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Abstract
At CCS 2016, Dziembowski et al. proved the security of a generic

compiler able to transform any circuit into a Trojan-resilient one
based on a (necessary) number of trusted gates. Informally, it ex-
ploits techniques from the Multi-Party Computation (MPC) litera-
ture in order to exponentially reduce the probability of a successful
Trojan attack. As a result, its concrete relevance depends on (i) the
possibility to reach good performances with affordable hardware,
and (ii) the actual number of trusted gates the solution requires.
In this paper, we assess the practicality of the CCS 2016 Trojan-
resilient compiler based on a block cipher case study, and optimize
its performances in different directions. From the algorithmic view-
point, we use a recent MPC protocol by Araki et al. (CCS 2016)
in order to increase the throughput of our implementations, and
we investigate various block ciphers and S-box representations
to reduce their communication complexity. From a design view-
point, we develop an architecture that balances the computation
and communication cost of our Trojan-resilient circuits. From an
implementation viewpoint, we describe a prototype hardware com-
bining several commercial FPGAs on a dedicated printed circuit
board. Thanks to these advances, we exhibit realistic performances
for a Trojan-resilient circuit purposed for high-security applica-
tions, and confirm that the amount of trusted gates required by the
CCS 2016 compiler is well minimized.
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1 Introduction
Context. While technology scaling has been the enabling factor
for producing increasingly powerful micro- and nano-electronic
devices, it has also made the manufacturing process of these devices
a more difficult and expensive task. As a result, selling Intellectual
Property (IP) cores and outsourcing the fabrication of Integrated
Circuits (ICs) have become common in the semiconductor industry.
For example, a recent study by Semico Research estimates that the
IP market should exceed 8 Billion USD by 2020 [29]. Yet, despite
being well motivated from a cost viewpoint, such a model raises im-
portant issues regarding the trust one can have in the manufactured
ICs [16]. The latter are particularly critical for computing devices
embedding cryptographic engines carrying out sensitive tasks. In
this context, hardware Trojan attacks (where an adversary modifies
an implementation during its manufacturing and hides a backdoor
that may be used after deployment) have gained relevance over the
last years: various “hard-to-detect” hardware Trojans have been
described in the academic literature (e.g., [7, 12, 26]), real-world
examples have been publicized (e.g., [2, 18, 30]), and several surveys
have confirmed the difficulty to capture malicious manufacturers,
due to the diversity of the attack vectors, activation mechanisms
and payloads they exploit [8, 31, 36].
Taxonomy and countermeasures.Hardware Trojans can be clas-
sified in roughly two main classes. First, digital hardware Trojans
for which the activation mechanism and the payload are communi-
cated via the infected implementation’s standard inputs and outputs.
Typical examples include cheat codes (which trigger the malicious
behavior when a specific input is provided to the device) and time
bombs (which activate the Trojan after the device is executed a
certain number of times). Second, physical hardware Trojans for
which the activation mechanism and payload are communicated
via physical side-channels. In the following, we will only consider
digital hardware Trojans, which already cover a broad range of
published threats (e.g., [7, 12]) and are very damaging since easily
activated and exploited remotely.

As for countermeasures, we can also distinguish twomain classes.
First, reactive countermeasures which aim at detecting the hard-
ware Trojans thanks to physical inspection. Typical examples in-
clude [1, 3, 25]. While conceptually able to detect any type of hard-
ware Trojan, they are limited by their empirical nature and become
less effective as the size of the infected circuit increases (or the size
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of the Trojan circuit decreases).1 Second, preventive countermea-
sures which aim at making the insertion or exploitation of a Trojan
more difficult for the adversary. Seed approaches for this purpose
include split manufacturing [17] and input scrambling [34], which
also come with limitations. For example, the sole use of split manu-
facturing has been shown to be circumvented by new threats [35],
and input scrambling was originally limited to the protection of
specialized cryptographic primitives with input homomorphisms.

As a result of this state-of-the-art, two recent (and indepen-
dent) works initiated a more systematic study of distributed crypto-
graphic protocols in order to better exploit these intuitively appeal-
ing principles. First, the work by Ateniese et al. takes advantage of
Multi-Party Computation (MPC) in its classical setting and provides
security as long as𝑚 − 1 among𝑚 ≥ 2 outsourcing manufacturers
are honest [5]. Concurrently, the work by Dziembowski et al. (on
which we focus next) exploits MPC protocols in order to design a
generic compiler that ensures a stronger property of robustness [10].
Informally, robustness is modeled by a game with two phases. First,
in the testing phase, a tester checks whether some (untrusted) de-
vices implement their correct specification. If the testing is passed,
the adversary can then interact with the untrusted devices via a
(small) master which is the only trusted part of the circuit. Robust-
ness guarantees that for fresh inputs, the outputs produced in the
second phase are identical to the outputs produced by the honest
specification. It is parameterized by two quantities 𝑡 and 𝑛, where
𝑡 denotes the number of tests carried out and 𝑛 is the number of
online executions for which the output has to be correct. The CCS
2016 compiler requires 𝑡 ≫ 𝑛 and bounds the probability of an

incorrect output by
(
4𝑛
𝑡

)⌈ 𝜆
2
⌉
, with 𝜆 the number of concurrently

executed passively secure three-party protocols of the functionality
to implement.
Our contribution. While the previous compiler is theoretically
convincing, one important question left open by Dziembowski et al.
is whether it is also practically-relevant? Answering this question
boils down to the analysis of two main issues. First, is it possible to
reach acceptable cost and performances for a Trojan-resilient circuit
implementing a useful primitive, with high robustness guarantees?
Second, is the amount of trusted gates required for the Trojan-
resilient circuit sufficiently reduced so that ensuring their trust via
detection-based approaches is indeed more realistic? (Typically, a
natural requirement in this respect is that this amount of trusted
gates of the master is at least significantly lower than the one
needed to implement the target primitive).

We answer the first question positively by investigating a pro-
totype Trojan-resilient block cipher circuit. For this purpose, we
implement a passively secure three-party protocol that is the core of
the CCS 2016 compiler on a Printed Circuit Board (PCB) combining
four commercially available Field Programmable Gate Arrays (FP-
GAs), and optimize its performances in different directions. From
the algorithmic viewpoint, we take advantage of a recent MPC pro-
tocol by Araki et al. proposed at CCS 2016 which allows improved
throughput [4]. We also compare two different block ciphers (i.e.,
the standard AES Rijndael [9] and the bitslice cipherMysterion [19])

1 The latter limitation provides strong motivation for minimizing the size of the trusted
part in the Trojan-resilient circuits investigated next, for which confidence has to be
gained thanks to detection.

and different representations for the AES S-box, in order to reduce
the communication complexity of our Trojan-resilient circuits and
gain understanding on the impact of such optimizations. We then
develop a hardware architecture that balances the computation and
communication cost of our Trojan-resilient circuits, and investigate
the impact of the communication channel’s bit size and frequency
for this purpose. The total cost of the components used to imple-
ment a three-party protocol amounts to 120 USD. Based on our
setup, we are able to execute a Trojan-resilient AES at a through-
put of 2.3 [Mbps]. Thanks to our modeling of the communication
interface, we extrapolate that this throughput could be improved
by a factor 20 by using state-of-the-art tools for higher-frequency
communications between the FPGAs (e.g., using so-called Rocke-
tIO’s [24]).2 An additional factor 2 is gained when implementing
the bitslice cipher Mysterion rather than the standard AES. Overall,
this implies that one could AES-encrypt “on-the-fly” 1 Gbit of data
after an offline testing phase of 7 days using a Trojan-resilient cir-
cuit with 𝜆 = 13 three-party protocols, for a total cost of 640 USD,
limiting the probability of incorrect outputs to 2−89.

