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Abstract—Hard learning problems have recently attracted significant attention within the cryptographic community, both as a versatile
assumption on which to build various protocols, and as a potentially sound basis for lightweight (possibly side-channel and fault
resistant) implementations. Yet, in this second case, a recurrent drawback of primitives based on the Learning Parity with Noise and
Learning With Errors problems is their additional randomness requirements to generate noise or errors. In parallel, the move towards
nanoscale devices renders modern implementations increasingly prone to various types of errors. As a result, inexact computing has
emerged as a new paradigm to efficiently deal with the challenges raised by such erroneous computations, and mitigate the cost and
power consumption overheads they cause. In this paper, we show that these cryptographic and electronic challenges can actually be
turned into new opportunities, and provide an elegant solution one to the other. That is, we show that inexact implementations of inner
product computations lead to a natural way to define new Learning with Physical Noise or Error assumptions, paving the way to more
efficient and physically secure implementations, with potential interest for securing emerging Internet of Things applications.

Index Terms—Learning Parity with Noise (LPN), side-channel analysis, fault attacks, Physically Unclonable Functions (PUFs).
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1 INTRODUCTION

The Internet of Things (IoT) is a fast-emerging technology
that aims at connecting “things” (e.g. objects that feature
sensors and actuators) to a larger network via the Internet,
enabling new applications such as smart homes, connected
cars, smart grids, smart cities, e-health, . . . In order to
enable their secure deployment, one minimum feature for
such interconnected devices is to be securely identified. Yet,
their low-cost nature implies strong resource constraints in
terms of cost, area, power consumption and energy. In this
respect, and as the size of integrated circuits is shrinking
due to technology scaling, more and more functionalities
can be added to hardware devices. Therefore, the recent
literature has shown that implementing cryptographic (e.g.
challenge-response) protocols is now feasible in the IoT.
Those protocols can rely on symmetric encryption based
on the AES block ciphers [1], which are typically suitable
in close systems due to key distribution challenges. Alter-
natively, Elliptic Curve Cryptography (ECC) engines have
been proposed to alleviate this key distribution problem
while still maintaining short key sizes [2]. Yet, while un-
protected implementations of block ciphers or ECC can
fulfill the IoT constraints, their protection against physical
(e.g. side-channel or fault) attacks remains an important
challenge, due to the large overheads they imply [3], [4].

Cryptographic background. The Learning Parity with
Noise (LPN) and Learning With Errors (LWE) problems
have recently found many applications in the design of
provably secure cryptographic schemes: see [5], [6] for good
surveys. LPN was first used in secret key identification pro-
tocols, starting with the proposal by Hopper and Blum [7].
This so-called HB scheme was then extended to HB+ –
that is secure in an active attack model – by Juels and
Weis [8], and to HB# – that is secure against man-in-the-
middle attacks – by Gilbert et al. [9]. Both HB+ and HB#

require three communication rounds. Kiltz et al. [10] next
proposed an alternative identification scheme with only two
rounds [10], while also describing Message Authentication

Codes (MACs) constructions based on LPN. More recently,
an efficient 2-round identification protocol (called LAPIN)
was proposed by Heyse et al. [11], while LPN-based MAC
constructions were revisited in [12]. In parallel, construc-
tions of PRGs and one-way functions [13], but also secret-
key encryption schemes [14] and public-key encryption
schemes [15] were proposed. The LWE assumption turns
out to be even more versatile than the LPN one (at the cost
of more involved operations, making it less suitable for low-
cost devices). For example, it allows the design of collision-
resistant hash functions [16], identity-based encryption [17]
or Fully Homomorphic Encryption (FHE) schemes [18].
Finally, the security of the LPN and LWE assumptions is
analyzed by a number of independent works: see [19], [20]
and [21], [22], [23], [24], [25] for early and more recent results
in the field. In this respect, while tuning the security param-
eters of these assumptions remains a scope for research, it is
widely believed that their underlying problems are hard.

Electronic background. The scaling of the CMOS tech-
nology, that is reflected in most present microelectronic
devices, has been a permanent trend since integrated circuits
appeared in the late 1950s. This trend is expressed by
the famous Moore’s law (with 14-nanometer technology in
industrial production and 7-nanometer as a target within
the next decade). Shrinking transistors’ sizes is generally
motivated by the need for increased performances and
reduced cost and energy per operation. But when reach-
ing the nanometer scale (defined by minimum transistor
size below 100 nanometers), various side-effects also arise.
First, the relative importance of so-called static currents
increases, i.e. energy is consumed even if no computations
are performed [26]. Second, device variability becomes sig-
nificant, i.e. it becomes increasingly difficult to engineer
identical chips [27]. Third, physical noise in transistors tends
to grow, while the useful signal representing the data is
reduced (due to supply voltage reduction), hence making
the computational outcomes less and less deterministic [28].
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Among these side-effects, the two first ones have already
been considered in the context of cryptographic implemen-
tations, with contrasted intuitions. On the one hand, static
leakages are mostly detrimental and designers usually try to
minimize them, both for energy consumption and physical
security reasons [29], [30], [31]. On the other hand, variabil-
ity is indeed problematic to deal with from a performance
viewpoint, but can also be turned into an asset. For example,
it can make certain types of side-channel attacks more
challenging [32], and is exploited in the design of Physically
Unclonable Functions (PUFs) [33]. As for the noise issue,
alternative logic design approaches have been explored for
about 10 years in order to exploit it constructively in CMOS
chips, based on so-called probabilistic [34] or inexact [35]
computing. Such new paradigms are claimed to be more
energy efficient. But to the best of our knowledge, they have
not been used for cryptographic applications based on hard
learning problems as we suggest in the following.

Contributions. From an implementation point-of-view, the
main potential advantages of LPN-based primitives are
their simple structure making them suitable for low-cost
devices, and their algebraic properties making them easier
to protect against side-channel attacks thanks to mask-
ing [36], and harder to attack with faults [37]. Unfortunately,
recent results have shown that these advantages do not
fully translate into concrete improvements when looking
at the full (implementation cost and physical security) pic-
ture [38]. Taking the example of LAPIN, it remains that
the chip involved in the authentication protocol has to
include a random number generator (contrary to solutions
based on standardized cryptographic primitives such as the
AES) [39]. And when trying to mask implementations of
LAPIN against side-channel attacks, one additionally needs
to protect this randomness generation [40].1 Based on this
state-of-the-art, we start from the observation that LPN-
based primitives are ideally suited for implementations in
emerging inexact circuit designs, leading us to the following
set of technical and conceptual contributions:

1. We show that rather than combining the inner product
computations of LPN with a standard Random Number
Generator (RNG) to generate errors, we can exploit inexact
implementations of these inner product computations.

2. We propose a first technical solution for inexact inner
product computations based on over-scaling, i.e. running
circuits at too low voltages or too high frequencies. (Many
alternatives exist in the nanoelectronics literature).

3. We analyze different hardware architectures for inexact
inner product computations based on standard (post-layout)
circuit simulators, and show that the error parameter of
the Bernoulli distribution used in the LPN problem can
theoretically be set by controlling the supply voltage and
clock frequency of the inexact implementations.

