6 the incorrect ones). We
used 32 Ag-AgCl electrodes for the EEG signals collection. These were placed
on the scalp using a Waveguard cap from Cephalon, using the international
10-10 system. The Stimulus Onset Asynchrony (SOA) was set to 1,009s (i.e.,
slightly more than one second, to reduce the environmental noise). The time
each PIN was shown was set to 0,5s. When no PIN was displayed on the screen,
a + sign was maintained in order to keep the focus of the user on the center
of the screen. We additionally ensured that two identical 4-digit codes were
always separated by at least two other 4-digit codes. The split of our experiments
in sub-experiments of 300 events was motivated by a maximum duration of 5
minutes, during which we assumed the users to remain focused on the screen.
The signals were amplified and sampled at a 1000Hz rate with a 32-channel ASA-
LAB EEG system from Advanced Neuro Technologies. Eventually, and in order
to identify eye-blinks which potentially perturb the EEG signal, we added two
bipolar surface electrodes on the upper left and lower right sides of the right eye,
and rejected the records for which such an artifact was observed. This slightly
reduced the total number of events stored for each user (precisely, this number
was reduced to 900, 818, 853, 870, 892, 887, 878, 884, for users 1 to 8).

This simplified setting naturally comes with limitations. First and concretely,
the number of possible PIN codes for a typical smart card would of course be
much larger than the 6 ones we investigate (e.g., 10,000 for a 4-digit PIN). In
this respect, we first insist that the primary goal of the following experiments

1 The experiments described next were approved by the local Research Ethics Commit-
tee and performed in compliance with the Code of Ethics of the World Medical As-
sociation (Declaration of Helsinki). All participants gave written informed consent.
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is to investigate the information leakages in EEG signals thoroughly, and this
limited number of PIN codes allowed us to draw conclusions with good statistical
confidence. Yet, we also note that this setting could be extended to a reasonable
threat model. For example, one could target ≈ 1000 different users by repeatedly
showing them ≈ 10 PIN codes among the 10,000 possible ones, and recover one
PIN with good confidence. Second, and since the attacks we carry out essentially
test familiar vs. unfamiliar information, there is also a risk of false positives (e.g.,
an all zero code or a close to correct code). This is in fact something we observed
in our experiments. In this respect, our mitigation plan is to exploit statistical
tools minimizing the number of false negatives, therefore potentially allowing
enumeration among the most likely candidates [28].

3 Methodology

In this section, we describe the methodology we used in order to assess and
better quantify the feasibility of side-channel attacks against the human brain.
Concretely, and contrary to the case of embedded devices where the leakage
distributions are supposed to be stable and the number of observations made by
the adversary can be large, we deal with a very different challenge. Namely, we
need to cope with irregular distributions possibly affected by outliers, and can
only assume a limited number of observations.

As a result, the following sections mainly aim to convince the reader that our
treatment of the EEG signals is not biased by dataset-specific overfitting. For
this purpose, our strategy is twofold. First, we apply the same (pre)processing
methods to the measurements of all the users. This means the same selection of
electrodes, the same dimensionality reduction and Probability Density Function
(PDF) estimation tools (with identical parameters), and the same outliers defi-
nition. Second, we systematically verified that our results were in the same time
consistent with neurophysiological expectations, and stable across a sufficient
range of (pre)processing parameters. As a result, our primary focus is on the
confidence in and stability of the results, more than on their optimality (which
is an interesting scope for further research). In other words, we want to guaran-
tee that EEG signals provide exploitable side-channel information for PIN code
recovery, and to evaluate a sufficient number of observations for which such an
attack can be performed with good success probability.