We answer the second question positively by minimizing and
carefully analyzing the number of trusted gates in the master FPGA.
For this purpose, we take advantage of the proposal made in [10]
for the design of a secure (not robust) Pseudo-Random number Gen-
erator (PRG). Indeed, since the latter is only used for generating the
shares of our three-party protocol (which are recombined by the
master before the output is transmitted to a potential adversary),
robustness is not required for this part of the Trojan-resilient cir-
cuits. The latter is naturally combined with the protocol of Araki
et al. [4]. It allows limiting the master to a couple of XOR gates for
the generation of correlated randomness from uniform randomness
and for the shares’ recombination, together with the logic needed
for computing a majority over 𝜆 bits. Concretely, we then evaluate
the number of Gate Equivalents (GEs) in the master. For this pur-
pose, we first describe how to implement a majority function on the
master with minimum area requirements. We then compare the GE
count of our master with the number of GEs needed to implement
an AES core. We observe that even in the (pessimistic) case where
a single primitive (i.e., a block cipher) is implemented, we already
reach significant gains. Namely, the master can be implemented in
a few hundreds of GEs which is one order of magnitude smaller
than the smallest AES cores published in the literature [11, 14, 23].
This allows improving the relevance of detection-based approaches
to prevent hardware Trojans for this (trusted) part of the circuit.
The latter factor naturally increases as the complexity of the system
to implement increases. For example, one could design a Trojan-
resilient circuit mixing several cryptographic primitives (of which
the combined cost would increase) with the same minimum master.

2 Related works
We first mention a separate line of papers which considers a

different setting, where an untrusted circuit proves that its execu-
tion is correct each time it performs a computation [5, 6, 33]. These
papers exploit techniques from the Verifiable Computation (VC) lit-
erature and correspond to a different tradeoff between security and

2 The latter improvement would mostly requires a PCB design able to deal with higher
communication frequencies, which is out of our scope here since it does not imply
any specific research challenge.



trust. Namely, they cover an even broader class of hardware Trojans
and achieve security for an arbitrary number of executions (unlike
us who restrict the number of executions a-priori), at the cost of a
more complex (trusted) master circuit and the impossibility to pre-
vent “denial-of-service attacks". By these attacks, we mean that the
hardware Trojan aims to stop the system (which is easily achieved
in the VC framework by sending incorrect proofs). The latter are
avoided by the compiler of Dziembowski et al. thanks to the testing
phase and the robustness guarantees it brings (see Section 3.1.3).

More recently, a publication of Mavroudis et al. detailed the de-
sign of a Trojan-resilient system based on specialized cryptographic
primitives [21]. We next explain the differences between this work
and ours:
(a) Security vs. robustness. The work in [21] guarantees security
while we focus on robustness, which we believe is often a more
meaningful notion for protection against hardware Trojans. First,
robustness is a stronger guarantee than security, because robustness
ensures that the implementation satisfies its intended functionality.
Hence, if a cryptographic implementation achieves robustness, then
it also achieves security as long as the underlying cryptographic
algorithm is secure. As discussed above robustness also implies re-
silience against denial-of-service attacks, while the security notion
of [21] does not protect against them. Second, robustness is more
general because it makes sense for non-cryptographic/security re-
lated functionalities. For instance, consider a hardware Trojan in a
navigation system, which maliciously directs the system’s owner
to a wrong location. Finally, for many cryptographic primitives
defining a meaningful security notion in the presence of hardware
Trojans is hard. For example, consider an implementation of a public
key digital signature scheme. If the implementation of the signing
algorithm is corrupted by a hardware Trojan, then one plausible
security guarantee may be that after interacting with the corrupted
signing algorithm, it is not possible for the attacker to forge sig-
natures with respect to the public key. However, such a guarantee
does not say much about the usefulness of a trojan-infected signing
implementation because a malicious implementation may output
false signatures that do not offer any authenticity guarantee.
(b) Need of multiple facilities. The security level in the paper by
Mavroudis et al. is based on the equation:

Pr[secure] = 1 − Pr[error]𝑘 ,

with Pr[error] being an estimation of the probability of a back-
doored component and 𝑘 a number of independent foundries build-
ing the system’s components. So in order to (exponentially) increase
the security, one requires multiple independent facilities (which
is hard to ensure for large 𝑘’s and in general inconvenient). The
testing amplification in the compiler of Dziembowski et al. that we
exploit allows exponential robustness increases with all circuits
designed by a single manufacturer.3

(c) Qualitative vs. quantitative guarantees. The Pr[error] parameter
in [21] depends on the design under investigation, and there is
no commonly accepted way of evaluating it. By contrast, testing
amplification provides easy-to-estimate quantitative guarantees for
a number of correct executions of the functionality to implement.

3 Two manufacturers if the master is designed separately.

(d) Trust assumptions. The security guarantees in [21] require that at
least one implementation of the secure distributed computations to
perform is honest. The latter (carrying out public key protocols) is a
significantly larger circuit than the small trusted master we require.

So overall, the work of Mavroudis et al. rather corresponds to
a different tradeoff between (better) performances and (weaker)
security guarantees. In this respect, the following implementations
provide an interesting comparison point in order to gauge the
performance overheads that the stronger (robustness) guarantees
of the generic compiler of Dziembowski et al. allows.

3 Background
The next descriptions use elements of a finite field F, denoted

with lowercase letters 𝑥 . Field additions and multiplications are re-
spectively denoted as ⊕ and ⊙. When these field elements represent
correlated randomness, we denote them with Greek letters (e.g.,∑𝑑
𝑖=1 𝛼𝑖 = 0, with all 𝛼𝑖 ’s but one picked up uniformly at random).

When a value 𝑥 is secret-shared, we denote its shares as 𝑥𝑖 .

3.1 The CCS 2016 Trojan-resilient circuits
In this section, we recall the basics of the CCS 2016 Trojan-

resilient circuits, starting with the threat model, following with the
compiler used to build them and concluding with a short description
of testing amplification and the robustness guarantees it provides.
3.1.1 Threat model The following solutions prevent any digitally-
triggered hardware Trojan produced by a malicious manufacturer
(or adversary) A. In this setting, A receives the circuit specifi-
cations Γ and produces a device 𝐷 supposedly implementing the
specified functionality. No assumptions are made on the malicious
circuitry inside 𝐷 excepted that it is produced by a polynomially-
bounded manufacturer.4 This allows that the size of the Trojan
circuitry can be larger than the one of circuit needed to implement
the specifications. This threat model typically corresponds to the
situation of a small country (or big company) with no IC facilities
and sensitive information to manipulate / tasks to perform with
the untrusted ICs it can assemble.
3.1.2 Generic compiler The generic circuit compiler TR (here TR
stands for transform) applies to any deterministic circuit specifi-
cation Γ a mapping from the initial functionality to a Hardware-
Trojan resilient architecture based on three different components
shown in Figure 1. Each of them has a different purpose and trust
requirements.
The master, next denoted asM, is the only trusted piece of hard-
ware required in the architecture to achieve Trojan-resilience. There-
fore, it has to be built by an honest manufacturer or to be easily
verifiable with (reactive) Trojan detection tools. The latter implies
thatM should contain a minimum number of gates. Concretely, it
is the only component directly interacting with the adversary and
is in charge of the secret sharing / reconstruction and the majority
vote on the sub-circuits outputs.
The sub-circuits, next denoted as Γ𝑖 , correspond to 𝜆 independent
instances running on input 𝑥 a semi-honest three-party computa-
tion protocol for Γ(𝑥). This implies that the shares of the three-party
computation protocol run by Γ𝑖 should be independent of the oth-
ers. Note that the use of a (more efficient) semi-honest protocol

4 The latter is needed to prevent that A can break the underlying cryptographic
functionalities thanks to classical cryptanalysis.
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Figure 1: Trojan-robust circuit architecture: the trusted
(resp., untrusted) components are in green (resp., in red).