1. The issues faced by LWE-based primitives are similar (and ampli-
fied because of their more complex operations and noise distribution).
Relying on the Learning With Rounding (LWR) assumption could
be an alternative to get rid of the randomness requirements. Yet,
even in this case, primitives such as pseudorandom functions (PRFs)
hardly compete with standard block ciphers [41]. Besides, masking the
rounding operation is challenging, as recently discussed in [42], [43].
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Fig. 1. From LPN implementations to the LPPN assumption.

4. We confirm our simulated analysis with preliminary
experiments based on measurements taken on a prototype
chip. Precisely, since we do not have an inner product com-
putation manufactured, we compared the error distribution
predicted thanks to simulations and the one measured on
a prototype AES S-box chip, implemented in the same 65-
nanometer technology as our inner product simulations.

5. Based on these observations, we introduce a new assump-
tion of Learning Parity with Physical Noise (LPPN), and
discuss its connections and differences with the standard
LPN assumption and the previously introduced PUFs. We
exhibit a separation between the deterministic and proba-
bilistic features exploited in LPPN for this purpose.

6. We evaluate technical challenges related to this new
assumption. In particular, we detail how to limit the data
dependencies of the errors in LPPN implementations based
on deterministic glitches, and the control needed on the
frequency or voltage of inexact inner product chips, to
ensure the security of a realistic 512-bit instance with state-
of-the-art tools borrowed from the electronic literature.

7. We put forward that these new techniques directly lead
to efficient masked computations. Namely, we describe how
to mask the implementation of low-cost primitives based
on LPPN with only linear overheads, and without the
hassle to protect the Bernoulli noise. For this purpose, we
take advantage of the fact that this noise is only implicitly
generated in inexact implementations. We also show how
masking allows further reducing the security requirements
of LPPN implementations based on deterministic errors.

8. We argue that LPPN has good properties to prevent im-
portant classes of fault attacks, and benefits from masking in
this context (contrary to block ciphers where the interaction
between masking and fault attacks is tricky [44], [45], [46]).

In summary and as illustrated in Figure 1, our main
contribution is to show that, rather than combining exact
computations with additive errors (as usually considered
so far), primitives based on hard learning problems could
be efficiently implemented by directly producing inexact
outputs. This brings three main advantages. From the per-
formance point-of-view, we save the cost of generating
random numbers and can implement the inner product
computations in a low-power manner. Indeed, inexact inner
product computations can be simply produced with a chip
running with less energy than required to produce correct
outcomes. Next, and more conceptually, LPPN can exploit
both probabilistic and deterministic features in microelec-
tronic devices. This makes it fundamentally different from
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Fig. 2. Inner product architectures.

standard LPN implementations with a RNG, which can only
exploit probabilistic ones. As will be discussed in the paper,
it leads to interesting design tradeoffs since both types of
effects come with pros and cons regarding their security
and technical implementation challenges. Eventually, and
maybe most importantly, the LPPN assumption avoids the
need to protect the LPN randomness against side-channel
attacks, since this randomness is never explicitly computed
by the chip. That is, while a single probe on the RNG output
is enough to break a standard implementation of LPN, this
attack is not possible with LPPN, which additionally bene-
fits from interesting features to resist fault attacks. We finally
mention that for the LPPN assumption to be practically
relevant, its errors must be controlled by an internal and
autonomous block, so that an adversary is not capable of
altering the probability of error by controlling the circuits’
external signals (e.g. supply voltage or clock frequency). We
argue in the rest of the paper that this is achievable using
state-of-the-art building blocks from the literature.

Cautionary note. This paper focuses on the possibility to
exploit emerging concepts from the micro/nanoelectronic
design literature in a cryptographic context. Our main ob-
servation is that physically secure versions of the LPN as-
sumptions can in principle be implemented very efficiently in
hardware. Admittedly, there is still a long way to go before
translating these expectations into concrete improvements,
and best exploiting state-of-the-art tools for accurately con-
trolling inexact inner product computations on a prototype
chip (which is a nice scope for further research). Yet, our
preliminary investigations suggest that LPPN could become
a long-term alternative to challenge-response authentication
with high security against side-channel and fault attacks.
And most importantly, we believe this assumption opens a
wide design space to investigate, at the intersection between
symmetric cryptography and electrical engineering.

2 LPN & HARDWARE IMPLEMENTATIONS

2.1 LPN problem
The LPN problem can be written as follows [47]:
Definition 1 (LPN problem). Let 〈., .〉 denote the binary inner

product, k be a random n-bit secret, let ε ∈]0, 12 [ be a
noise parameter, Berε be the Bernoulli distribution with
parameter ε (if e← Berε, then Pr[e = 1] = ε and Pr[e =
0] = 1− ε), and Dk,ε be the distribution defined as:

Dk,ε =: {x← {0, 1}n; e← Berε : (x, 〈x, k〉 ⊕ e)}.

Let Ok,ε denote an oracle outputting independent sam-
ples according to the distribution Dk,ε. The LPN n

ε prob-
lem is said to be (q, t,m, θ)-hard to solve if for any
algorithm A, the following inequality holds:

Pr[k ← {0, 1}n : AOk,ε(1n) = k] ≤ θ,

and the algorithm A runs in time < t, with memory < m
and makes at most q queries to the oracle Ok,ε.

2.2 Architectures for the inner product computations

Following Definition 1, computing LPN samples tradition-
ally requires two components: one to compute the inner
products and one to generate the noise. In this section,
we focus on the inner product computations and define
three types of hardware architectures for this purpose, rep-
resented in Figure 2. (The RNG is not needed for inexact
computations). First, an s-bit serial architecture is repre-
sented in the left part of the figure for s = 8: in this case,
the s − 1 XOR gates of the inner product computation are
implemented sequentially. Second, a p-bit parallel architec-
ture is represented in the middle part of the figure for p = 8:
in this case, the inner product is implemented with a tree
of depth log(p) + 1. Third, a (p × s)-bit mixed architecture
is represented in the right part of the figure, and mixes two
2-bit parallel architectures with a 4-bit serial one.

2.3 Glitches and over-scaling

Besides the combinatorial gates, the other important com-
ponents in Figure 2 are the memory elements plotted as
(small) dark grey rectangles, next denoted as registers. In
conventional (synchronous) CMOS designs, these registers
have a data input and a clock input (which is usually com-
mon to all registers in the chip), and they sample the value of
their data input, e.g. at every rising edge of the clock signal.
As illustrated in Figure 3, the data input after some (e.g.
inner product) computation is not directly stable: there are
a number of transient oscillations, usually called glitches,
that take place beforehand. Therefore, the clock period for
correct operation is selected such that it is longer than the
largest time needed to produce the correct computation
result (taken over all possible inputs and variations), that is
called the critical path. In practice, this critical path depends
on the logic depth of the circuit, and so does the amount of
glitches (as also illustrated in the figure). In standard com-
binatorial designs, one generally tries to minimize the logic
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Fig. 3. Glitches.

depth (and therefore the amount of glitches), and would
prefer a parallel architecture for this reason. However, in our
case glitches will be exploited constructively. Hence, serial
and mixed architectures will also be considered.