3.1 Notations

We denote the (multivariate) EEG signals of our experiments with a random
variable O, a sample EEG signal as o, and the set of all the observations available
for evaluation as O. These observations depend on (at least) three parameters:
the user under investigation, next denoted with a random variable U such that
u ∈ {1, 2, . . . , 8}; the nature of the 4-digit code observed (i.e., whether it is
correct or a random PIN), next denoted with a random variable P such that
p ∈ {0, 1}; and a noise random variable N . Each observation is initially made of
32 vectors of 1,000 samples, corresponding to 32 electrodes and ≈ 1s per event.
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3.2 Supervised (aka profiled) evaluation

In order to best evaluate the actual informativeness of the EEG signals regard-
ing the PIN displayed in our experiments, and inspired by the worst-case side-
channel security evaluations of cryptographic devices, our work first investigates
so-called profiled attacks, which correspond to a supervised machine learning
context. For this purpose, a part of the observations in O are used to estimate
a (probabilistic) model P̂rmodel[P = p|O = o]. The adversary/evaluator then
uses this model in order to try extracting the PIN from the remaining observa-
tions. Note that our profiling is based on the binary random variable p, where
p = 0 if the PIN is random and p = 1 if the PIN is real, and not based on
the value of the PIN tag itself. This is motivated by the following practical and
neurophysiological reasons:

– From a practical point-of-view, building a model for all the PINs and users
seems impractical in real-world settings: this would require being able to
collect multiple observations for each of the 10,000 possible values of a 4-
digit code. Furthermore, and as discussed in Section 3.3, our real vs. random
profiling allowed us to lean towards realistic (non-profiled) attacks.

– From a neurophysiological point-of-view, the information we aim to extract
is based on Event-Related Potentials (ERPs) that have been shown to reflect
semantic associations and incongruities [17,18,6]. In this respect, while we
can expect a user to react differently to real and random 4-digit codes, there
is no reason for him to treat the random codes differently.

A. Evaluation metrics Following the general principles put forward in [27], our
evaluations will be based on a combination of information theoretic and security
analyzes. The first ones aim at evaluating whether exploitable information is
available in the EEG signals; the second ones at evaluating how efficiently this
information can be exploited to mount a side-channel attack. Note that since
we do not assume the users to behave identically, these metrics will always be
evaluated and discussed for each user independently.

Perceived information. The Perceived Information (PI) was introduced in
the context of side-channel attacks against cryptographic devices, of which the
goal is to recover some secret data (aka key) given some physical leakage [23].
The PI aims at quantifying the amount of information about the secret key,
independent of the adversary who will exploit this information. Informally, we
will use this metric in a similar way, by just considering P as a bit to recover,
and the observations as leakages. Using the previous notations, we define the PI
between the PIN random variable P and the observation random variable O:

PI(P ;O) = H[P ] +
∑
p

Pr[p] ·
∫
o

f(o|p) · log2 Pr
model

[p|o] do,

where we use the notation Pr[X = x] =: Pr[x] for conciseness, and f(o|p) is
the (continuous) PDF of the observations given the value of p. In the ideal case
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where the model is perfect, the PI is identical to Shannon’s mutual information.
In the practical cases where the model differs from the observation’s true distri-
bution, the PI captures the amount of information that is extracted from these
observations, biased by the model (assumption & estimation) errors [11].

Of course, concretely the true distribution f(o|p) is unknown to the adver-
sary/evaluator and can only be sampled. Therefore, the approach in side-channel
analysis, that we repeat here, is to split the set of observations O in k non-

overlapping sets O(i). We then define the profiling sets O(j)
p =

⋃
i 6=j O(i) and the

test sets O(j)
t = O \ O(j)

p . The PI is computed in two phases:

1. The observations’ conditional distribution is estimated from a profiling set.

We denote this phase with f̂
(j)
model(o|p)← O(j)

p . Note that the Prmodel[p|o] factor
involved in the PI definition is directly derived via Bayes’ theorem as:

P̂rmodel[p|o] =
f̂
(j)
model(o|p) · Pr[p]∑

p∗ f̂
(j)
model(o|p∗) · Pr[p∗]

·

2. The model is then tested by computing the PI estimate:

P̂I
(j)

(P ;O) = H[P ] +

1∑
p=0

Pr[p] ·
∑

o∈O(j)
t |p

1

nj
p

· log2 P̂rmodel[p|o],

where nj
p is the number of observations in the test set O(j)

t |p.