(where corrupted parties can gather information out of the protocol,
but do not deviate from its specifications) is in contrast with [5]
which requires security against active attackers. Passive security is
sufficient in our case thanks to the testing phase (which ensures
the correct protocol execution up to some probability).
The mini-circuits are the three components of the sub-circuits
Γ𝑖 and are denoted (Γ1

𝑖
, Γ2
𝑖
, Γ3
𝑖
). They compute the target function-

ality based on a (semi-honest) three-party computation protocol.
This requires that each (untrusted) Γ 𝑗

𝑖
must have uniformly dis-

tributed inputs, which are shared byM. Each of the mini-circuits
inside a sub-circuit is connected to other mini-circuits through the
master. In practice, the production of all the Γ 𝑗

𝑖
can be outsourced

to a single polynomially-bounded manufacturer A that returns
physical devices 𝐷 𝑗

𝑖
supposedly corresponding to the mini-circuits

specifications. So all the 𝐷 𝑗
𝑖
are unstrusted hardware components.

3.1.3 Testing amplification and robustness Robustness against hard-
ware Trojans ensures that a device tested up to 𝑡 times will output
correct values during the following 𝑛 times of online executions.
So it essentially corresponds to correctness for such a number of
executions. More precisely, the ROB game (formally defined in [10])
proceeds as follows: the device 𝐷 is produced by a polynomially-
bounded adversary A and after a testing phase T(𝐷) including
up to 𝑡 tests, A fails (i.e., ROB = 0) if 𝐷 follows the specification
Γ for 𝑛 inputs selected by A. Qualitatively, 𝐷 is Trojan-robust if
for adversary-controlled inputs 𝑥𝑖 , 𝐷 (𝑥𝑖 ) ≠ Γ(𝑥𝑖 ) (i.e., ROB = 1)
only happens with negligible probability. As already mentioned, an
interesting feature of this definition is that the untrusted devices are
(with high probability) guaranteed to output correct values during
the 𝑛 usages, hence preventing denial-of-service attacks.

During the testing phase T, each device (i.e., mini-circuit) is
tested independently a random number of times 𝑡 ′

r← {1, . . . , 𝑡},
where 𝑡 is a security parameter such that 𝑡 ≫ 𝑛. The same 𝑡 ′ can
be used for the mini-circuits of the same sub-circuits, but different
sub-circuits need different 𝑡 ′ values. For this purpose and for each
test input, one simply verifies that the outputs of the devices under
test correspond to their specification Γ

𝑗
𝑖
. Note that the devices’ ex-

ecution under test or actual inputs should be indistinguishable in
order to avoid trivial attacks detecting the testing procedure, which
is exactly what the compiler working on uniformly random share
guarantees. Besides, the testing must be performed by a trusted

party. As a result, one obtains a simple robustness bound for a
single device as given by Pr [ROB = 1] ≤

(
𝑛
𝑡

)
.

Next, by exploiting redundancy at the sub-circuit level and letting
M performing a majority vote on the 𝜆 outputs of the different Γ𝑖 ’s,
A can only win the ROB game if it is able to produce ⌈𝜆/2⌉ devices
that trigger simultaneously during the 𝑛 online runs. Hence, a
robustness bound for the entire architecture is given by Equation 1:

Pr [ROB = 1] ≤
(
4𝑛
𝑡

)⌈ 𝜆
2
⌉
· (1)

It requires to test and combine 3 · 𝜆 untrusted devices. Note again
that themaster performs amajority vote on the sub-circuits’ outputs
to amplify the robustness bound, but none of the mini-circuits (nor
majority of mini-circuits) must be honest for this bound to hold.
3.1.4 The PRG case and security bounds The previous (generic,
Trojan-robust) architecture can be easily turned into a Trojan-
secure PRG [10]. For this purpose, just note that a value 𝑦 =

𝑥1 ⊕ . . . ⊕ 𝑥𝑙 is pseudorandom if a single 𝑥𝑖 out of 𝑙 is pseudo-
random. As a result, in contexts where one is only interested in the
security of the PRG (which is a significantly weaker notion than
robustness), it is possible to implement 𝑙 PRGs (with different keys)
in devices 𝐷𝑖 and let the master sum their outputs. The resulting
construction is a Trojan-secure PRG and the probability of an at-
tack against the PRG security can be bounded by (𝑛/𝑡)𝑙 . The latter
construction is particularly interesting for the generation of the
randomness needed for secret sharing the inputs of a Trojan-robust
circuit (since there shares will never be output by the circuit and
therefore are only required to be secure).

3.2 Target block ciphers
We next take block ciphers as a running example of circuits

that we want to implement in a Trojan-robust manner. For this
purpose, wewill consider two case studies. First the AES Rijndael [9]
which is a natural candidate to evaluate in view of its standard
nature. Second, the bitslice cipher Mysterion [19] which we use
to evaluate the extent to which having ciphers working in binary
fields with a reduced number of multiplications is beneficial to
the implementation of our three-party secure protocol. Both are
Substitution Permutation Networks (SPN) and follow the 3-layer
structure with a non-linear substitution made of S-boxes, a linear
diffusion layer and a state permutation.

As usual in MPC, the key mixing and the permutation layers
(which are linear operations) nearly come for free and most of
the implementation efforts are spent on the (non-linear) S-box
optimizations. In the AES case, this S-box is a multiplicative inverse
in GF(28) (followed by an affine transformation). For Mysterion,
the 4-bit S-box [32] is based on a simple bitslice description with
only four AND gates.