3 DETERMINISTIC EFFECTS: OVER-SCALING

In this section, we study solutions to perform inner product
computations with deterministic errors. By deterministic,
we mean that for a fixed x and k, the error when computing
〈x, k〉 will always be the same (i.e. there is no noise nor ran-
domness involved). Intuitively, such effects can be exploited
in LPPN because the probability to observe twice the same
challenge x in LPN is exponentially small. Concretely, we
will take advantage of glitches to produce incorrect inner
product outcomes, by updating the register content earlier
than required by the critical path (i.e. while there are still
transient effects in the register’s data input). In this context,
the main challenge is to find a way to control the amount
of errors due to glitches autonomously on-chip. Quite nat-
urally, changing the logic depth on-the-fly is not feasible
since it is fixed once a chip is manufactured. We argue next
that over-scaling thanks to increased clock frequencies or
reduced supply voltages are two options to reach this goal.
For this purpose, we first describe our simulation settings.
Then we report experiments exhibiting the dependency
between the probability of error caused by glitches and the
frequency / voltage of inexact implementations.

3.1 Simulation settings
We consider implementations of a serial inner product
computation with s = 8, 16, 32 and 64, in a 65nm low-
power (LP) CMOS technology. Post-layout simulations are
performed with ELDO, and based on buffered data inputs
(k and x) and clock signal. For each simulation step (i.e.
value of the supply voltage or clock frequency), we use
1000 uniformly distributed random s-bit data inputs that
vary successively as would be the case in an real-world
authentication scenario. For the frequency scaling setup,
the supply voltage is fixed at 1.2V and the frequency is

(a) Supply voltage sweep.

(b) Frequency sweep.

Fig. 4. Controlling the probability of error via over-scaling.

increased with different steps, according to the logic depth
s and the resulting operation frequency range (recall that
higher logic depth implies a longer critical path and there-
fore a lower operation frequency). For the voltage scaling
setup, the frequency is fixed to its maximum fmax for each
logic depth s, and the supply voltage is scaled from 1.2V to
1V with 10mV steps. The output parity bit from the output
register is then sampled for each value of the 1000 data
inputs at each frequency / voltage step, and compared to
the expected parity. Finally, we assumed that the outputs
of these simulations follow the Bernoulli distribution and
estimated the probability of error based on the ratio between
the number of incorrect parities and the total number of
parities computed. The correlation between the inputs and
outputs of our inexact implementations is discussed in
Sections 7.1 and 8.2. Note that for a given random pair
(k, x), the results produced by the simulations in this section
are deterministic due to the fact that if the data registers in
Figure 3 are synchronized with a noise-free clock signal and
supplied with a noise-free power source, then the resulting
glitches only depend on the (fixed) circuit layout topology.

3.2 Simulation results
The results of our simulated experiments are reported in
Figure 4. They lead to two important observations. First and
as expected, it is possible to control the probability of error
of an inexact inner product implementation by controlling
its supply voltage (in the upper part of the figure) or
clock frequency (in its lower part). Second, controlling the
probability of errors is increasingly difficult as the depth of
the serial architecture increases, as illustrated by the steeper
curves for increasing s values. This can be explained by
the increasing amount of glitches that happen in this case,
as illustrated in Figure 3. Besides, for the frequency sweep
figure we also witness a translation effect, which reflects the
fact that longer critical paths imply lower clock frequencies
(this effect is hidden on the voltage scaling figure because
it starts from the maximum clock frequency for each value
of s). Eventually, we note that the LSB of our architectures
has the longest critical path (as shown in Figure 2). This
observation admittedly implies a risk of data dependencies
in the error probabilities that we discuss in Section 7.1.
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Fig. 5. Increased probability of error via clock jitter.

4 PROBABILISTIC EFFECTS: JITTER AND NOISE

The simulations in the previous section assumed an hypo-
thetical implementation where all the manipulated signals
are noise-free, therefore only leading to deterministic effects.
In practice though, the signals in an implementation suffer
from fluctuations due to various sources of electronic noise,
which causes the previously described “glitchy outputs” to
become probabilistic. By probabilistic, we mean that for a
fixed x and k, the error when computing 〈x, k〉 is random
(i.e. there is noise involved). Typical imperfections of the sig-
nals are the clock jitter (i.e. small instantaneous variations of
the clock period, causing the registers to sample with some
inaccuracies) and the supply noise (i.e. small instantaneous
variations of the supply voltage, causing similar effects). We
next study the impact of a clock jitter for illustration.

4.1 Simulation settings
We simulate the impact of clock jitter by creating a jittery
clock using MATLAB. More precisely, we randomized the
clock period according to a Gaussian distribution with mean
zero and standard deviation between 0 and 1ns. We chose
the n = 64 serial architecture that features a maximum fre-
quency (leading to error-prone computations without jitter)
of ≈ 250MHz, set the supply voltage to the nominal 1.2V
and swept the frequency from 250MHz to 260MHz.

4.2 Simulation results
The results of our simulated experiments are reported in
Figure 5. As expected, we observe that the jitter increases
the probability of error. We insist that the required amount
of jitter is a function of the voltage - frequency setting that
we use, and the required probability of error. For example,
if we use the nominal supply voltage and a maximum clock
frequency of 250MHz (that guarantees correct operation for
the n = 64 serial architecture) and assume the required
probability of error is 0.25, then we will need more than 1ns
jitter as can be seen from Figure 5. However, by increasing
the frequency, we need less jitter to reach the required
probability of error. In this respect, it is important to note
that 400ps (resp. 1000ps) of peak-to-peak jitter is equivalent
to 0.1 (resp. 0.25) Unit Interval (UI) of jitter for a 250MHz
clock frequency, which is compatible to communication
standards (e.g. [48]). In case more jitter is required, it is of
course possible to generate it by design (e.g. as considered
in the RNG literature [49]). Furthermore, in a real implemen-
tation, both the supply noise and the clock jitter will always
be present to some extent. In this respect, while standard
circuit design approaches generally aim to minimize these
defaults, our inexact inner product implementations may
benefit from the opposite goal of making them significant.

5 PRELIMINARY EXPERIMENTS

The previous sections introduced a number of design trends.
Namely, the probability of error of an inner product compu-
tation can be controlled by manipulating the supply voltage
or clock frequency of its implementation. However, these
trends were only put forward via simulations. While this is
a necessary first step, because it allows us to reach a good
understanding of both deterministic and probabilistic effects
in inexact inner product implementations, an important
challenge remains to establish our results on a silicon chip.
Since taping out a chip is a long-term engineering project,
we provide preliminary investigations with a chip imple-
menting the AES S-box in the same 65-nm LP technology as
considered in our inner product computations’ simulations
in Appendix A. It confirms that over-scaling can be used to
generate errors in practice, and that predictions obtained via
simulations are sufficiently relevant in this respect.

6 LEARNING PARITY WITH PHYSICAL NOISE

Based on the experiments in the previous sections, we con-
clude that it is concretely feasible to produce LPN samples
with an inexact implementation of an inner product com-
putation. We now define the LPPN assumption that takes
advantage of such implementations. This requires to define
a (hopefully hard) “physical LPN problem”, where the noise
distribution will be determined by the implementations.
For this purpose, we first take advantage of the definition
of Physical Function from [50], slightly simplified. That
is, a physical function PFd,α is a probabilistic procedure
based on a physical device d, which can be stimulated
with some input challenge x ∈ {0, 1}ni , making d respond
with a (probabilistic) output y ∈ {0, 1}no , with α a set of
parameters.2 In our case, d will be an implementation of
inexact inner product computations (implying ni = n and
no = 1), and α the set of parameters determining its error
distribution (e.g. the clock frequency or supply voltage).
We then re-state the definition of weak unpredictability for
physical functions from [50] (again slightly simplified):

Definition 2 (Weak unpredictability). Let PFd,α be a phys-
ical function and A be an algorithm running in time
< t and memory < m, that takes part in a weak
unpredictability experiment defined as follows:

Expw-unp
A (q):

k
U←− {0, 1}n;

Learning phase:
for i = 1 : q

xi
U←− {0, 1}n;

yi ← PFdk,α(xi);
end

Q = {xi, yi}qi=1;

Challenge phase:
x

U←− {0, 1}n;
y ← PFdk,α(x);
y′ ← A(x,Q);
Output (y, y′).

