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ABSTRACT

Secure authentication is a necessary feature for the deploy-
ment of low-cost IoT devices. Due to their conceptual sim-
plicity, protocols based on the Learning Parity with Noise
(LPN) problem have been proposed as promising candidates
for this purpose. However, recent research has shown that
some implementation issues may limit the practical relevance
of such protocols. First, they require a (Pseudo) Random
number Generator (RNG) which may be expensive. Second,
this RNG may be an easy target for side-channel analysis.

The recently introduced Learning with Physical Noise
(LPPN) assumption aims at mitigating these two issues. It re-
moves the need of an RNG by directly performing erroneous
computations, which is expected to lead to more efficient im-
plementations and improved side-channel security. So far, the
LPPN assumption has only been analyzed mathematically,
and its feasibility discussed based on simulations, putting
forward the possibility to control the error rate of an imple-
mentation thanks to frequency/voltage overscaling.

In this paper, we confirm these promises by demonstrating
a first prototype implementation of LPPN in a 28nm FDSOI
CMOS technology which occupies an area of 19,400 𝜇m2.
We used a mixed 512-bit parallel/serial architecture in order
to limit the exploitation of data-dependent errors with so-
called filtering attacks. We additionally designed an on-chip
feedback loop that adjusts a variable delay line in order to
control the error rate, which prevents other attacks altering
external parameters such as the supply voltage, operating
temperature and clock frequency. Measurement results show
that a simple authentication protocol based on LPPN would
consumes 1 𝜇J per authentication at 0.45V supply. Combined
with the excellent algorithmic properties of LPPN regarding
security against side-channel and fault attacks, these concrete
feasibility results therefore open the way towards the design
of full authentication systems with high physical security, at
lower cost than standard solutions based on block ciphers.
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1 INTRODUCTION

The past decade has witnessed the emergence of the Internet
of Things (IoT) which allows the integration of embedded
devices in an increasingly wide range of applications of the
every day life (e.g., smart cars, e-health and smart homes to
name a few). This wide spectrum of applications may manip-
ulate confidential data in resource-constrained environments
and therefore must ensure minimum security guarantees (e.g.,
authentication) that can be implemented with a limited area
and power/energy consumption budget [24]. The area of
lightweight cryptography has been developed in reaction to
these new challenges, and a possible solution to solve the
lightweight authentication issue is to use block ciphers [7].

Having a lightweight block cipher implementation still ig-
nores a part of the problem though. Indeed, devices deployed
in the IoT context are also very accessible targets for physical
attacks, where an adversary controlling a cryptographic im-
plementation monitors side-channel leakages [19], or tries to
force erroneous computations [13], in order to recover secret
data. Unfortunately, state-of-the-art countermeasures against
such attacks are usually expensive and difficult to implement
– even more if joint countermeasures are needed. For exam-
ple, the cost of a masked (i.e., secret-shared) implementation
which mitigates side-channel leakages roughly grows quadrati-
cally in the number of shares [10], and its security depends on
physical assumptions that may be contradicted by concrete
manufacturing defaults [4, 20]. Furthermore, the interaction
between masking and countermeasures against fault attacks
may lead to additional overheads [25] and weaknesses [23].

In this context, the Learning Parity with Noise (LPN)
problem has gained attention as a versatile and potentially
lightweight assumption upon which to build various cryp-
tographic protocols, and in particular authentication ones:
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Figure 1: Conceptual block diagram of LPN/LPPN
authentication schemes for IoT applications.

see [12] for an early work in this direction, [11] for a more
recent proposal and [22] for a survey. The state-of-the-art
of these protocols shows a quite opposite trend: while their
direct exploitation for lightweight applications is question-
able [1], implementations of the inner product computation
that is at the core of LPN-based protocols inherently offer
good resistance against side-channel attacks via masking
(since key-homomorphic) and fault attacks [5]. So they could
theoretically lead to masked implementations with overheads
that are linear in the number of shares and strong resistance
against fault attacks. Yet, two important drawbacks limit
the deployment of such solutions: first LPN-based protocols
require on-chip (pseudo)randomness generation to produce
the noise (which has non-negligible cost); second, this ran-
domness must be protected against physical attacks [8].1