4 Algorithmic improvements
The main goal of this paper is to discuss (and ideally confirm)

the concrete relevance of the abstract specifications in the previous
section, based on a meaningful case study. As mentioned in the
introduction, this boils down to analyzing the performance level
that can be reached using commercially available hardware (we
will consider low-grade FPGAs) and evaluating the complexity of
the trusted master circuit. A first natural step in this direction is to
investigate algorithmic optimizations that can be used in order to



Algorithm 1 Generation of correlated randomness.
INIT: Trusted setup generates (𝑘1, 𝑘2, 𝑘3, 𝑖𝑑)

• Γ1 receives (𝑘1, 𝑘2) and 𝑖𝑑
• Γ2 receives (𝑘2, 𝑘3) and 𝑖𝑑
• Γ3 receives (𝑘3, 𝑘1) and 𝑖𝑑

GetCorrRandom:
• Γ1 computes 𝛼1 = 𝐹𝑘1 (𝑖𝑑) ⊕ 𝐹𝑘2 (𝑖𝑑)
• Γ2 computes 𝛼2 = 𝐹𝑘2 (𝑖𝑑) ⊕ 𝐹𝑘3 (𝑖𝑑)
• Γ3 computes 𝛼3 = 𝐹𝑘3 (𝑖𝑑) ⊕ 𝐹𝑘1 (𝑖𝑑)
• Γ1, Γ2, Γ3 computes 𝑖𝑑 := 𝑖𝑑 + 1

increase performances. In this section, we consider two solutions
for this purpose. Namely, we first describe a recent MPC protocol
by Araki et al. [4] which improves over the one initially proposed
by Dziembowski et al. [10]. Second, we discuss implementation
tricks used in the block cipher literature to speed up hardware /
masked implementations [20, 22].

4.1 Three-party computation protocol
The three-party computation protocol with honest majority of

Araki et al. allows reduced data transfers, a lower latency and a
minimum amount of operations to be performed by the trusted
masterM (essentially the secrets’ sharing and opening). Security
and correctness proofs are available in [4]. We next describe its
most important operations, namely the sharing with correlated
randomness and the field multiplications. Note that for simplicity,
the indexes of the sub-circuits are omitted in the rest of the paper
whenever clear from the context, (since each sub-circuit carries out
the same operations).
4.1.1 Correlated randomness generation The three-party computa-
tion protocol of Araki et al. exploits correlated randomness. The
latter can be generated by implementing a pseudorandom function
F𝑘 (e.g., the AES Rijndael) in the mini-circuits and following Al-
gorithm 1. First, an initialization phase is performed (e.g., at the
beginning of the testing procedure) during which three secret keys
𝑘𝑖 and a public seed 𝑖𝑑 are generated by a trusted party. (3 differ-
ent keys are required for each sub-circuit, which means that 3𝜆
secret keys are needed for the entire architecture). Each of the mini-
circuits Γ𝑖 receives only two of those three secrets and finally holds
(𝑘𝑖 , 𝑘𝑖+1, 𝑖𝑑), where 𝑖 + 1 = 1 if 𝑖 = 3. Then, the sub-circuits can
generate an unlimited amount of correlated randomness by run-
ning GetCorrRandom and letting each mini-circuit Γ𝑖 compute
independently 𝛼𝑖 = F𝑘𝑖 (𝑖𝑑) ⊕ F𝑘𝑖+1 (𝑖𝑑), leading to values correlated
such that 𝛼1 ⊕ 𝛼2 ⊕ 𝛼3 = 0.

No communication is involved during this online randomness
generation, since the 𝑖𝑑 can be updated locally, e.g., with a counter.
Compared to the secure PRG exposed in subsubsection 3.1.4, the
main difference is that the randomness generation is embedded
inside the mini-circuits that will be used to perform the MPC oper-
ations of our target block ciphers (rather than requiring dedicated
ones). This is possible because the robustness of our Trojan-resilient
circuits will anyway be bounded by Equation 1, so having a better
bound only for the randomness generation is an overkill in this case.
4.1.2 Secret sharing & reconstruction The secret sharing takes as
input a value 𝑣 and outputs three shares 𝑣𝑖 respectively held by Γ𝑖

(Algorithm 2). In order to fulfill the requirements of the robustness

Algorithm 2 Addition of secret shared values.
SecretShare: 𝑣 secret sharing

• run GetCorrRandom
• M sends 𝑥3 = 𝑣 ⊕ 𝛼3 to Γ1 that holds �̃�1 = (𝛼1, 𝑥3)
• M sends 𝑥1 = 𝑣 ⊕ 𝛼1 to Γ2 that holds �̃�2 = (𝛼2, 𝑥1)
• M sends 𝑥2 = 𝑣 ⊕ 𝛼2 to Γ3 that holds �̃�3 = (𝛼3, 𝑥2)

SharedAdd: shared addition 𝑐 = 𝑎 ⊕ 𝑏
• run SecretShare on 𝑎 and 𝑏
• Γ1 computes 𝑐1 = (𝛼1 ⊕ 𝛽1, 𝑥3 ⊕ 𝑦3)
• Γ2 computes 𝑐2 = (𝛼2 ⊕ 𝛽2, 𝑥1 ⊕ 𝑦1)
• Γ3 computes 𝑐3 = (𝛼3 ⊕ 𝛽3, 𝑥2 ⊕ 𝑦2)

bounds in subsubsection 3.1.3, each of those shares must individu-
ally reveal no information about the secret value 𝑣 . For this purpose,
all the operations which imply direct manipulations of 𝑣 are per-
formed by the masterM.

Informally, the architecture first needs to generate random corre-
lated values (as described in Algorithm 1). Each of the mini-circuits
sends its random correlated value 𝛼𝑖 to M. Once the master circuit
receives all the 𝛼𝑖 ’s, it performs the secret sharing locally. For this
purpose, it first computes intermediate values 𝑥𝑖 = 𝑣 ⊕ 𝛼𝑖 which
are distributed uniformly at random thanks to the 𝛼𝑖 ’s. It then
sends each 𝑥𝑖 to the corresponding Γ𝑖+1. Note that no mini-circuit
is able to retrieve the secret value 𝑣 since they only hold shares
𝑣𝑖 = (𝛼𝑖 , 𝑥𝑖−1 = 𝑣 ⊕ 𝛼𝑖−1) with secret 𝛼𝑖−1. Finally a shared value 𝑣
can be reconstructed by the trusted master by computing 𝑣 = 𝛼𝑖 ⊕𝑥𝑖
by asking only two mini-circuits for their shares (i.e., the protocol
uses a 2-out-of-3 secret sharing).
4.1.3 Field operations Since using an additive secret sharing, a
field addition 𝑐 = 𝑎 ⊕ 𝑏 over F can be performed on the shares
based on Algorithm 2. Informally, the values 𝑎 and 𝑏 are first secret
shared. Next, each mini-circuit Γ𝑖 independently computes a share
𝑐𝑖 of 𝑐 based on its shares 𝑎𝑖 and 𝑏𝑖 . Such an addition requires only
two field additions and no data transfer (i.e., its cost is essentially
negligible compared to multiplications).

A field multiplication 𝑐 = 𝑎 ⊙ 𝑏 involves three steps as described
in Algorithm 3 and illustrated in Figure 2. Informally, the values
𝑎 and 𝑏 are first secret shared and three random correlated field
elements 𝛾𝑖 are generated. Next the shares 𝑐 ′𝑖 are computed locally
by each mini-circuit and correspond to a 3-out-of-3 sharing where
the secret value is reconstructed by performing 𝑐 = 𝑐 ′1 ⊕ 𝑐

′
2 ⊕ 𝑐

′
3. To

remain consistent with the secret sharing exposed in Algorithm 2,
the value 𝑐 should finally be shared in a 2-out-of-3 fashion. To this
end, each of the mini-circuit Γ𝑖 sends its 𝑐 ′

𝑖
to Γ𝑖+1. Those transfers

can be performed simultaneously since one mini-circuit does not
require to receive data from another one to compute 𝑐 ′

𝑖
. Overall,

once the operands 𝑎 and 𝑏 are shared, this field multiplication only
requires a single set of correlated random values and a single field
element transfer. This is a significant improvement compared to
the three-party computation protocol proposed in [10].