Eventually, the k outputs P̂I
(j)

(P ;O) are averaged to get an unbiased es-
timate, and their spread characterizes the accuracy of the result (see Para-
graph G). Note that concretely, the maximum size for the profiling set in our
experiments equals ≈ 899, leading to a cross-validation parameter k ≈ 900 and a
test set of size 1. In this case, the model building phase is repeated ≈ 900 times,
and each model is tested once against an independent sample. (We use the ≈
symbol to reflect the fact that these values are approximated, due to the rejection
of eye blinks mentioned in Section 2). This “leave one our” strategy has a large
cross-validation parameter compared to current practice (e.g., in side-channel at-
tacks against cryptographic implementations a value of k = 10 was selected [11]),
leading to computationally intensive evaluations. Yet, it is justified in our study
because of the limited number of samples available in our experiments.

Success rate and average rank. In order to confirm that the estimated PI
indeed leads to concrete attacks, we consider two simple security metrics. Here,
the main challenge is that we only have models for the real and random PIN
codes, while the actual observations in the test set naturally come from six
different events. As a result, we first considered the success rate event per event.
For this purpose, the ≈ 900 observations are split in 6 sets of ≈ 150 observations
that correspond to the six different tag values. Based on these 6 sets, we can
compute the probability that the observations are correctly classified as real or
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random in function of the number of observations exploited in the attack, next
denoted as q. This is done by averaging a success function S that is computed
as follows. If q = 1: S(o1) = 1 if P̂rmodel[p|o1] > P̂rmodel[p̄|o1] and S(o1) =
0 otherwise (where p̄ denotes the incorrect event); if q = 2: S(o1,o2) = 1 if
P̂rmodel[p|o1] × P̂rmodel[p|o2] > P̂rmodel[p̄|o1] × P̂rmodel[p̄|o2]; . . . Concretely, this
success rate is an interesting metric to check whether the observations generated
by different incorrect PIN values indeed behave similarly.

Of course, an adversary eventually wants to compare the likelihoods of dif-
ferent PIN values. For this purpose, we also considered the average rank of
the correct PIN in an experiment where we gradually increase the number of
observations per tag q, but this time consider sets of 6 observations at once,
that we classify only according to the model for the real PIN. This leads to
vectors (P̂rmodel[p|o1

1], P̂rmodel[p|o2
1], P̂rmodel[p|o3

1], . . . , P̂rmodel[p|o6
1]) if q = 1,

(P̂rmodel[p|o1
1]× P̂rmodel[p|o1

2], . . . , P̂rmodel[p|o6
1] × P̂rmodel[p|o6

2]) if q = 2, . . . ,
where the superscripts denote the tag from which the observations originate. The
average rank is then obtained by sorting this vector and estimating the sample
mean of the position of the tag 1 in the sorted vector.

Connecting the metrics (sanity check). Note that as discussed in [10],
information theoretic and security metrics can be connected (i.e., a model that
leads to a positive PI should lead to successful attacks).2 We consider both types
of metrics in our experiments because the first ones allow a better assessment of
the confidence in the evaluations (see Paragraph G) while the second ones lead
to simpler intuitions regarding the concrete impact of the attacks.

B. Preprocessing As a first step, all the observations were preprocessed using
a bandpass filter. We set the low-frequency cut-off to 0.5Hz to remove the slow
drifts in the EEG signals, and the high-frequency cut-off to 30Hz to remove
muscle artifacts and 50Hz environmental noise.

C. Selection of electrodes As mentioned in introduction, each original obser-
vation is made of 32 vectors of 1,000 samples, leading to a large amount of data
to process. To simplify our treatments, we started by analyzing the different
electrodes independently. Among the 32 ones of our cap, electrodes P7, P8, Pz,
O1 and O2 gave rise to non-negligible signal (see Figure 1), which is consistent
with the existing literature where ERPs related to semantic associations and
incongruities were exhibited in the central/parietal zones [17,18,6]. Our follow-
ing analyzes are based on the exploitation of the electrodes P7 and P8 which
provided the most regular information across the different users.