We say that PFd,α is (q, t,m, γ)-weakly unpredictable if
for any such adversary A, we have:

Pr[y = y′ : (y, y′)← Expw-unp
A (q)] ≤ γ.

For clarity, we also specify the specialized physical function
(where we use the hat symbol for estimated probabilities):

2. We differ from the definition of [50] by consider digital outputs.
Physical functions can in general answer with analog outputs as well.
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Definition 3 (Physical inner product). Let k ∈ {0, 1}n be a
random n-bit secret stored in the device dk. A physical
function PFdk,α is called an ε̃-Physical Inner Product (ε̃-
PIP) if, on uniform public input x ∈ {0, 1}n, it outputs
〈x, k〉 with estimated error probability:

P̂r[PFdk,α(x) 6= 〈x, k〉] = ε̃,

We finally define the LPPN problem as follows:
Definition 4 (LPPN problem). Let PFdk,α be a (q, t,m, γ)-

weakly unpredictable ε̃-PIP. The LPPN n,ε̃
dk,α

problem is
said to be (q, t,m, θ)-hard to solve if for any algorithm A
running in time < t, memory < m and making at most
q uniformly random queries to the PIP, it holds that:

Pr[k ← {0, 1}n : APFdk,α(1n) = k] ≤ θ.

These definitions suggest three important remarks.
First, the inexact nature of the physical function is

needed for the LPPN assumption to hold. Intuitively, more
inexact implementations imply larger probabilities of error
ε̃, which make the problem harder to solve. However, for
the LPPN assumption to be useful in cryptographic applica-
tions, the amount of errors also has to be limited, in order to
allow legitimate users to authenticate themselves or decrypt
encrypted messages efficiently. In the following, we will
focus on the characterization of the error distribution and its
impact on security. Its impact on the efficiency of a protocol
can be directly derived as in the standard LPN cases.

Second, assuming that the LPPN problem is hard is
a physical assumption, whereas assuming that the LPN
problem is hard is a mathematical one. The main difference
is that, since the oracle Ok,ε of the LPN problem is replaced
by a physical function in Definition 4, we have no guarantee
that the error distribution will be exactly equal to the one
specified in Definition 1. This is the price to pay for the
improved efficiency of implementations based on LPPN and
motivates the design challenges discussed next.

Third, the definition of the LPPN problem relying on
physical functions and the implementation of inexact inner
product computations suggest that the LPPN assumption
can be connected to the existence of strong PUFs (although
they are not equivalent, as formalized in Section 8.2). For
example, as for PUFs the samples of inexact inner product
computations must be weakly unpredictable (or an adver-
sary could predict LPPN samples without the key). Besides,
our proposed construction exploiting glitches is reminiscent
of the glitch PUFs in [51] (yet, the latter construction is
different since we exploit the transient values of a “glitchy
signal” while it relies on the number of glitches in such
a signal). Hence, a natural question is whether the LPPN
problem could be susceptible to modeling attacks.

In this respect, a first observation is that XORing dif-
ferent physical functions together, as we do in our hybrid
architectures, generally makes these attacks more difficult.
Besides, such attacks are usually most efficient against
physical effects which can be explained with linear models
(e.g. the additive delay model for arbiter PUFs [52]), and
it is unclear whether the glitchy signal of inexact inner
product computations have such a simple linear behavior, in
particular when a direct access to this signal (available only
at the input of the register) is not granted to the adversary.

Second and more importantly, the LPPN assumption
is fundamentally different than assuming the existence of
PUFs, for which robustness – as defined in [50] – is ad-
ditionally required. Conceptually, probabilistic effects (i.e.
physical noise sources) can indeed only be detrimental in
the context of PUFs, since they should be small enough for
a user being able to reconstruct a stable answer after some
post-processing (e.g. fuzzy extraction [53]). By contrast in
the case of LPPN, the errors can come both from determin-
istic effects (that are indeed similar to the ones exploited in
PUFs) and probabilistic effects (that are closer to the ones
exploited in true RNGs). So depending on how much an
LPPN assumption relies on deterministic (resp. probabilis-
tic) effects, its security will be closer to the assumption that
strong (e.g.) glitch PUFs (resp. good RNGs based on clock
jitter / supply noise) exist. As mentioned in introduction,
we believe this difference opens a large design space for
cryptographic hardware research, to find implementations
producing secure LPPN samples at minimum cost.

Third and most importantly, from an adversarial point-
of-view, a significant difference between modelling attacks
against PUFs and the LPPN assumption is the presence of a
secret key in the inner product computations of which the
glitches should be predicted. While in the context of PUFs
the adversary can (try to) model some physical feature of
an implementation based on a full knowledge of its internal
state, in the LPPN case he only has access to the public x val-
ues, which makes the modeling more challenging (moving
from supervised to unsupervised machine learning).

7 TECHNICAL CHALLENGES

As it is clear from Definitions 2 and 4, there are two natural
ways to break the LPPN assumption. First one can try to
break the weak unpredictability of the physical function, by
modeling its behavior (e.g. with a linear approximation).
Second, one can directly target the LPPN assumption with
standard algorithms such as [19], [21], [47], of which the
complexity depends on the error probability ε̃. In practice,
this means that in order to guarantee the security of proto-
cols based on LPPN, one at least needs to control this error
probability. We now study two technical challenges for this
purpose. First, we analyze the possibility for an adversary to
reduce ε̃ thanks to plaintext filtering, and show that this risk
can be mitigated by appropriate architectural choices. Sec-
ond, and since perfectly controlling the frequency or voltage
of a chip is not achievable, we specify concrete guidelines for
these physical quantities by analyzing the impact of a small
deviation on the error probability for the security of the
LPPN problem. Note that these discussions are connected
to our specific instances of inexact computations.

7.1 Data dependencies

In general, secure LPN instances require that the (Bernoulli)
noise needed to generate the outputs is independent of the
inputs. Therefore, in the case of LPPN an important question
is to study whether correlations between the inputs and
outputs of an inexact computation could be exploited by
an adversary. Since the instances of LPPN implementations
in this paper are based on deterministic glitches, a natural
track to investigate in this respect is the impact of the inputs’
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(a) Supply voltage sweep.

(b) Frequency sweep.

Fig. 6. Impact of filtered plaintexts: ◦ are for random inputs, × are for
inputs with 8 bits stuck at 0, ∆ are for inputs with 32 bits stuck to 0.

Hamming weight / distance on the probability of error ε̃.
Note that in our setting where we send successive inputs
to the inexact inner product computations, reducing the in-
puts’ Hamming weight by setting their LSBs to zero implies
reducing their Hamming distance because it sets the first
bits of the inner product computation to zero independent of
the key. As mentioned in Section 3.2, one could expect that ε̃
decreases with such inputs, which we experiment next.