4.2 Block ciphers optimizations for MPC
A consequence of the previous descriptions is that non-linear

field multiplications dominate the performance overheads of our
MPC protocol. Hence, a natural optimization is to minimize their
number. As will be clear in the next sections, this allows reducing
the amount of data transfers, which is themost expensive part of our
implementations. In this section, we therefore evaluate the impact
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Figure 2: Secret multiplication

Algorithm 3Multiplication of secret shared values.
STEP 1: shared multiplication 𝑐 = 𝑎 ⊙ 𝑏 3-out-of-3

• run GetCorrRandom and SecretShare on 𝑎 and 𝑏
• Γ1 computes 𝑐′1 = (𝛼1 ⊙ 𝛽1) ⊕ (𝑥3 ⊙ 𝑦3) ⊕ 𝛾1
• Γ2 computes 𝑐′2 = (𝛼2 ⊙ 𝛽2) ⊕ (𝑥1 ⊙ 𝑦1) ⊕ 𝛾2
• Γ3 computes 𝑐′3 = (𝛼3 ⊙ 𝛽3) ⊕ (𝑥2 ⊙ 𝑦2) ⊕ 𝛾3

STEP 2: 2-out-of-3 from 3-out-of-3 secret sharing
• Γ1 sends 𝑐′1 to Γ

2 Γ1 holds 𝑐1 = (𝑐′1 ⊕ 𝑐′3, 𝑐′1)
• Γ2 sends 𝑐′2 to Γ

3 Γ1 holds 𝑐1 = (𝑐′1 ⊕ 𝑐′3, 𝑐′1)
• Γ3 sends 𝑐′3 to Γ

1 Γ3 holds 𝑐3 = (𝑐′3 ⊕ 𝑐′2, 𝑐′3)

of the S-box representation in the AES Rijndael in this respect, and
the additional gains that can be obtained by using a bitslice cipher
such as Mysterion.

For the AES Rijndael, the only non-linear part is the S-box
which is made of a multiplicative inverse in GF(28) and an affine
transformation. One direct way to implement it is to perform the
multiplicative inverse by computing 2254 with a minimal number
of multiplications. As discussed in [28], this can be done with four
GF(28) multiplications and 7 squaring (which are linear operations).
This allows executing the S-box with four GF(28) elements (32 bits)
to transfer between every consecutive mini-circuits per S-box. It
leads to a total communication complexity of 512 bits for a single
AES round (16 S-boxes) and 5, 120 bits for an entire encryption. The
latter complexity can be easily improved thanks to composite field
arithmetic, as usually exploited both for hardware and masked im-
plementations of the AES Rijndael [20, 22]. In view of the similarity
between the masking countermeasure against side-channel attacks
and MPC, it is indeed natural to exploit those optimizations in our
context [13]. Concretely, we perform the S-box thanks to composite
field GF((24)2) requiring 5 multiplication. This corresponds to 20
bit transfers per S-box and a total of 3, 200 for a full AES.

As for Mysterion, the S-box has an efficient bitslice represen-
tation with a minimum amount of multiplications (i.e., AND gates)
since designed for masked implementations. It only requires to
transfer 4 bits, leading to a communication complexity of 128 bits
per round, and a total of 1,536 bits for the full cipher.

These optimizations are summarized in Table 1 which allows
gauging the respective gains obtained thanks to S-box and cipher
optimizations. Roughly, a factor two is gained by moving from
a GF(28) S-box representation to a GF((24)2) one for the AES,
and another factor two is gained when moving from the AES to
Mysterion. These figures omit the secret sharing and reconstruction
which require two 128-bit transfers for both block ciphers.

Cipher # of
rounds

bits
per round

bits
per enc.

AES (GF(28) S-box) 10 512 5,120
AES (GF( (24)2) S-box) 10 320 3,200
Mysterion 12 128 1,536

Table 1: Block cipher’s communication complexities.
5 Design choices

We now describe our design choices for the implementation of a
Trojan-resilient block cipher. We start by recalling our optimization
goals. Then, we expose how to implement the operations to be
performed by the trusted master with minimum area requirements
(which is our primary optimization goal). Eventually, we detail
how to efficiently implement the operations to be performed by
the mini-circuits and argue that this second optimization goal is
dominated by the communication delays.

5.1 Optimization goals
In summary, our design choices are driven by security and per-

formances. For security, we minimize the number of trusted gates
required by the entire system. This point is crucial since it corre-
sponds to a core hypothesis of the generic compiler of Dziembowski
et al. As will be clear next, special attention has to be paid for this
purpose, in particular regarding the majority function implemented
in the master. As for performances, we aim to implement the mini-
circuits in low-cost FPGAs (Xilinx Spartan family) and to obtain the
best data throughput given this constraint. The latter essentially
requires balancing the amount of logic resources used for computa-
tion within the mini-circuits in order to feed the communication
interface with a sufficient throughput. Concretely, the latter will
be the dominating factor in our performance evaluations (as usual
in MPC) and therefore, our mini-circuit implementations will be
primarily optimized for small size. In this context, an important
parameter of our designs is the communication bus size, that we
denote as 𝑁 , and its frequency that we denote as 𝑓𝑏𝑢𝑠 . This means
that the communication bus can send and receive 𝑁 bits during a
single bus clock cycle in a full duplex fashion resulting in a data
throughput of 𝑁 𝑓𝑏𝑢𝑠 [bps]. The performances of the field operations
will be evaluated according to data throughput.

5.2 Minimal trusted components
We next describe the components to be implemented on the

trusted master, and how to minimize their area. For this purpose, a
natural strategy is to process the bits received by the sub-circuits
sequentially by the bus of size 𝑁 . While this comes directly for most
operations, we argue why it is also acceptable when computing a
majority function on the master. We then evaluate the gate count
of the operations exposed in section 4.
5.2.1 On bit-wise majority The construction of Dziembowski et
al. [10] relies on a trusted majority gate, where majority here means
that the most common value among the 𝜆 output values is returned
by the master. In general the latter cannot simply be implemented
by taking the bit-wise majority on the bits representing the output
values. Instead we would need to implement a rather costly algo-
rithm that first stores the outputs of the 𝜆 sub-circuits and then
outputs the most common value among these 𝜆 outputs. Such an
implementation would result into a large circuitry for the master.
Yet, while indeed in general taking majority on bits does not yield
the same value as taking the majority on (possibly large) output