For illustration, Figures 2 and 3 represent the mean and standard deviation
traces corresponding to two different users. From these examples, a couple of
relevant observations can already be extracted (and will be useful for the design

2 More precisely, the PI is an average metric, so what is needed is that each line of
the PI matrix defined in [27] (corresponding to 6 different events in our study) are
positive, which we observed and confirmed with the success rate analysis.
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Fig. 1. Repartition of the electrodes on the scalp.

and interpretation of our following evaluations). First, we see (on the left parts
of Figure 2) that the EEG signals may be more or less informative depending on
the users and electrodes. More precisely, we generally noticed informative ERP
components after 300 to 600 milliseconds (known as the P300) for most users
and electrodes, which is again consistent with the existing literature [17,18,6].
Yet, our measurements also put forward user-specific differences in the shape of
the mean traces corresponding to the correct PIN value. (Note that the figure
only shows examples of informative EEG signals, but for some other users and
electrodes, no such clear patterns appear). Second, and quite importantly, the
difference between the left and right parts of the figures illustrates the significant
gain when moving from an unsupervised / unprofiled evaluation context to a
supervised / profiled one. That is, while in the first case, we need the traces
corresponding to the correct PIN value to stand out, in the second case, we only
need it to behave differently than the others.

Eventually, a look at the standard deviation curves in Figure 3 suggests that
the measurements are quite noisy, hence non-trivial to exploit with a limited
amount of observations. This will be confirmed in our following PDF estimation
phase, and therefore motivates the dimensionality reduction in the next section
(intuitively because using more dimensions can possibly lead to better signal
extraction, which can mitigate the effect of a large noise level).

D. Dimensionality reduction The evaluation of our metrics requires to build
a probabilistic model, which may become data intensive as the number of di-
mensions in the observations increases. For example, directly estimating a 2000-
dimensional PDF corresponding to our selected electrodes is not possible. In
order to deal with this problem, we follow the standard approach of reducing
dimensionality. More precisely, we use the Principal Component Analysis (PCA)
that was shown to provide excellent results in the context of side-channel attacks
against cryptographic devices [4]. We investigate two options in this direction.
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Fig. 2. Exemplary mean traces for different tag (left) and PIN (right) values.
Top: User 8, Electrode P7. Bottom: User 6, Electrode P7.
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Fig. 3. Exemplary standard deviation traces for different tag values correspond-
ing to User 8, Electrode P7 (left) and User 6, Electrode P7 (right).

First, and looking at the observations in Figure 2, it appears that the mean
traces corresponding to the different tags are quite discriminant regarding the
value of p. Hence, and as in [4], a natural option is to compute the projection
vectors of the PCA based on these mean traces. This implies computing average
vectors ōj = E150

i≈1o
j
i , and then to derive the PCA eigenvectors based on the

ōj ’s, which we denote as R1:Nd
← PCA

(
{ōj}j=1:6

)
, where Nd is the number of

dimensions to extract. Due to the limited number of mean traces (i.e., 6), we can
only compute Nd = 5 eigenvectors, and therefore are limited to 5-dimensional
attacks in this case.3 However, it turned out that in our experiments, this version
of the PCA extracts most of the relevant samples in the first dimension. This is
intuitively witnessed by Figure 4 which represents the first and fifth eigenvectors

3 Because we used the small sample size variant of PCA in [4].
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corresponding to User 8 and Electrode P7 (i.e., R1 and R5): we indeed observe
that the first dimension corresponds to the points of interest in Figure 2, while
the fifth one seems to be dominated by noise. In the following, we will denote
this solution as the “average PCA”. Note that such a dimensionality reduction
does not take advantage of any secret information (i.e., it is not a supervised /
profiled one) since it builds the mean traces based on public tags.
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Fig. 4. Examplary eigenvectors for the average PCA, corresponding to User 8,
Electrode P7. Left: first dimension. Right: fifth dimension.