In a recent work, Kamel et al. proposed to mitigate these
two issues by substituting the Random Number Generator
(RNG) needed to implement LPN-based protocols thanks to
an inexact implementation of the inner product computa-
tions [15]. The latter leads to a new (physical) assumption
defined as Learning Parity with Physical Noise (LPPN). As
illustrated in Fig. 1, it is appealing since it removes the need
of an expensive RNG and prevents side-channel attacks tar-
geting the generation of the noise (since the correct outputs
are never explicitly computed by the implementation). Yet,
while conceptually elegant, this solution (that was so far
only analyzed theoretically and based on simulations) also
raises new engineering challenges. In particular, LPPN-based
protocols must implement controllers in order to efficiently
control the error probability in such a way that an adversary
cannot tamper with it externally. In other words, this control
should ideally be internal (i.e., on-chip) and autonomous
(i.e., automatically adjust the error probability in case of
environmental variations provoked by an adversary).

In this work we demonstrate the feasibility of designing
a low-power LPPN-based processor using the computations’
delays as a control element. Erroneous inner product com-
putations are achieved by sampling their unstable outputs.

1 The latter is not unfeasible but increases the overheads. For example,
one solution for masking would be to generate independent Bernoulli
noise for all the shares, with probabilities of errors per share set as a
function of the number of shares thanks to the piling-up lemma.

Concretely, this is achieved by digitally controlling the output
sampling clock using a variable delay line. We argue that
using a controlled delay line (rather than a controlled clock
frequency or supply voltage as suggested in [15]) is interesting
since it prevents certain additional attacks. For example, tam-
pering with the clock frequency in order to reduce the error
probability and extract the secret key is impossible (since
the delay control is independent of the clock frequency). Sim-
ilarly, the impact of tampering the supply voltage is limited
because the variable delay line shares the same supply voltage
as the inner product (thus both are impacted in the same
way by changes of the supply voltage). Based on this design
principle, we describe for the first time a working prototype
of low-power 512-bit LPPN processor, fabricated in 28nm
FDSOI CMOS technology, where inexact computations are
deployed to implement a noisy inner product rather than
combining exact inner product computations with a standard
RNG to generate the errors. We show how to implement a
calibration phase during which the error control is adjusted
in order to maintain the required error probability during
authentication. We additionally prove that data dependencies
in the error probabilities can be kept under control thanks
to a mixed (64-bit parallel × 8-bit serial) architecture, as
suggested in [15]. We finally validate the correct operation of
the LPPN processor (i.e., we verify that the error probability
is well within the accepted bounds) across a wide tempera-
ture range (-40 ∘C to 85 ∘C) – thus eliminating the chances
of an adversary who may alter the operating temperature of
a working chip in order to try recovering the secret key.

We insist that unlike conventional approximate computing
applications where the induced errors are tolerated to improve
the performances and save power [3], the goal of the LPPN
approximate computations is to rely on the presence of a
controllable amount of errors in order to ensure security.

2 BACKGROUND

2.1 LPN problem

Let 𝑘 ∈ {0, 1}𝑛 be a random 𝑛-bit secret and ⟨𝑥, 𝑘⟩ denote the
binary inner product of input 𝑥 ∈ {0, 1}𝑛 and 𝑘. Let 𝜖 ∈]0, 1

2
[

be a noise parameter that follows a Bernoulli distribution
(Ber𝜖) such that if 𝑒← Ber𝜖, then Pr[𝑒 = 1] = 𝜖 and Pr[𝑒 =
0] = 1− 𝜖, and the distribution 𝐷𝑘,𝜖 be defined as:

𝐷𝑘,𝜖 =: {𝑥← {0, 1}𝑛; 𝑒← Ber𝜖 : (𝑥, ⟨𝑥, 𝑘⟩ ⊕ 𝑒)}.
Let 𝒪𝑘,𝜖 denote an oracle outputting independent samples
according to the distribution 𝐷𝑘,𝜖. The LPN 𝑛

𝜖 problem is
said to be (𝑞, 𝑡,𝑚, 𝜃)-hard to solve if for any algorithm 𝐴,
the following inequality holds:

Pr[𝑘 ← {0, 1}𝑛 : 𝐴𝒪𝑘,𝜖(1𝑛) = 𝑘] ≤ 𝜃,

and the algorithm 𝐴 runs in time < 𝑡, with memory < 𝑚
and makes at most 𝑞 queries to the oracle 𝒪𝑘,𝜖.