values, we argue that in the construction of [10] we can neverthe-
less rely on this simple approach. To understand why this is the
case, we first recall that the security analysis of [10] guarantees
that after a testing phase the output of all the sub-circuits is equal
to the output of the trusted specification. Clearly, this means that
at this point taking bit-wise majority is the same as returning the
most common output. During the real execution some of the sub-
circuits may change their outputs (when a hardware Trojan gets
active), but according to the security analysis of [10] this happens
for each of the 𝜆 sub-circuits independently. The security analysis
then “counts” for each real execution the number of sub-circuits
that change their outputs (i.e., switch from the correct output to a
value that differs from the output of the specification). It is easy to
see that as long as more than 𝜆/2 of these sub-circuits do not switch
their output, bit-wise majority is the same as taking the majority on
the outputs of the sub-circuits. Since Lemma 4 in [10] guarantees
that this happens with negligible probability, it means that robust-
ness remains intact when returning bit-wise majority instead of
the most common value among the 𝜆 outputs of the sub-circuits.
5.2.2 Secret sharing The secret sharing proposed in Algorithm 2
can easily be implemented in hardware. As a reminder, the master
performs the masking of a value 𝑣 ∈ F thanks to a bit-wise XOR
with random correlated values 𝛼𝑖 . Those last values are generated
by the corresponding Γ𝑖 that first must send its 𝛼𝑖 to M. The hard-
ware architecture can directly performs that masking operation
by directly XORing a correlated value 𝛼𝑖 with 𝑣 only using combi-
natorial logic. The three different shares retrieved in that way are
computed thanks to 3 XOR gates operating on 𝑁 bits. Those XOR
gates are of size 𝑁 since the mini-circuits are only able to send 𝑁

bits of 𝑣 at the same time. The obtained shares are then forwarded
to the mini-circuit it belongs to (still only using combinatorial logic).
As a result, this sharing has a throughput of 𝑁 𝑓𝑏𝑢𝑠 [bps], equal to
the bus throughput. Performances can be improved by increasing
𝑁 , at the cost of linearly increasing the size of the masterM (i.e.,
the number of XOR gates in the master is proportional to 3 · 𝑁 ).
5.2.3 Field operations Field operations are straightforward to im-
plement. A field addition does not require any data transfer (nor
imply additional circuitry inside the master M). During a field mul-
tiplication, M simply needs to forward a field element between
the mini-circuits, involving no gates. Hence, the throughput of a
field element multiplication is directly linked to the bus ability to
transfer data and the ability of a mini-circuits to provide fresh data.
As discussed in subsection 5.3, the multiplication throughput is
therefore bounded by the bus throughput 𝑁 𝑓𝑏𝑢𝑠 [bps].
5.2.4 Secret opening Similarly to the secret sharing, the secret re-
construction can efficiently be performed in hardware. The master
M has to unmasked shared values by XORing two shares hold by
different mini-circuit since the secret sharing is performed in a two-
out-of-three fashion. The share opening is performed directly by
the master thanks to a XOR gate of size 𝑁 . Similarly to the case of
secret sharing, secret opening can be performed at the throughput
of the communication interface. Note that the operations described
above do not require any register in M. The trusted master simply
operates as a routing module between the mini-circuits and only
performs combinatorial operations. Hence, the interface can be
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Figure 3: Majority vote inside the trusted masterM.

simply implemented as a wire entering𝑀 with no other logic. (We
discuss in Section 6.3.2 how to maintain a good 𝑓𝑏𝑢𝑠 in this case).
5.2.5 Majority vote The last operation that the trusted master must
perform is the majority vote between all the reconstructed values.
Since the secrets are opened “on-the-fly”, we propose to do the
same for the majority vote (as justified in subsubsection 5.2.1). The
bit-wise majority can be performed as illustrated in Figure 3a based
on a bit selection and a serial majority vote module. Intuitively, the
bit selection feeds the majority gate serially with the required bits.
More precisely, the bit selection module serially outputs subsets
Λ[𝑖] := {𝑣1 [𝑖], . . . , 𝑣𝜆 [𝑖]} with 𝑣 𝑗 [𝑖] being the 𝑖th bit of the value 𝑣 𝑗
outputted by a sub-circuit Γ𝑗 . The main parameter of this majority
vote is the value 𝑀 which is the number of bits processed at the
same time.

From an implementation point-of-view, the bit selection module
must select subsets of size𝑀 in the 𝜆 ·𝑁 bits outputted by all the sub-
circuits. Those reconstructed bits are directly obtained thanks to
combinatorial XOR gates. This can be achieved with𝑀 independent
(𝜆 ·𝑁 /𝑀)-to-1 multiplexers, the latter being synthetized from𝑀 · (𝜆 ·
𝑁
𝑀
−1) 2-to-1 multiplexers. The control signal for those multiplexers

is generated thanks to a counter on log2 (𝜆 ·𝑁 /𝑀) bits involving an
adder and registers. The serial majority voter is based on a counter
that accumulates how many ones are contained in Λ[𝑖]. To do so,
the accumulation is performed by observing the number of ones
contained in each subsets of Λ[𝑖] it receives, which is achieved
thanks to a table look up into a ROM. Once all the subsets have
been received, the MSB of the counter can be output, since it is
high if the number of ones is higher or equal to 𝜆/2. Note that the
accumulator must be of size log2 (𝜆) allowing to count up to 𝜆. The
ROM involved in the table look ups stores the hamming weight for
any subset of size𝑀 requiring a memory of 2𝑀 · log2 (𝑀) bits.

In term of performances, the majority voter requires 𝜆/𝑀 cycles
internal to the chip to perform the majority on a set Λ[𝑖] containing
𝜆 bits. This observation leads to a throughput for the majority vote
of 𝑀

𝜆
𝑓𝑖 [bps] with 𝑓𝑖 being the internal frequency of the majority

vote gate. It appears that the time for reconstruction depends on 𝜆.
For large 𝜆’s, the majority vote throughput may be the bottleneck
of the reconstruction process. For example, it is the case if this
throughput is smaller than the one of the secret opening such that
𝑀
𝜆
𝑓𝑖 ≤ 𝑁 𝑓𝑏𝑢𝑠 . In that case, the majority gate cannot perform the

vote as fast as the reconstruction module provides inputs. Note that
this throughput limitation just impacts the reconstruction phase
and not the entire encryption process. Note also that solutions exist
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Figure 4: Multiplication followed by linear layer.
to perform those operations in a single cycle (either by using mono-
tone Boolean equations [15] or by implementing fixed threshold
Hamming weight comparisons [27]), but these propositions result
in a larger area for the 𝜆’s used in section 6.
5.2.6 Control logic outsourcing Since the logic involved in the
computations inside M is relatively small, the control modules
may have a significant influence on the final size ofM. Therefore,
we outsource the control logic dedicated to a sub-circuit in its
mini-circuit. This is feasible since the operations that a sub-circuit
perform are part of its functionality (and therefore tested in order to
obtained the bounds of Equation 1). The later is in fact the concrete
counterpart of the proposal in [10] where each mini-circuits sends
commands to the others, implying that the operations performed
are controlled by the untrusted parties.
5.3 Mini-circuit design

The hardware involved in mini-circuit Γ𝑖 for multiplications
on a block cipher state is presented Figure 4 with 𝑥𝑖 [𝑛] and 𝑦𝑖 [𝑛]
respectively denoting the shares of 𝑥 and𝑦 it holds. The architecture
processes sequentially each of the 16 bytes of the state. During a
cycle 𝑛, shared bytes at index 𝑛 are accessed in two memories. The
value 𝑐 ′

𝑖
[𝑛] from Algorithm 3 is then computed on those shares

using two multipliers in parallel. The two output values are then
XORed together with an additional correlated random value 𝛿𝑖 [𝑛]
to retrieve 𝑐 ′

𝑖
[𝑛]. This byte is directly sent to the communication bus.