Yet, one possible drawback of the previous method is that estimating the av-
erage traces ōj becomes expensive when the number of PIN codes increases. In
order to deal with and quantify the impact of this limitation, we also considered
a “raw PCA”, where we directly reduce the dimensionality based on raw traces,
next denoted as R1:Nd

← PCA
(
{oi}i≈1:900

)
. While this approach is not expected

to extract the information as effectively, it allows deriving a much larger number
of dimensions than in the previous (average) case. Concretely though, exploit-
ing dimensions 1 to 5 only was a good tradeoff between the informativeness of
the dimensionality reduction, the risk of ovefitting (useless) dataset-dependent
patterns and the risk of outliers in our experiments (see Paragraph F).

As a result of this dimensionality reduction phase, the observation vectors
o(1:2000) (which correspond to the concatenation of the measurements for our
two selected electrodes) are reduced to smaller vectors R1:Nd

× o (i.e., each di-
mension o(d) corresponds to the scalar product between the original observations
o and a 2000-element vector Rd). We recall that PCA is not claimed to be an
optimal dimensionality reduction, since it optimizes a criteria (i.e., the variance
between the raw or mean traces) which does not capture all the information in
our measurements. However, it is a natural first step in our investigations, and
we could verify that our following conclusions are not affected by slight varia-
tions of the number of extracted dimensions (i.e., adding one or two dimensions),
which therefore fits our (primary) confidence and stability goal.

E. PDF estimation We now describe the main ingredient of our supervised /
profiled evaluation, namely the PDF estimation for which we exploit the knowl-
edge of the p values for the observations in the profiling sets.
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In order to build a model f̂model(o1:Nd
|p), we first take advantage of the

fact that the dimensions of the o1:Nd
vectors after PCA are orthogonal. By ad-

ditionally considering them as independent, this allows us to reduce the PDF
estimation problem from one Nd-variate one to Nd univariate ones. Based on
this simplification, the standard approach in side-channel analysis is to assume
the observations to be normally distributed, and to build Gaussian templates [8].
Yet, in our experiments no such obvious assumption on the distributions in hand
was a priori available. As a result, we first considered a (non-parametric) ker-
nel density estimation as used in [5], which has slower convergence but avoids
any risk of biased evaluations [11]. Kernel density estimation is a generalization
of histograms. Instead of bundling samples together in bins, it adds (for each
observation) a small kernel centered on the value of the observation to the esti-
mated PDF. The resulting estimation that is a sum of kernels is smoother than
histograms and usually converges faster. Concretely, kernel density estimation
requires selecting a kernel function (we used a Gaussian one) and to set the
bandwidth parameter (which can be seen as a counterpart to the bin size in his-
tograms). The optimal choice of the bandwidth depends on the distribution of
the observations, which is unknown in our case. So we need to rely on a heuristic,
and used Silverman’s rule-of-thumb for this purpose [24].

F. Outliers As mentioned in Paragraph D, the main drawback of the raw
PCA is that it extracts the useful EEG information less efficiently, which we
mitigate by using more dimensions. Unfortunately, this comes with an additional
caveat. Namely, the less informative information extraction combined with the
addition of more dimensions increases the risk of outliers (i.e., observations that
would classify the correct PIN value very badly for some dimensions, possibly
leading to a negative PI). In this particular case, we considered an additional
post-processing (after the dimensionality reduction and model building phases).
Namely, given the≈ 900 probabilities P̂r[p|R1:Nd

×oi], we rejected the ones below
0.001 and beyond 0.999. This choice is admittedly heuristic, yet did consistently
lead to positive results for all the users. It is motivated by limiting the weight
of the log probabilities for the outliers in the PI estimation. We insist that this
treatment of outliers is only needed for the raw PCA. For the average PCA, we
did not reject any observation (other than the ones in Section 2).