For this purpose, we investigated the same setting as in
Section 3, but this time compared a situation with random
inputs and inputs such that a number of their LSBs are stuck
to zero. Note that since the LPPN assumption only works
with random inputs, setting bits to zero can only be done by
filtering the plaintexts. As illustrated in Figure 6, such data
dependencies are very clearly observed in the case of a serial
architecture, both in the voltage and frequency domains
(see, e.g. the curves for s = 16 where 8 bits are set to
zero). This is simply explained by the fact that setting some
LSBs to zero means that the XORs whose inputs are now
zero are nulled, which effectively reduces the critical path.
Yet, there are two simple ways to mitigate this effect. First,
increasing the size of the architecture makes the filtering less
effective (since a smaller fraction of the input bits are set to
zero), as illustrated with the s = 64-bit serial architecture.
Second, and more interestingly, such data dependencies
vanish in the case of parallel architectures in which the
presence of glitches is much more limited (since there are
much less imbalances between the routing paths of such
architectures). So overall, we need serial architectures for
the glitch generation and parallel architectures for the data
independence.3 As a result, a natural option is to consider
the mixed architecture of Figure 2, where we start with the
parallel stage (with limited glitches and data dependencies)
and then use the serial stage for error control. As illustrated
in Figure 6 this gives significantly improved results. For
example, the mixed architecture with p = 8 and s = 8 has
significantly less data dependencies than the s = 64 one.

3. If relying on deterministic effects. Parallel architectures with proba-
bilistic errors could also be good candidates for LPPN implementations.

TABLE 1
Maximum deviations tolerated on the error probabilities for a target
ε̃tgt = 1/4 and ε̃min = 1/8, with security levels λtgt and λmin.

n 256 512 768 1280
ε̃tgt 0.25
λtgt 64 99 139 198
ε̃min 0.125
λmin 52 82 109 161

max(∆ε) 0.125
max(∆λ) 12 17 30 37

Note that similar dependencies can be observed for the
key, implying a risk of weak keys which is easily mitigated
in two ways. First, the (frequency or voltage) overscaling
or the addition of probabilistic noise can be done adaptively
(i.e. after the selection of the key), as proposed in conclusion.
Second, the vast majority of the keys will have a Hamming
weight close to n/2. So, one could use keys with Hamming
weights in a given range without hurting the system.

To conclude these investigations, we analyzed a realistic
case study of 512-bit inexact inner product computation,
based on a mixed architecture with p = 64 and s = 8. (Due
to long simulation times, this architecture was only studied
in the voltage domain). We further looked at the impact of
fixing 8 and 32 input bits to zero in this case. As illustrated in
the top part of Figure 6, the impact of such data dependen-
cies is again very limited. More precisely, we checked that
the deviations on the probability ε̃ they imply are smaller
than the deviations of this probability that we are anyway
going to tolerate due to imperfect control of the supply
voltage and clock frequency (see the next section). Hence,
we conclude that even in the case of LPPN implementations
based on deterministic glitches only, data dependencies can
be made small enough to ensure security against filtering
attacks. Note that LPPN exploiting probabilistic effects can
only be less sensitive to such dependencies, since the errors
may also come from data-independent noise in this case.

7.2 Internal chip control

The last example of 512-bit mixed architecture is particularly
appealing, since it combines limited data dependencies with
a limited slope of the error curves (since these errors are
mostly due to the 8-bit serial part of the computation). It
is therefore a good starting point to argue that controlling
our inexact implementations in order to ensure a sufficient
security level is achievable with state-of-the-art techniques.
For this purpose, we first need to quantify acceptable secu-
rity degradations due to imperfect control, which we will
do with the recent attack complexities’ estimates by Bogos
et al. [54]. That is, let us consider a target error probability
of ε̃tgt = 1/4 and a lowest tolerated error probability
of ε̃min = 1/8, so that the maximum tolerated deviation
∆ε = 1/8, with corresponding security levels λtgt, λmin and
a maximum difference of security levels max(∆λ), security
levels max(∆λ), as indicated in Table 1. This means that
for n = 512 bits, we target a security level of ≈ 99 bits, and
want to ensure that deviations due to a lack of control on the
error probability do not decrease this security level down to
less than≈ 82 bits. Next, one can directly translate this error
control into clock frequency or supply voltage control by
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looking at the figures in the previous section. For example,
ε̃tgt = 0.25 corresponds to a supply voltage of ≈ 1.145V
for our 512-bit mixed architecture, and ε̃min = 0.125 to
a supply voltage of ≈ 1.170V. This means that we can
tolerate errors of 2% which is easily achievable. For example,
reference [55] describes a generator that outputs 0.9 V and
minimizes the voltage variations to 0.73%. Note that at
1.145V, the error probability of our mixed architecture with
8 (resp. 32) bits set to zero decreases from 0.25 to 0.23 (resp.
0.21) which, as previously mentioned, indicates comfortable
security margins against plaintext filtering attacks (since we
set ε̃min = 0.125). An even more comfortable situation holds
for frequency control. For example, we estimated the clock
frequencies corresponding to ε̃tgt = 0.25 and ε̃min = 0.125
for our 512-bit mixed architecture as approximately 1GHz
and 950MHz, respectively. Reference [56] provide a clock
signal in the GHz range with a frequency resolution of 100
Hz, which is orders of magnitude more accurate.

Based on these references, we conclude that an internal
and autonomous control of either the supply voltage or the
clock frequency is possible with existing tools. Note that by
internal we mean that an adversary should not be able to
alter the probability of error by controlling the circuits’ IOs.
And by autonomous we mean that this control should adjust
the error probability in case of environmental variations (e.g.
an adversary changing the chip’s temperature). We leave
the exact implementation of such a chip control as a scope
for further research (some potential directions are given in
conclusion) and next focus on the cryptographic treatment
and applications of the new LPPN assumption.

Additional remark #1. When probabilistic errors are ex-
ploited in an LPPN implementation, it may be useful to
have a systematic way to exploit lower error rates (since
a small jitter may only generate ε̃ < 0.125). In such cases, a
natural way to design the implementation is to consider two
cycles: a first one where small errors are generated for small
inner products, a second one where these inner products
are recombined in an error-free stage – which would then
increase the error according to the piling up lemma [57]:

Lemma 1 (Piling up lemma). Let Xi (1 ≤ i ≤ η) be
independent random variables whose values are 0 with
probability pi and 1 with probability 1 − pi. Then, the
probability that X1 ⊕X2 ⊕ . . .⊕Xη = 0 is:

1

2
+ 2η−1

n∏
i=1

(pi −
1

2
).

Table 2 provides values for the control of the error probabil-
ity in such cases, with r the number of XORs in the second
stage. For example, n = 512 and r = 4 would mean that
we implement four 128-bit inner products in the first cycle,
each of them with a target probability of error of 0.0796, that
are XORed together in the second cycle. Interestingly, the
increase of the noise level after recombination in the second
cycle provides a mathematical foundation to the increased
steepness of the curves with large s values in Section 3.