2.2 LPN-based authentication

The LPN problem was first used for secret key identification
protocols in the proposal by Hopper and Blum [12] (next de-
noted as the HB scheme) which requires two communication



rounds. Later, it was extended to HB+ [14] that is secure in
an active attack model, and to HB# that is secure against
man-in-the-middle attacks [9]: both require three communi-
cation rounds. In [16] a two-round alternative identification
scheme was proposed, which was the basis for the LAPIN pro-
tocol [11]. The LPPN processor that we study in this paper
can be used for the implementation of all these protocols.

2.3 LPPN problem

To describe the LPPN assumption, we first recall the “physi-
cal function” defined in [2], slightly simplified as in [15]. A
physical function PF𝑑,𝛼 is a probabilistic procedure based on
a physical device 𝑑, which can be stimulated with some input
challenge 𝑥 ∈ {0, 1}𝑛𝑖 , making 𝑑 respond with a (probabilis-
tic) output 𝑦 ∈ {0, 1}𝑛𝑜 , with 𝛼 a set of parameters and 𝑛𝑖

and 𝑛𝑜 the number of input and output bits. In our “physical
LPN” context, 𝑑 is the implementation of an approximate
inner product computation, so 𝑛𝑖 = 𝑛 and 𝑛𝑜 = 1.

A physical function is called an 𝜖-Physical Inner Prod-
uct (𝜖-PIP) if, on uniform public input 𝑥 ∈ {0, 1}𝑛 given
𝑘 ∈ {0, 1}𝑛 be a random 𝑛-bit secret stored in the de-
vice 𝑑𝑘, it outputs ⟨𝑥, 𝑘⟩ with estimated error probability:

P̂r[PF𝑑𝑘,𝛼(x) ̸= ⟨𝑥, 𝑘⟩] = 𝜖. Based on this definition, the
LPPN problem can be described just as the LPN problem,
with the only difference that the LPN samples are replaced
by the outputs of an 𝜖-PIP. It is conjectured in [15] that the
LPPN problem can be as hard as the LPN problem.

3 PIP IMPLEMENTATION

In summary, the main technical challenge to leverage the
LPPN assumption in concrete applications is to design an 𝜖-
PIP such that the error probability 𝜖 cannot be tampered with
by an adversary manipulating the implementation generating
the noisy samples. Figure 2 shows the high-level architecture
of a LPPN processor aimed to fulfill this requirement. It
consists of an inner product block, a variable delay line and a
finite state machine (FSM) error controller. The operation of
this processor holds in two phases: first, a calibration phase
where the verifier exchanges sets of challenge-response (𝑞
queries) during 𝑟 steps with the prover to tune its control (so
that it responds with the required error probability during
the authentication); second the actual authentication.

Figure 2: LPPN processor high-level architecture.

Figure 3: LPPN processor block diagram.

The LPPN processor is detailed in Fig. 3. It also imple-
ments a deserializer stage to facilitate the communication
of 512-bit values to the chip. In our current prototype im-
plementation (of which the goal is to investigate the error
control part of an 𝜖-PIP), both the key and the input are
sent to the LPPN processor. In a real-world prototype, the
secret key would be embedded (in a shared manner if masked)
and the random input would also be generated on-chip in
case of protocols secure against man-in-the-middle attacks.
The architecture of the inner product block, which computes
the parity signal 𝑃𝑖𝑛𝑡, is a (𝑝 × 𝑠)-bit mixed architecture,
where 𝑝 is a 64-bit parallel stage and 𝑠 is an 8-bit serial
stage. The choice of this architecture is justified by the fact
that it reduces the possibility that an adversary exploits a
data-dependent error probability thanks to so-called filtering
attacks, as discussed in [15] and experimentally validated
next. The variable delay line uses digitally-controlled delay el-
ements with shunt-capacitors via NMOS switches. To control
these switches, an error controller provides a 6-bit control
signal (CNTL) which is adjusted based on the required prob-
ability during the calibration phase. It comprises a pair of
DFFs to output an erroneous parity 𝑃 and a correct (delayed)
version of it, 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡, an error generator to compare both
bits and compute the error signal 𝑒, a 10-bit error counter
to count the number of errors over 1024 queries and a com-
parator that compares the error count to the target (e.g., 256
to achieve 𝜖 = 0.25). The 𝐶𝑁𝑇𝐿 bits are then set to 1 or 0
through the FSM in a successive approximation scheme.