G. Confidence By using ≈ 900-fold cross-validation, we can guarantee that
our PI estimates will be based on 900 observations, leading to 900 values for the
log probabilities log2(P̂r[p|R1:Nd

× oi]). Since this remains a limited amount of
data compared to the case of side-channel attacks against cryptographic imple-
mentations, and the extracted PI values are small, we completed our information
theoretic evaluations by computing a confidence interval for the PI estimates.
To avoid any distribution-specific assumption, we computed a 10% bootstrap
confidence interval [12], by resampling 100 bootstrap samples out of our 900 log
probabilities, computing 100 mean bootstrap samples, sorting them, and using
the 95th and 5th percentiles as the endpoints of the intervals. For simplicity,
this was only done for the PI metric and not for the success rate and average
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rank since (i) successful Bayesian attacks are implied by the information theo-
retic analysis [10], (ii) these metrics are more expensive to sample (e.g., we have
only one evaluation of the success function with q ≈ 150 per user), and (iii)
they are only exhibited to provide intuitions regarding the exploitability of the
observations (i.e., the attack complexities).

3.3 Unsupervised (aka non-profiled) analysis

While supervised (aka profiled) analyzes are the method of choice to gain un-
derstanding about the information available in a side-channel, their practical
applicability is of course questionable. Indeed, building a model for a target user
may not always be feasible, and this is particularly true in the context of attacks
against the human brain since (as discussed the long version of this paper), mod-
els built for one user are not always (directly) exploitable against another user.
In this section, we therefore propose an unsupervised / non-profiled extension of
the information theoretic evaluation outlined in Section 3.2. To the best of our
knowledge, this variation was never described as such in the open literature (al-
though it shares some similarities with the non-profiled attacks surveyed in [5]).
For this purpose, our starting point is the observation from Figure 2, that in an
unsupervised / non-profiled context, one can take advantage of the fact that the
(e.g., mean) traces of the EEG signals corresponding to the correct PIN value
may stand out. As a result, a natural idea is to compute the PI metric 6 times in-
dependently, each time assuming a different (possibly random) tag to be correct
during an “on-the-fly” modeling phase. If the traces corresponding to the (truly)
correct PIN are more singular (comparatively to the others), we can expect the
PI estimated with this PIN to be larger, leading to a successful attack.

Of course, such an attack implies an additional neurophysiological assump-
tion (while in the supervised / profiled setting, we just exploit any information
available). Yet, it nicely fits the intuitions discussed in the rest of this section,
which makes it a good candidate for concrete evaluation. Furthermore, we men-
tion that directly recovering the correct PIN value may not always be necessary:
as in the case of side-channel analysis, reducing the rank of the correct PIN value
down to an enumerable one may be sufficient [28].

4 Experimental results

4.1 Supervised (aka profiled) evaluation

As in the previous section, we start with the results of our supervised / profiled
evaluations, which will be in two (information theoretic and security) parts. Be-
forehand, there is one last choice regarding the computation of P̂r[p|R1:Nd

× oi]
via Bayes’ theorem described in Section 3.2, Paragraph A. Namely, should we
consider maximum likelihood or maximum a posteriori attacks (i.e., should we
take advantage of the a priori knowledge of Pr[p] or consider a uniform a priori).
Interestingly, in our context ignoring this a priori and performing maximum like-
lihood attacks is more relevant, since we mostly want to avoid false negatives
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Fig. 5. Evolution of the PI in function of the size of the profiling set for Users 3
(top) and 6 (bottom), using average PCA (left) and raw PCA (right).

(i.e., correct PINs that would be classified as random ones), which prevent effi-
cient enumeration. Since the a priori on P increases the amount of such errors
(due to the a priori bias of 5/6 towards random PIN values), the rest of this
section reports on the results of maximum likelihood attacks.