We finally mention that strictly speaking there is no
obligation that deterministic errors in inexact inner product
computations depend on all their n input bits. Indeed, the

TABLE 2
Max. deviations tolerated on the errors prob. for 2-cycle inner product

architectures (with r inner products combined in the 2nd cycle).

r = 1
ε̃tgt 0.25
ε̃min 0.125

max(∆ε) 0.125

r = 2
ε̃tgt 0.1464
ε̃min 0.0670

max(∆ε) 0.0794

r = 4
ε̃tgt 0.0796
ε̃min 0.0347

max(∆ε) 0.0449

security levels that we target with the LPPN assumption are
anyway significantly below 2n because of generic attacks. So
if we denote with s this target security level, errors coming
from 2s < n bits could be sufficient, so that it remains hard
for the adversary to detect two samples with the same error
(i.e. a collision on the noise-influencing inputs).

Additional remark #2. The interface between the LPPN
design and other digital blocks on-chip depends on the
control parameter. If the frequency is the control parameter,
a phase-locked loop can be used to generate the required on-
chip clock. In order to process the input bits, they need to be
stored in a memory and then accessed by the LPPN design
with its internal clock frequency. If the supply voltage is
the control parameter, it can be provided by an on-chip
Linear Drop Out (LDO) voltage regulator that has good line
regulation (e.g. [58]). The interface with other digital blocks
operates at the external supply voltage, and level shifters
can be employed among the different voltage islands.

8 CRYPTOGRAPHIC TREATMENT

The previous sections initiated a reasoning that physical
sources of errors whose importance increases with tech-
nology scaling, can be efficiently exploited to define hard
physical learning problems. In this section, we complement
this discussion with a cryptographic treatment of these
new tools. For this purpose, we first connect the weak
unpredictability of a physical function with its LPPN hard-
ness. Then we formalize the notions of deterministic and
probabilistic effects that were informally introduced in our
experimental evaluation of the physical properties that can
be exploited in the design of hard physical functions.

8.1 Weak unpredictability implies LPPN hardness
Definitions 2 and 4 consider the weak unpredictability of a
PIP and the LPPN hardness as independent notions. In this
section, we show that weak unpredictability is a sufficient
condition for LPPN hardness with the following lemma:

Lemma 2 (Weak unpredictability ⇒ LPPN hardness).
Let PFdk,α be an ε̃-PIP physical function. If PFdk,α is
(q, t,m, γ)-weakly unpredictable, then the LPPN prob-
lem is (q, t,m, (γ − 1/2)/(1/2− 2ε̃+ 2ε̃2)-hard.

Proof: We will show that an (q, t,m, θ) adversary A
against LPPN implies an (q, t,m, θ(1/2 − 2ε̃ + 2ε̃2) + 1/2)
adversary B against the weak unpredictability of PFdk,α.
We define B as follow. First collect q queries in the learning
phase and forward them to A. With probability θ, A will
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return us the key k of the device. On challenge x, B outputs
〈x, k〉 ⊕ ν, where ν is drawn from a Bernoulli distribution
with parameter ε̃. We then have:

Pr[B wins] = Pr[B wins | A wins] Pr[A wins]
+ Pr[B wins | A loses] Pr[A loses],

= (ε̃2 + (1− ε̃)2)θ +
1

2
(1− θ) .

By contrast, LPPN hardness does not imply weak unpre-
dictability. A trivial counterexample is a PIP that outputs a
constant string independent of x and k.

8.2 Deterministic vs. probabilistic hardness
In Sections 3 and 4 , we discussed solutions to produce in-
exact inner product implementations exploiting both deter-
ministic and probabilistic effects. In view of the importance
of these concepts, this section aims to formalize them, and
discuss their relations with existing hard learning problems.
For this purpose, we introduce the following model.

Definition 5 (PIP model). Let PFdk,α be an ε̃-PIP and denote
Dd,k,α(x) as a deterministic function of the device d, the
key stored in it k and the parameters α. Let also Rd,α
be a random variable depending on the device d and
parameters α such that P̂r[Dd,k,α(X) ⊕ Rd,α = 1] = ε̃.
We define the ε̃-PIP model as follows:

PFdk,α(x) = 〈x, k〉 ⊕ Dd,k,α(x)⊕Rd,α.

Note that we consider Rd,α to be additive and independent
of x and k, which is a reasonable first-order approximation
since it mostly depends on physical signals (e.g. the supply
voltage and clock in our examples) that are independent of
x and k. Based on this model, a deterministic-only LPPN
assumption corresponds to the case where Dd,k,α 6= 0
and Rd,α = 0 and a probabilistic-only LPPN assumption
corresponds to the case where Dd,k,α = 0 and Rd,α 6= 0.

Probabilistic-only LPPN. In this case, it is easy to see that
the physical function behaves exactly as a standard LPN
oracle, with estimated noise parameter ε̃. Concretely, this
corresponds to a chip where rather than increasing (resp. de-
creasing) the clock frequency (resp. supply voltage) in order
to perform erroneous computations, we would exploit and
amplify their instability. Such designs are similar to RNGs
based on oscillators [49]. So this approach is conceptually
more conservative, since exploiting randomness in a quite
traditional manner. In this respect, one advantage of proba-
bilistic LPPN is that it mitigates the risks of data-dependent
errors discussed in Section 7.1. Besides, we insist that even
in this case LPPN is not equivalent to LPN, because we
exploit the intrinsic randomness of the computations rather
than extrinsic randomness, which is different from the side-
channel attacks point-of-view (see Section 9).

Deterministic-only LPPN. By contrast, arguing that deter-
ministic errors are computationally indistinguishable from
probabilistic ones from the adversary’s viewpoint is a much
stronger hypothesis, since it essentially requires the function
Dd,k,α(x) to be cryptographically strong in some sense. Con-
cretely, this for example corresponds to a case with noise-
free clock and supply voltage signals, but overscaled such

that the implementation produces (deterministic) erroneous
answers, as previously investigated. Conceptually, one can
relate such a function to the LWR problem [59], [60], which
can be seen as an instance of a deterministic LWE problem.
However, whereas the noise in the LWR assumption is em-
ulated with a (deterministic) rounding function chosen by
the cryptographer, this function is specified by the (physics
of) the device d in our LPPN case. This leads to the question
of whether there are realistic conditions for Dd,k,α that are
sufficient to make LPPN secure. We show next that different
options can be considered for this purpose.

Variability. A first option is to build on variability. That is,
one would then take advantage of the fact that every chip
implementing LPPN leads to a different d, extracted from
a hard to characterize distribution. For example, if d was
uniformly distributed for each device and drawn from a
set of size greater than some security parameter, it would
be sufficient to have D a biased weak-PRF, with d a key
such that Pr[Dd,k,α(X) = 1] = ε̃. This requirement is quite
strong, and may be even more difficult to verify empirically
than directly evaluating the physical unpredictability. Yet,
we note that this is typically the type of condition that is
required for the security of strong PUF instances. The latter
again illustrates that LPPN is a less demanding assumption
than strong PUFs, since variability is one physical effect
(among others) that can be exploited to generate errors. For
example, neither the previous probabilistic effects nor the
following non-linearity can be leveraged in a PUF design.