The timing diagram in Fig. 4a shows both the key (𝐾𝑖𝑛)
and challenge (𝑋𝑖𝑛) that are shifted through the deserializer’s
flipflops during 64 clock cycles and then loaded via the latches
during the low state of the 𝐺𝑁 clock signal. The pulsed 𝐺𝑁
clock signal is delayed through the variable delay line stages
and inverted (it is now renamed 𝐺𝑁𝑑𝑒𝑙) in order to sample
the output of the inner product block 𝑃𝑖𝑛𝑡 during its glitchy
period. The erroneous output parity bit 𝑃 is then compared
to the correct parity bit 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡, thus generating the error
signal 𝑒. It is important to emphasize that the 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 bit



(a)

(b)

Figure 4: Timing diagram of the LPPN processor
(part a) and of its error control block (part b).

is only needed during the calibration phase and should not
be available during the actual authentication phase, other-
wise the probing-like attacks that the LPPN assumption is
supposed to mitigate become trivially applicable again.

The timing diagram of the error control block is shown in
Fig. 4b. The errors are counted in the control block during
one FSM clock cycle (𝑇𝐹𝑆𝑀 = 1024 × 𝑇𝐺𝑁𝑑𝑒𝑙). During the
first step, the 6 𝐶𝑁𝑇𝐿 bits are all reset to zero (i.e., the
delay of the variable delay line is at its minimum which
implies a high error count). At the end of the first step, the
10-bit error count is compared to the target count and the
FSM decides to set the MSB of the 𝐶𝑁𝑇𝐿 to one during the
second step in order to increase the delay of the 𝐺𝑁𝑑𝑒𝑙 edge.
The following steps are conducted in the same way where the
FSM sets the corresponding 𝐶𝑁𝑇𝐿 bit to one and decides
whether to reset the previous bit to zero or not until all bits
of the 𝐶𝑁𝑇𝐿 signal are computed. This in total requires 7
steps (1 step where all bits are reset to zeros and 6 steps to
compute the values of the 6 𝐶𝑁𝑇𝐿 bits). After the 𝐶𝑁𝑇𝐿
bits are computed, the error controller goes into lock state,
keeps the same values of the 𝐶𝑁𝑇𝐿 bits as in the last step,
and the actual authentication can take place.

4 MEASUREMENT RESULTS

The LPPN processor including the deserializer, the delay line
and the error controller circuits occupies 19,400 𝜇m2 in a
28nm FD-SOI process using CMOS logic gates as shown in
Fig. 5. The full system consumes 20.16 𝜇W from a 0.45 V
supply. The LPPN processor is clocked by an external clock of
10 MHz provided by National Instruments’ digital waveform
generator (PXI-6552) which also generates the 8-bit serial
input 𝑋𝑖𝑛 and key 𝐾𝑖𝑛 sequences. The chip also features the
deserializers’ load clock 𝐺𝑁 generator. It operates in two
modes: the normal mode where the error controller searches
for the appropriate 𝐶𝑁𝑇𝐿 bits to achieve the required error
probability and a testing mode, where the 𝐶𝑁𝑇𝐿 bits are

number of bits (n) 512

number of queries (q) 1024

Target Pr[e = 1] (𝜖) 0.25

Upper bound (𝜖𝑚𝑎𝑥) 0.348

Lower bound (𝜖𝑚𝑖𝑛) 0.125

Figure 5: Die Micrograph of the LPPN processor and
typical parameters for an authentication scheme.

externally generated so that the error probability can be swept
across the full 𝐶𝑁𝑇𝐿 range. The system parameters are set
as in Fig. 5 (from [17]). The maximum boundary of 𝜖 is 0.348
which mitigates the probability to reject a honest prover,
while the minimum boundary (0.125) ensures the security
of LPPN does not fall below 82 bits [15]. As illustrated in
Fig. 6, the chip behaves as expected with internal automatic
𝐶𝑁𝑇𝐿 calibration, and the final error probability = 0.225
which is very close to the target 𝜖 = 0.25 and well within the
boundaries tolerated by the LPN authentication scheme.