A. Perceived Information As a first step in our evaluations, we estimated
the PI using the methodology described in the previous section. We started
by looking at the evolution of the PI estimation in function of the number of
observations in the profiling set used to build the model. The results of this
analysis are in Figure 5 from which two quantities must be observed:

– The value of the PI estimate using the maximum profiling set (i.e., the
extreme right values in the graphs). It reflects the informativeness of the
model built in the profiling phases, and is correlated with the success rate
of the online (maximum likelihood) attack using this model [10]. Positive PI
values indicate that the model is sound (up to Footnote 2) and should lead to
successful online attacks if the number of observations (i.e., the q parameter
in our notations of Section 3.2) used by the adversary is sufficient.

– The number of traces in the profiling set required to reach a positive PI. It
reflects the (offline) complexity of the model estimation (profiling) phase [26].

In this respect, the results in Figure 5 show a positive convergence for the
two illustrated users, yet towards different PI values which indicates that the
informativeness of the EEG signals differs between them. Next, and quite inter-
estingly, we also see that the difference between average PCA (in the left part
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of the figure) and raw PCA (in the right side) confirms the expected intuitions.
Namely, the fact that raw PCA reduces dimensionality based on a less meaning-
ful criteria and requires more dimensions implies a slower model convergence.
Typically, model convergence was observed in the 100 observations’ range with
average PCA and required up to 400 traces with raw PCA. For completeness,
Table 1 contains the estimated PI values with maximum profiling set, for the
different users and types of PCA. Excepted for one user (User 5) for which we
could never reach a positive PI value,4 this analysis suggests that all the users
lead to exploitable information and confirms the advantage of average PCA.

User P̂I(P ;O) with avg. PCA P̂I(P ;O) with raw PCA

1 0.0739 0.0618

2 0.1643 0.1315

3 0.1494 0.1398

4 0.0920 0.0228

5 ∅ ∅
6 0.0521 0.0214

7 0.0759 0.0568

8 0.1697 0.0458

Table 1. Estimated PI values with maximum profiling set.

B. Success rate and average rank As discussed in Section 3.2, our informa-
tion theoretic analysis is a method of choice to determine whether discriminant
information can be extracted from EEG signals with confidence. Yet, it does
not lead to obvious intuitions regarding the actual complexity of an online at-
tack where an adversary obtains a set of q fresh observations and tries to detect
whether some of them correspond to a real PIN value. Therefore, we now provide
the results of our complementary security analysis, and estimate the success rate
and average key rank metrics proposed in Paragraph A. As previously mentioned
these evaluations are less confident, since for large q values such as q = 150 we
can have only one evaluation of the success function. Concretely, the best suc-
cess rate / average key rank estimates are therefore obtained for q = 1. We took
advantage of re-sampling when estimating them for larger q’s.

Figures 6 and 7 illustrate these metrics are indeed correlated with the value
of the PI estimates using the maximum profiling set, which explains the more
efficient attacks against User 3. Concretely, the average rank figure suggests that
correct PIN value can be exactly extracted in our 6-PIN case study with 5 to
10 observations for the most informative users and 30 to 40 observations for the
least informative ones. The success rate curves also bring meaningful intuitions
since they highlight that all (correct and random) PIN values can be correctly
classified with our profiled models (in slightly more traces). This confirms our

4 As mentioned in Section 2, this is due to the presence of another familiar event for
this user, which he mentioned to us after the experiments were performed.
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neurophysiological assumption from the previous section that the users react
similarly to all random values.5 Besides, Figure 6 is interesting since it shows
how confidently the correct PIN value is classified independent of the others.
Hence, its results would essentially scale with larger number of PIN values.
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Fig. 6. Success rates per tag value for User 3 (left) and User 6 (right).

4.2 Unsupervised (aka non-profiled) analysis

We now move to the more challenging problem of unsupervised / non-profiled
attacks. For this purpose, we first applied the attack sketched in Section 3.3
with the maximum number of traces in the profiling set. That is, we repeated
our evaluation of the PI metric six times, assuming each of the tag values to
be the real one. Furthermore, we computed the confidence intervals for each
of the PI estimates according to Section 3.2, Paragraph G. The results of this
experiment are in Figure 8 for two users and lead to three observations.