During the same cycle, this mini-circuit receives the corresponding
share 𝑐 ′

𝑖+1 [𝑛] output by another mini-circuit. This is done without
latency since the master only forwards messages from Γ𝑖 to Γ𝑖+1.
This received byte is stored in a register. During the same cycle, the
linear operation is performed on the previously multiplied shares
by storing 𝐿(𝑐 ′

𝑖+1 [𝑛 − 1], 𝑐
′
𝑖
[𝑛 − 1]) in memory at index 𝑛 − 1. In

Figure 4, this is done by erasing previously stored 𝑦𝑖 [𝑛 − 1] values
if those are not useful anymore, hence allowing to save memory.

In terms of performances, since this architecture is able to pro-
vide a byte at each of its internal clock cycles, its throughput is
8𝑓𝑖 [bps]. The latter naturally becomes suboptimal if the throughput
for computing 𝑐 ′

𝑖
[𝑛] is lower than the throughput of the communi-

cation interface. In this case, we can simply duplicate the hardware
presented in Figure 4 𝐵 times in order to fulfill Equation 2, ensuring
that the internal throughput is higher than the one of the bus. More
precisely, the latter requires to multiply by a factor 𝐵 the circuit
dedicated to the computation of the 𝑐 ′

𝑖
[𝑛]’s. This represents 2 · 𝐵

multipliers and 𝐵 additional XOR gates. The obtained architecture
can be viewed as a parallel version of Figure 4 with:

𝑁 𝑓𝑏𝑢𝑠 ≤ 𝐵 · 8𝑓𝑖 . (2)

In addition, the correlated randomness generatormust provide fresh
randomness for each multiplication. For this purpose, we rely on a

loop implementation of the AES producing 128 bits of randomness
in 11 cycles, which has sufficient throughput to fulfill Equation 2.

6 Implementation
In order to assess the system practicality of the Trojan-resilient

compiler of Dziembowski et al., we now propose a dedicated board
which includes four Spartan-6 Xilinx FPGAs. We first describe such
a board and the security considerations of the design. The small
area required by the trusted M is then evaluated by comparing its
implementation to a small AES design [23] (in terms of GEs). We
finally discuss the performances of the dedicated board as well as
an extrapolation to more efficient communication interfaces. Typ-
ical values for the area and security of such an extrapolated design
are proposed to highlight the concrete feasibility of a complete
Trojan-resilient system.

6.1 Board design
Our demonstration board includes four Xilinx Spartan-6 LX9

FPGAs with one of them being the master and the three other ones
corresponding to mini-circuits. Those are a low-cost FPGAs with an
unitary price of around 17USD, including 1430 slices and 9152 logic
cells. The board has a total cost of 120 USD including additional
peripheral components. The communication interface of each mini-
circuit is an SPI interface with size 8 using I/O standard LVCMOS33.
The master is interfaced to a computer thanks to an UART dedicated
module. This board has been designed according to the guidelines
of [10], and each mini-circuit can only communicate with the mas-
ter. They have their own power supply chain and the JTAG chain
used to program the FPGAs has to be disconnected after program-
ming thanks to jumpers’ inserted between the mini-circuits. This
guarantees that no physical link exists between the mini-circuits.

6.2 Area (and trust) requirements
In this section we discuss the trusted master’s area requirements

according to the architectural parameters 𝑁 , 𝜆 and the majority
vote parameter𝑀 . We first discuss the area required to support the
three-party computations and then evaluate the complexity of the
majority vote. The area results are be compared with [23] which
implements a very compact AES hardware module in a 0.18𝜇𝑚
technology, with an area of 2,400 GEs. Hereunder we show that the
trusted master M can be implemented in a few hundreds GEs with
architectural parameters leading to good robustness guarantees.
6.2.1 MPC implementation Since each sub-circuit runs indepen-
dently and simultaneously an instance of three-party computation
protocol, their hardware requirements can also be evaluated inde-
pendently. For this reason, we next focus on the area required by a
single sub-circuit: the area for 𝜆 instances is obtained by duplicating
the circuitry 𝜆 times. The number of trusted gates per sub-circuit
depends on 𝑁 according to section 5. Roughly, by increasing the
bus width, additional trusted gates are required to process signals
simultaneously. This implies that the size of the master linearly
grows with 𝑁 and 𝜆. More precisely a single sub-circuit with a bus
width 𝑁 = 1 requires 3 XOR gates for secret sharing, 1 XOR gate for
secret reconstruction and 3 multiplexers to select the output values
(between masked ones and forwarded ones). This results in an area
of 16 GEs, leading to a total area for the three-party computation
protocol insideM equal to 𝑁 · 𝜆 · 16 GEs.



𝜆 𝑁 𝑀
Bit select.

[GEs]
Serial Maj.

[GEs]
Total
[GEs]

8
1

1 61.3 45 106.3
2 44 52 96
4 24.3 114.9 139.2

2 2 77.6 52 129.6
4 4 110.2 114.9 225.1

16
1

1 95 60 155
2 77.6 67 144.6
4 58 130 188

2 2 130 67 197
4 4 199.8 130 329.8

Table 2: Area required for a trusted majority vote.
6.2.2 Majority vote area The majority vote structure exposed in
Figure 3a is the most area-consuming building block of the master
M. Its cost depends on the architectural parameters 𝜆, 𝑁 and𝑀 (the
latter being the number of bits that the serial majority voter can
process simultaneously), leading to the areas reported in Table 2.
Based on these results, a first observation is that the𝑀 parameter
sets a tradeoff between the area cost of the bit selection module
and the serial majority voter. That is, by increasing 𝑀 the area
required for bit selection is reduced while the ROM size increases.
For example, by doubling𝑀 from 1 to 2 the area of the bit selection
is reduced more than the majority vote grows, hence resulting in a
smaller area. However, by doubling𝑀 from 2 to 4 the area of the
serial voter becomes larger due its ROM size growing according
to 2𝑀 · log2 (𝑀). A second observation is that increasing 𝜆 and
𝑁 always increases the number of gates required, since either the
majority vote operates on large data or the bit selection is performed
on increased amount of bits.
This table is particularly important to confirm the minimized size
of the trusted master. It illustrates that for a range of relevant
parameters, the master can be implement in a few hundreds of
GEs. It is an interesting scope for further research to investigate
the extent to which relevant hardware Trojans can be inserted in
such a small master, and whether existing (e.g., side-channel based)
detection techniques could (not) easily spot them.