4.1 Data dependencies

The security of LPPN-based protocols requires the error
probability to be independent of the inputs. Otherwise an
adversary can exploit correlations between the inputs and
outputs of the approximate computation of an 𝜖-PIP by
filtering the input challenges (in order to reduce the error
probability). In order to mimic this scenario, we set some
𝑚-LSBs of the secret key to 0. Since the LPPN assumption
only works with random inputs, setting bits to 0 requires that
the challenges are filtered (which has an exponential cost and
is typically unfeasible for 𝑚 > 64). Figure 7 demonstrates
the measurement results of the mixed LPPN system where
the control signal is externally swept from 0 to 60 and the
error probability is computed over 1024 queries, first with a
random fixed key, then using keys whose 𝑚-LSBs are set to 0
(𝑚 takes values from 8 to 256). It is clear that the deviations
of the error probability due to setting the key’s LSBs to 0
is sufficiently limited up to 64 bits and would be tolerated
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Figure 6: (a) Error measured by the LPPN controller
in 7 successive steps thanks to the CNTL signal and
(b) the corresponding error probability.
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within the boundaries of the LPPN authentication scheme.
Therefore, we conclude that the data dependencies (due to
deterministic effects) in our architecture can be kept small
enough to ensure security against filtering attacks.

4.2 Voltage-Temperature sensitivity

In order to maintain the error probability well within bounds,
the LPPN system needs to adapt autonomously to any change
imposed by an adversary such as altering the system clock
frequency, the chip’s voltage supply or simply the tempera-
ture. Since the error probability is controlled by adjusting
the delay of the output sampling clock edge, it is naturally
independent of the system clock frequency. Fig. 8a shows
the impact of varying the supply voltage from 0.4 V to 1 V
and the temperature from -40 ∘C to 85 ∘C (using a climate
chamber) on the 𝐶𝑁𝑇𝐿 signal that reaches its maximum
value (63) at a supply of 1 V and at 85 ∘C. The corresponding
error probability across this range is well within the defined
bounds: (𝜖𝑚𝑖𝑛 = 0.125) < error probability < (𝜖𝑚𝑎𝑥 = 0.348),
as presented in Fig. 8b. The white region in the Shmoo plots
represents the conditions where the chip does not fulfill its
security conditions anymore (when runinng at 10 MHz).2

4.3 Performance assessment

The performance summary of the LPPN processor for an
exemplary authentication is given in Table 1. The reported
area is for the full implementation. The overhead of the
control part (i.e., the delay lines and the error control) count
for 10 % (in terms of number of instances) while the flip-flops,

2 In the above experiment, we assume an adversary who tampers with
either the supply voltage or the temperature (or both) in the same way
during the calibration and the actual authentication phases. In such a
case, whatever change he enforces on the system is compensated by the
control block such that the error probability is well bounded within the
specified range. A more dangerous scenario could occur if the adversary
is capable of altering the supply voltage and/or temperature during
the calibration phase in a different way than during the authentication
phase. In this case, the 𝐶𝑁𝑇𝐿 signal locked during calibration will no
longer correspond to the conditions of the authentication. As a result,
the error probability could be reduced and the secret key recovered.
One way to overcome this problem is to implement an on-chip voltage
regulator that has good line regulation (e.g. [21]). Another solution is
to implement a voltage sensing mechanism such that if the voltage is
different between the calibration and the authentication phases, the
authentication is canceled. Designing such protective schemes is a scope
for future research. Note that such attacks would be much harder with
the temperature, because the latter changes between hugely different
values (see Fig. 8a) and an attack would therefore need more time
than the calibration time of the LPPN processor (less than 50 ms).
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Figure 8: Impact of voltage supply and temperature
on (a) the error controller’s output (CNTL) and (b)
the probability of error after the calibration.