Non-linearity. Even if all the chips implementing LPPN
lead to identical d values, i.e. in the absence of variability, a
second (complementary) option is to build on the possible
cryptographic strength of the deterministic error function.
For this purpose, and for illustration, let us write a deter-
ministic ε̃-PIP for the mixed architecture of Section 7 as:

PFdk,α(x) = z(1)⊕ z(2)⊕ . . .⊕ z(ñ)︸ ︷︷ ︸
〈x,k〉

⊕ δ(z(1), z(2), . . . , z(ñ))︸ ︷︷ ︸
Dd,k,α(X)

, (1)

where the bits of the ñ-bit vector z typically correspond to
partial inner products, e.g. intermediate results of the 〈x, k〉
computations that are XORed together in the final (serial)
part of the architecture. Furthermore, let us assume that the
errors are generated by a deterministic function δ that only
takes the bits of z as input. Clearly, if δ was unique and
public, but corresponding to a non-linear Boolean function,
then breaking the PIP would correspond to cryptanlyzing a
“physical stream cipher” filtering linear combinations of key
bits with δ. In this case, we would rather require that D is
a biased weak-PRF with secret key k, leading to interesting
tradeoffs between security (for which large ñ are preferable)
and control (for which smaller values are preferable).

Discussion. Both the variabilty option and the non-linearity
option raise new research challenges regarding the charac-
terization of emerging nanotechnologies, and the crypto-
graphic analysis of deterministic error functions provided
by physical measurements. Interestingly, in practice, it is
usally a combination of both probabilistic and deterministic
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effects that will be observed, the latter ones mixing variabil-
ity and possible non-linearity features. So this observation
again highlights the broadness of the design space opened
by LPPN and the need of further experimental investiga-
tions in order to better understand the respective impact of
these different physical effects. Even more interestingly, we
next show that in case neither variability nor non-linearity
effects are sufficient to provide secure deterministic LPPN
(which would still leave the room for secure probabilistic
LPPN), it is actually possible to exploit their cryptographi-
cally weak deterministic errors in case the ε̃-PIPs are masked
against side-channel attacks. Since the main selling point
of LPPN implementations is anyway their potential for
enhanced physical security, this last observation strengthen
their relevance to practice by reducing the physical require-
ments for securely exploiting deterministic effects.

9 MASKED INNER PRODUCT COMPUTATIONS

9.1 Efficient implementation

As such, inexact implementations of inner product compu-
tations as outlined in the previous sections are already inter-
esting, since they offer an efficient and possibly low-power
way to implement LPN-based primitives. In particular, they
remove the need to have Bernoulli RNGs embedded (e.g.)
on the prover side of an authentication protocol, which
may be a bottleneck for low-cost devices [39]. However,
the most interesting implementation feature of inexact inner
products is their ability to be efficiently masked. Indeed, and
as first hinted in [36], the inner products used in LPN inher-
ently have an easy-to-exploit key homomorphism, namely
〈x, kA ⊕ kB〉 = 〈x, kA〉 ⊕ 〈x, kB〉. This implies that this part
of the computations can be masked in an optimal manner
(i.e. with fully linear overheads, using the key refreshing
discussed in Theorem 4 of [61]). Moreover, since the key
shares are manipulated independently, such a masked im-
plementation also offers a direct protection against glitches,
which are generally expensive to prevent [62], [63]. As a
result, masked LPPN implementations can provide expo-
nential security increases (in the number of shares) at the
sole condition that the leakages of the shares are sufficiently
noisy, directly following the prediction in [64], [65].

Note that the glitches considered here as a detrimental
side-effect against masking are different from the glitches
exploited constructively in Section 2.3. In the first case, we
refer to glitches that combine different shares, while in the
second case we consider glitches that are internal to the
computation of each share. So in fact, the only limitation of
protocols such as LAPIN from the side-channel resistance
point-of-view was the difficulty to generate the Bernoulli
noise in a leakage-resilient manner [40]. Incidentally, this
is exactly where the LPPN assumption comes in handy.
That is, and as it is clear from Figure 1, such a noise
does not have to be generated, since erroneous outputs will
be directly produced by inexact implementations. So the
single probe attack (on the RNG output) that directly breaks
masked implementations of the standard LPN is prevented
by design in the LPPN case, and inexact inner product
implementations can be fully masked against side-channel
attacks, with only linear overheads. In this respect, we do

not claim that protecting standard LPN implementations
against side-channel attacks is impossible. An alternative
option remains to protect their RNGs with masking tech-
niques or other countermeasures. However, as for our other
arguments in favor of LPPN, we believe that this standard
approach will generally imply more overheads.

9.2 Masking implies independent deterministic errors

As discussed in the previous section, ensuring that the
deterministic errors of an LPPN implementation do not lead
to exploitable correlations leads to various engineering chal-
lenges. We now show that it is possible to get around these
challenges and to guarantee that (under some assumptions)
deterministic LPPN can be secure even if its underlying
function is cryptographically weak. For this purpose, we
first notice that masked implementations of inexact inner
products do not require more control on the error prob-
abilities. Indeed, it is sufficient that the errors affect only
one share, since all of them are XORed before the output
is made available to the adversary. Assuming a shared key
k = kA ⊕ kB , we can therefore re-write Equation 1 as:

PFdk,α(x) = zA(1)⊕ zA(2)⊕ . . .⊕ zA(ñ)︸ ︷︷ ︸
〈x,kA〉

⊕ δ(zA(1), zA(2), . . . , zA(ñ))︸ ︷︷ ︸
Dd,k,α(x)

⊕ zB(1)⊕ zB(2)⊕ . . .⊕ zB(ñ)︸ ︷︷ ︸
〈x,kB〉

. (2)

Now let us assume that the ñ-bit error function δ has a
truth table with Hamming weight ñ

4 (aiming for ε̃ ≈ 1
4 )

or ñ
8 (aiming for ε̃ ≈ 1

8 ). Then, we directly have that if
zA is uniformly distributed and unknown (which happens
if the masked implementation is leak-free), the security of
the corresponding ε̃-PIP only depends on the probability
of error ε̃ (which now only requires to be controlled as
discussed in Section 7). In other words, by harnessing the
randomness of masked implementations, we can strengthen
the independence guarantees of deterministic LPPN errors
without any cryptographic assumption on D. Admittedly,
it then remains to show that these guarantees hold in front
of side-channel adversaries who try to learn the zA vector
by observing some leakages. For this purpose, (besides the
fact that D may have some cryptographic strength and
be combined with probabilistic effects), we first note that
nothing prevents adding a term δ(zB(1), zB(2), . . . , zB(ñ))
to the third line of Equation 2, so that the deterministic
errors are shared as well. In this case, security against side-
channel attacks trying to bias the error distribution would
increase directly as predicted in [64], [65], at the cost of an
increased control predicted by the piling up lemma.

More fundamentally, even if the errors are not shared,
side-channel attacks against such ε̃-PIP have strong similar-
ities with the recent Learning with Leakage (LPL) assump-
tion (which reduces to LPN) [66]. This suggests that such
a PIP could be proven secure assuming some amount of
noise in the measurements. We leave the reduction between
masked LPPN and LPL as an interesting open problem.
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10 SECURITY AGAINST FAULT ATTACKS

Before to conclude, we first mention that LPN-based primi-
tives generally have useful features for improved resistance
against fault attacks as well. In particular, it has been shown
recently that some prominent fault models (e.g. where an
adversary flips bits in an implementation) are ineffective
against LPN implementations and that attacks taking ad-
vantage of more advanced fault models (e.g. where an ad-
versary sets bits in an implementation) require significantly
more samples than against standard symmetric crypto-
graphic primitives such as block ciphers [37]. More precisely,
this reference showed that for fault attacks targeting the
inner product computation, the number of faulty samples
to recover an LPN key is typically in the thousands range
(compared to a few pairs for block ciphers). Furthermore,
in case the accuracy of the fault is not perfect (e.g. if the
fault hits one out of ∆ intermediate results with uniform
probability rather than one precise intermediate result), this
number of samples increases by a factor ∆2. In this respect,
we note that high accuracy will typically be difficult to ob-
tain in our hardware architectures where many intermediate
results of the inner product are computed in a single cycle.
As for attacks directly targeting the randomness by setting
the additive error to zero (which allows simple key recovery
by Gaussian elimination), the work in [37] additionally
showed they are even more sensitive to inaccuracies. So this
threat is in fact very effectively prevented in LPPN where
the error is not well located in the implementations.