6.3 Performances and security evaluations
We conclude the paper by evaluating the performances of our

system. First we describe the data throughput obtained on the
demonstration board. Then we extrapolate our results based on a
better communication interface.
6.3.1 Demonstration board evaluation As mentioned in section 5,
the performances of our Trojan-resilient hardware are defined by
the throughput of its different components. According to Equa-
tion 2, the throughput achieved by the mini-circuits must be higher
than the communication interface one. In the case of the demon-
stration board, the SPI bus only allows frequencies up to 10[Mhz]
giving a throughput of 𝑁 · 10[Mbps]. The design of the mini-circuit
proposed in section 5 can run up to 80[MHz] resulting in an inter-
nal throughput of 640[Mbps] for a parallelism factor of 𝐵 = 1. In
this case no parallelism is required since the mini-circuits’ inter-
nal throughput remains higher than the communication interface
one. Given those physical parameters, the performances shown in
subsubsection 6.3.1 are obtained. Depending on the bus width, the
throughput changes from 354 to 2, 392[kbps] for the AES, and from
625 to 3, 471[kbps] for Mysterion. The gain obtained by moving
from the AES to Mysterion highlights that the ciphers’ non-linear

Bus Mini-circuit AES Mysterion
Throug.
[Mbps]

N
[bit]

Throug.
[Mbps] B Cycles

[cycle]
Through.
[kbps]

Cycles
[cycle]

Through.
[kbps]

10 1 640 1 14,430 354 8,195 625
20 2 640 1 7,516 681 4,355 1,175
40 4 640 1 3,932 1,302 2,435 2,102
80 8 640 1 2,140 2,392 1,475 3,471

Table 3: Performance evaluations (𝜆 = 1).
Bus Mini-circuit AES Mysterion

Throug.
[Gbps]

N
[bit]

Throug.
[Mbps] B Cycles

[cycle]
Through.
[Mbps]

Cycles
[cycle]

Through.
[Mbps]

1.5 1 640 1 432 23.7 224 457
1.5 1 1,920 3 180 55 96 107
3 2 3,200 5 92 111 48 214
6 4 6,400 10 46 222 24 428

Table 4: Extrapolated performance evaluations (𝜆 = 1).
parts and the corresponding data transfers are the main explicative
factor the final throughputs in the table.
6.3.2 Extrapolation Concretely, the main limitation of our demon-
stration board is its handmade communication interface. In order to
evaluate the throughput that could be obtained with better (though
still standard) facilities (without increasing the bus size 𝑁 which
is detrimental to security), we next propose an extrapolation to
state-of-the-art communication interfaces. Namely, we propose to
increase the communication interface throughput not by increasing
the bus width but by increasing the bus frequency. Therefore, we
rely on an high-frequency bus of width 1. Such an interface can for
example be implemented thanks to the RocketIO’s that are Xilinx’s
standard interfaces enabling up to 3.2[Gbps] serial communication.
In this extrapolation, we assume that the maximum frequency ob-
tained is 1.5[Gbps] due to doubled path from one mini-circuit to the
other. For this extrapolation to remain optimal, we need to adapt the
mini-circuits so that their degree of parallelism is sufficient to feed
this improved communication interface (with the previously intro-
duced parallelism factor 𝐵). The extrapolated results are exposed in
Table 4 for different bus throughputs and mini-circuit parallel imple-
mentations. The first line represents the situation of a mini-circuit
using no parallelism. In this case, the internal throughput is limiting
the performances of the entire system (i.e., equation Equation 2 is
not fulfilled) leading to an encryption throughput of 23.7[Mbps]. By
implementing parallelism with a factor 3 a throughput of 55[Mbps]
is obtained with the minimal number of trusted gates inside the
master. Similarly to subsubsection 6.3.1, increasing the bus width
leads to higher throughput (with the right degree of parallelism). 5

Note that as mentioned in section 5, these performances are
significantly influenced by the majority vote. This phenomenon
is observed in Table 5 that represents the data throughput of the
extrapolated board with a bus throughput of 1.5[Gbps] and vari-
able number of sub-circuits. More precisely, the secret opening
time depends on the throughput of the majority gate. Similarly

5 Note that these rocket IO’s have a non-negligible hardware cost. Yet, we can consider
them as untrusted (i.e., formally view them as part of the mini-circuits) if we can guar-
antee that mini-circuits act independently. The latter requires to verify that there is no
direct communication path between the untrusted Rocket IO’s in the master, which can
be achieved by constraining the place and route so that they are well separated physi-
cally, hence allowing visual inspection. So overall, the relevance of this optimization/ex-
trapolation boils down to the assumption that such a visual inspection is a simpler
task than the verification that the master anyway has to undergo for its trusted gates.



𝝀 1 2 4 8 16
Throug. [Mbps] 55 51.4 46.3 38.7 29.1

Table 5: Influence of 𝜆 on the AES encryption throughput
with extrapolated bus throughput of 1.5[Gbps].

testing [days] online [bits] AES Mysterion
𝜆 ROB. Area [GEs] 𝜆 ROB. Area [GEs]

1
103 5 2−92 152 5 2−94 152
106 7 2−82 198 7 2−84 198
109 17 2−87 430 15 2−81 383

7
103 5 2−100 152 5 2−102 152
106 7 2−93 198 7 2−95 198
109 13 2−89 337 11 2−80 291

Table 6: Robustness and trusted area for Trojan-Resilient im-
plementations of the AES and Mysterion.
to Equation 2, if its throughput is too low it will limit the over-
all throughput. For example, the throughput of the majority gate
operating on sets of size 𝜆 that we use is equal to 940/𝜆[Mbps]
thanks to a synthesis at 470[MHz] and its factor𝑀 = 2. Even with
that throughput, the performances are reduced by an approximate
factor two if the number of sub-circuits is equal to 16.
6.3.3 Practical Robustness bounds Ultimately, the robustness bounds
depend on the parameters (𝑛, 𝑡, 𝜆) according to equation (4𝑛/𝑡) ⌈𝜆/2⌉ .
The number of tests 𝑡 performed in a fixed amount of time depends
on the encryption throughput achieved by the system. When this
throughput increases, more tests can be performed during the same
period of time. Hence, for a fixed number of encryptions 𝑛, im-
proved performances result in an smaller ratio (4𝑛/𝑡). This directly
leads to better robustness bounds for fixed 𝜆. It also implies that for
a given layout and trusted area, Mysterion achieves better robust-
ness than the AES. Table 6 shows the robustness bounds and the
trusted area required for encryptions performed by the extrapolated
mini-circuit for the AES and Mysterion.6 This table targets robust-
ness bounds of at least 2−80 for a given testing time and amount of
bits to encrypt ranging from 1kb to 1Gb. For example, after a single
day of test and for 1kbit to encrypt using the AES, the architecture
proposed reaches robustness bounds of 2−92 with only 152 trusted
GEs. If the amount of data to encrypt is extended to 1Gbit, 17 sub-
circuits must be used, increasing the master area to 430 GEs. By
spending one week in testing, the number of sub-circuits decreases
to 13 and the trusted area decreases to 337 GEs. And thanks to its
improved communication complexity and throughput, Mysterion
can achieve either better area or robustness.

7 Conclusions
Our investigations put forward acceptable performances for the

encryption of non-negligible amounts of data in a Trojan-resilient
manner, with a well minimized master. In particular, and as already
mentioned, the size of the trusted master is roughly one order of
magnitude smaller than the unprotected AES (state-of-the-art) im-
plementation of [23] that requires 2,400 GEs, confirming the global
relevance of the proposed approach. This ratio would be further
improved if moving from our simple case study implementing a
single cryptographic primitive to a more complex system mixing
several primitives to be implemented in a Trojan-resilient manner.
The latter could for example be needed in situations where sensitive

6 We do not use the bound of Equation 1 and rather compute Pr [ROB = 1] =∑𝜆
𝑖=⌈𝜆/2⌉

(𝜆
𝑖

)
· ( 𝑛

𝑡
)𝑖 · (1 − 𝑛

𝑡
)𝜆−𝑖 directly to be tight [10].

data has to be manipulated with cipher suites. Admittedly, these
positive results come at the cost of quite large redundancy levels
(i.e., the 𝜆 parameter) and long testing phases. But they highlight
that in sensitive contexts where high robustness levels are required,
such a strong flavor of Trojan-resilience is achievable.
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