latches of the deserializers and the inner product block are the
dominant contributors. The overall energy per authentication
is 1 𝜇J at 0.45 V supply and corresponds to a total of 8 steps
(i.e., 7 steps to calibrate the error control signal and one for
the actual authentication). This assumes that calibration is
repeated for each authentication in order to avoid attacks
controlling the supply voltage or temperature. As mentioned
in Footnote 2, using on-chip voltage regulators would allow
to mitigate such attacks (and therefore to perform calibration
only once, or at least much less regularly, potentially reducing
the energy cost by a factor close to 8 and reducing the
communication complexity – which is an interesting research
direction). The LPPN processor consumes a total of 20 𝜇W
power at 0.45 V. The latency which is the time for a full
authentication cycle (including the 𝐶𝑁𝑇𝐿 calibration phase)
is 52 ms at 10 MHz clock frequency. The throughput of the
LPPN processor is reported to be 156.25 kbps.

5 DISCUSSION & FUTURE WORK

As discussed in [15], the relevance of the LPPN assumption
may come from different sources of hardness. The minimum
requirement (investigated in the previous sections) is that
the error probability is set to a value similar to those used
by the LPN assumption and cannot be tampered with by
an adversary. More precisely, this is sufficient in the case

Table 1: LPPN processor summary.

Area
19,400 𝜇𝑚2

16,333 GE

Energy per HB authentication 1 𝜇J

Power @ 0.45V 20.16 𝜇W

Latency 52 ms

Throughput 156.25 kbps



of a masked implementation of LPPN, which is its typical
use case: see [15], Section 9.2. But theoretically, the security
of the LPPN assumption could also be obtained directly
thanks to deterministic and probabilistic physical effects
(see [15], Section 8.2). In order to analyze these effects, we
superimposed a noise signal over the voltage supply using
the AG33250A Keysight arbitrary waveform generator. In
this experiment, 1024 random challenges and a random fixed
key are repeated 100 times at low (𝜎𝑛 = 4.6 mV) and high
(𝜎𝑛 = 332 mV) supply voltage noise. To distinguish the
deterministic and probabilistic components, we observe the
output parity bits over the repeated input challenges. For the
1024 output parity bits, we compute the number of repetitions
over the 100 times. If the output party bit is repeated more
than 95 times it is considered deterministic. The deterministic
component is the percentage of parity bits in the 1024 pattern
that satisfies this condition. The probabilistic component
is 100 % minus this value. In Fig. 9 we demonstrate how
supply noise changes the contribution of each component at
two different supply voltages (0.45 V and 0.6 V). It is clear
that the deterministic component of the LPPN processor
is dominant at 0.6 V and low supply noise (91.7 %), and
the contrary holds at higher supply noise when the supply
voltage is reduced to 0.45 V. The deterministic component
never reaches 100 % because of jitter on the clock signal
(which was measured to be 34 ps). Similarly, the probabilistic
component never reaches 100 % in our experiment because
of the limitation of the measurement setup where we reached
the maximum supply noise.

We tested the deterministic Boolean function correspond-
ing to the upper left case of the figure and observed the
following cryptographic properties [6]: algebraic degree 7, al-
gebraic immunity 3, fast algebraic immunity 6, non-linearity
68 (leading to a bias of ≈ 0.25) and most critically unbal-
anced (only 106 ones in its truth table). In short, it implies
that this Boolean function (despite not being trivially weak
from the non-linearity/algebraic viewpoints) is not sufficient
to be used as a filter that would lead to secure LPPN based
only on deterministic effects. Furthermore, its unbalanced na-
ture means that as long as a purely probabilistic 𝜖-PIP is not
reached, there will remain exploitable correlations (in our case
where the errors originate mainly from an 8-bit serial part).

These last observations are not problematic for the rele-
vance of the LPPN assumption. They recall that building
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Figure 9: Impact of supply noise and voltage on the
randomness of the LPPN processor output.

cryptographic primitives based on physical effects is chal-
lenging (and hard to assess), as witnessed by the Physically
Unclonable Functions (PUF) literature [18]. In this respect,
it is interesting that the LPPN assumption can lead to secure
protocols even without deterministic or probabilistic physical
hardness (i.e., controlling the error is enough in the case of
masked LPPN). LPPN can use the physics to make physical
(side-channel and fault) attacks harder and rely on mathemat-
ical hardness for black box security. Based on these results,
the design of a full LPPN system masked against side-channel
analysis and potentially using the improvements mentioned
in Footnote 2 are promising directions for future work.
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