First, looking at the first line of the figure, which corresponds to the correct
PIN value, we can now confirm that the PI estimates of Section 4.1 are suffi-
ciently accurate (e.g., the confidence intervals clearly guarantee a positive PI).
Second, the confidence intervals for the random PIN values (i.e., tags 2 to 6)
confirm the observation from our success rate curves (Figure 6) that the users
react similarly to all random values. Third, the middle and bottom parts of the
figure show the results of two (resp. 4) non-profiled attacks where the profiling
set was split in 2 (resp. 4) independent parts (without re-sampling), therefore
leading to the evaluation of 2 (resp. 4) confidence intervals for each tag value. As
expected, it indicates that the information extraction is significantly more chal-
lenging in this unsupervised / non-profiled context. Concretely, the PI estimate
for the correct PIN value consistently started to overlap with the ones of random
PINs for all users, as soon as the number of attack traces q was below 200, and
no clear gain for the correct PIN could be noticed below q = 100. This confirms
the intuition that unsupervised / non-profiled side-channel attacks are gener-
ally more challenging than supervised / profiled ones (here, by an approximate
factor 5 to 10 depending on the users).

5 We may expect more singularities (such as the one of User 5) to appear and launch
false alarms in case studies with more PIN values. Yet, this would not contradict the
trend of a significantly reduced average rank for the correct PIN value.
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Fig. 7. Avg. rank of the correct PIN for User 3 (left) and User 6 (right).

This conclusion also nicely matches the one in Section 4.1, Figure 5, where
we already observed that the (offline) estimation of an informative model is more
expensive than its (online) exploitation for PIN code recovery as measured by the
success rate and average rank (by similar factors). Indeed, in the unsupervised
/ non-profiled context such an estimation has to be performed “on-the-fly”.

5 Consequences & Conclusions

The results in this paper lead to two important conclusions.
First, and from the security point-of-view, our experiments show that ex-

tracting concrete PIN codes from EEG signals, while theoretically feasible, may
not be a very critical threat. PIN extraction attacks using BCIs indeed require
several observations to succeed with high probability. Furthermore, the difference
between the complexity of successful supervised / profiled attacks (around 10
correct PIN observations) and unsupervised / non-profiled attacks (more in the
hundreds range) is noticeable. Yet, our results generally confirm the existence
of exploitable information in EEG signals, which may become more worrying in
case of targets with smaller cardinalities (e.g., extracting the knowledge of one
relative among a set of unknown people displayed on a screen).

Second, and given the importance of profiling for efficient information ex-
traction from EEG signals, our experiments underline that privacy issues may
be even more worrying than security ones in BCI-based applications. Indeed,
when it comes to privacy, the adversary trying to identify a user is less limited
in his profiling abilities. In fact, any correlation between his target user and some
feature found in a dataset is potentially exploitable. In this context, the data
minimization principle does not seem to be a sufficient answer: it may be that
the EEG signals collected for one (e.g., gaming) activity can be used to reveal
various other types of (e.g., medical, political, . . . ) correlations. Anonymity is
probably not the right answer either (since correlations with groups of users may
be as discriminant as personal ones). And such issues are naturally amplified in
case of malicious applications (e.g., it seem possible to design a BCI-based game
where situations lead the users to incidentally reveal preferences). So overall,
it appears as an important challenge to design tools that provide evidence of
“fair treatment” when manipulating EEG signals, which can be connected to
emerging challenges related to computations on encrypted data [25].
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Fig. 8. Confidence intervals for the (non-profiled) PI evaluation of Section 3.3
with ≈ 900 observations (top), ≈ 450 observations (middle) and ≈ 225 observa-
tions (bottom), for Users 8 (left) and 6 (right).
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