Eventually, we observe that combined resistance against
side-channel and fault attacks is difficult to obtain with
state-of-the-art tools. For example, in the case of block
cipher implementations it may happen that a fault detection
mechanism creates additional sources of information leak-
age [45]. More generally, the interaction between counter-
measures against those two types of attacks always requires
special care and masking as such does not help against
fault attacks [44], [46]. In this respect, a very interesting
feature of masked inner product computations is that they
actually increase the difficulty of performing fault attacks
with imperfect accuracy. Indeed, and taking the example of
the inner products in Equation 2, the only samples that can
be efficiently exploited by an adversary are those for which
the faults hit the same intermediate computation for the two
shares. Hence, and following a reasoning similar to the one
in [37], we have that if the faults on the inner products
of the two shares are only accurate up to the previously
introduced ∆ parameter, the number of samples needed for
key-recovery increases by a factor ∆4. The latter becomes
∆2d with d shares, which is rapidly prohibitive.

11 CONCLUSIONS & PERSPECTIVES

In this paper, we introduced a conceptually new solution
to implement cryptographic primitives based on the LPN
problem, and formalized it with the LPPN assumption.
We further proposed first instantiations of this assumption,
taking advantage of inexact inner product computations
that are an emerging trend in the micro/nanoelectronic
literature. Eventually, and based on circuit simulations and
measurements on a prototype chip, we confirmed experi-
mentally that the error probability of these instances (that

is the main factor influencing the hardness of the LPPN
problem) can be controlled thanks to frequency and voltage
overscaling. We also discussed their excellent properties for
resistance against side-channel and fault attacks. In view of
the exploitability of LPN in an increasingly large variety of
cryptographic protocols, we hope these results will stimu-
late further research in the efficient implementation of LPPN
instances and the analysis of their leakage-resilience.

Interestingly, while most current cryptographic research
follows a top-down methodology (i.e. define mathematical
assumptions that then have to be fulfilled by implementers),
our results suggest that the opposite approach (i.e. starting
from physical features made availble by technology scaling,
and trying to build secure cryptosystems based on them)
may lead to useful outcomes as well, as already outlined in
the PUF literature. This complementary view leads to differ-
ent open problems. As mentioned in Section 8.2, finding re-
ductions to the minimum conditions allowing secure LPPN
assumptions based on deterministic physical functions is an
important challenge. Besides, there is a wide variety of other
error distributions that could be evaluated. In particular, our
investigations focused on inner product computations in Z2.
But one could naturally consider computations over larger
rings, and generalizations towards more general Learning
With Physical Errors (LWPE) problems. For example, Fig-
ure 8 in Appendix A illustrates that the probability of error
for 4-bit S-box outputs (measured as a fraction of incor-
rect outcomes) can be controlled via overscaling. The use
of physical distributions also raises the question whether
small deviations from the ideal distributions assumed in
the mathematical analysis of hard learning problems can
significantly degrade their actual security level.

From the hardware point-of-view, our investigations in-
dicate that there are at least simple instances of inexact prod-
uct computations, based on frequency and voltage over-
scaling, that allow efficient implementations and for which
the technical challenges to obtain data independent and ac-
curate error probabilities can be solved with state-of-the-art
solutions. Hence, it is an interesting project to translate this
proof-of-concept into a fully functional and efficient proto-
type where this control is operated autonomously on chip
(this is fundamental since an adversary should not be able to
have any external control of the error probability).4 Besides,
it is worth insisting that our investigations only covered a
subset of the architectures and physical effects that could
be used for inexact implementations. For example, and as
far as our proposed instances are concerned, there is a wide
literature on adaptive voltage and frequency scaling that
could be exploited to further improve the control of these
quantities [67]. More prospectively, the exploitation of inter-
nal transistor noise suggested in [68], [69] is an interesting
trend to investigate in the LPPN context, since the amount
of such noise increases with technology scaling. So overall,
we believe the proposals in this paper lead to interesting
new problems, at the intersection between cryptographic
and electrical engineering, with potential applications for
secure, efficient and low(er) cost implementations.

4. relying on FPGA implementations for this prototyping of the
LPPN assumption may not be easy, in view of the precise control
and understanding we need about the underlying hardware. Therefore,
taping out an ASIC design is most likely needed for this purpose.
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APPENDIX A
S-BOX MEASUREMENT RESULTS

A.1 Simulation and experimental settings
Our AES S-box chip consists in a combinatorial S-box that
has been full-custom designed (details can be found in [70]).
Its 8-bit inputs and outputs are buffered, and in order to
operate the S-box at lower than nominal (1.2V) supply
voltages, a level shifter is added after each S-box output
bit, before being buffered. The output buffers are sized
large enough to be able to drive the output pads of the
chip at maximum frequency and nominal supply voltage.
However, due to the presence of these output buffers, some
glitches that are present at the S-box output are unfortu-
nately suppressed while operating at nominal (1.2V) supply
voltage, because they are too fast. Consequently, we decided
to operate the S-box at a lower supply voltage of 0.35V.
The output bits of the S-box after the level shifters and the
buffers are captured using a Lecroy HRO 66 ZI oscilloscope
(at 2GS/s). Eventually, we sampled the output waveforms
at the required time samples as a post-processing (software)
step, in order to emulate the sampling of an output register.
Our simulation setting for this S-box computation is essen-
tially similar to the one of the inner product computations
in Section 3.1. Compared to the measurements, the only
difference is that the sampling of the waveforms is directly
performed thanks to registers that we added before the
input buffers and after the output buffers. As in the previous
sections, we estimated the error probabilities based on 1000
uniformly distributed inputs (taking > 256 inputs was jus-
tified by the possible presence of probabilistic effects in our
measurements, and by the fact that glitches are dependent
on the 2562 possible input transitions in our S-box design).
In order to be comparable to inner product computations,
we only considered the errors on a single output bit.

A.2 Simulation and experimental results
Our results for the simulated (resp. experimental) AES ex-
periments are in the upper (resp. lower) part of Figure 7.
Once again (in fact even more than in the previous sec-
tions), we focus on the conceptual lessons rather than the
concrete values which may differ for a real prototype chip
implementing inner product computations. In this respect,
the main observation is that for this AES case study as
well, it is possible to control the probability of error of
an output bit via supply voltage and clock frequency ma-
nipulations. Furthermore, this observation now holds for
both simulated and actual measurements. In fact, the main
difference between these two settings is the slightly lower
clock frequency allowed by the test chip – which can be
explained since previous experiments with this chip already
suggested that it lies in the slow-slow corner [70], [71].

(a) Supply voltage sweep. (b) Frequency sweep.

Fig. 7. Probability of error for an S-box output bit.

(a) Supply voltage sweep. (b) Frequency sweep.

Fig. 8. Probability of error for 4 S-box output bit.


