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Abstract We consider the question whether synchroniza-
tion / alignment methods are still useful / necessary in the
context of side-channel attacks exploiting deep learning al-
gorithms. While earlier works have shown that such meth-
ods / algorithms have a remarkable tolerance to misaligned
measurements, we answer positively and describe experi-
mental case studies of side-channel attacks against a key
transportation layer and an AES S-box where such a pre-
processing remains beneficial (and sometimes necessary) to
perform efficient key recoveries.

Our results also introduce generalized Residual Networks
as a powerful alternative to other deep learning tools (e.g.,
Convolutional Neural Networks and Multi-Layer Perceptrons)
that have been considered so far in the field of side-channel
analysis. In our experimental case studies, it outperformsthe
other three published state-of-the-art neural network models
for the data sets with and without alignment, and it even out-
performs the published optimized CNN model with the pub-
lic ASCAD1 data set. Conclusions are naturally implementation-
specific and could differ with other datasets, other values for
the hyper-parameters, other machine learning models and
with other alignment techniques.
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1 Introduction

Past research has shown an increasing interest from the side-
channel community regarding the use of machine learning /
deep learning techniques as a powerful way to exploit phys-
ical leakages with limited knowledge of the target imple-
mentations: see for example [4,10,11,12,14,15,17,18,19,
20,22,23]. In general, one potential advantage of these tech-
niques compared to more conventional statistical tools (e.g.,
Gaussian templates [5] and linear regression [24]) is that
they quite efficiently deal with large dimensionalities (which
may prevent the need of estimating large covariance matri-
ces, or to rely on dimensionality reduction [2]). This intu-
ition has been recently put forward by Cagli et al. at CHES
2017, they demonstrate that (e.g., deep) learning algorithms
are good candidates to exploit the leakage of implementa-
tions protected with jitter-based countermeasures [3].

In this paper, we mitigate a tempting shortcomingin the
interpretation of these past results, namely the fact that side-
channel attacks based on deep learning do not benefit from
re-synchronization. We insist that such a shortcoming is not
induced by previous authors, in particular the CHES 2017
ones. We only consider it as a natural question to confirm
whether or not such algorithms sometimes benefit from some
sort of pre-processing. We believe the question is of impor-
tance since a general negative answer would significantly
simplify the life of evaluation laboratories. For this purpose,
we describe experimental case studies based on two pro-
tected implementations (one targeting a key transportation
layer, the other targeting an AES S-box), the measurements
of which are affected by misalignments and hardware inter-
rupts. In both cases we show that the application of a re-
synchronization pre-processing before the application ofa
deep learning algorithm actually allows reducing the data
complexity of the attacks. In the second case, we even con-
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sider a “compressive” alignment (i.e., reducing the number
of samples in the pre-processed traces because we can use
shorter interval after the alignment), which was not only
necessary from the data complexity point of view, but also
highly beneficial from the time complexity point of view (to
maintain a reasonable execution time for the deep learning
attacks). From an information theoretic viewpoint, the lat-
ter can only reduce the total amount of information in the
traces, hence showing clear experimental evidence that re-
synchronization can make the traces easier to exploit even
for deep learning algorithms.

As an additional result, we also introduce the use of
Residual Networks (ResNet) as an alternative to the tradi-
tional Convolutional Neural Networks (CNN) and Multi-
Layer Perceptrons (MLP) that have been previously con-
sidered in the literature. We compare its performance with
the other three state-of-the-art neural network models in a
side-channel context, namely the ASCADCNN model [22],
the SPACECNN model [15] and the SCANet model [20].
The results with all our 6 data sets with or without align-
ment demonstrate that this ResNet model quite systemati-
cally outperforms the other three models.

Cautionary note. We acknowledge that these conclusions
may be affected by the level of profiling of the implemen-
tations. In theory, for an infinite amount of profiling on raw
traces, re-synchronization may become useless for deep learn-
ing as for any well-specified multivariate side-channel at-
tack. A similar statement holds for the choice of parameter
for the ResNet we exploited. In this respect, our goal is only
to show that for a realistic amount of profiling and standard
use of a popular deep learning algorithm, re-synchronization
may help. More generally, our conclusion is admittedly based
on an experimental basis. So the conclusions of this pa-
per could be different with other datasets, other values for
hyper-parameters, other machine learning models or with
other alignment techniques.

The rest of the paper is organized as followed. Section2
introduces the alignment method that we used, the neces-
sary background on deep Residual Networks and the target
implementations that we investigated. Section3 describes
the verification of the ResNet model we adopted regarding
its capability in a side-channel context by analyzing AES
traces obtained from the ChipWhisperer Lite board and the
comparison with the state-of-the-art neural network mod-
els regarding performance. Section4 and Section5 respec-
tively show the experimental results for the application of
this ResNet model with the impact of misalignment against
our two main targets, and the comparison of their perfor-
mances. Finally, in Section6 we further demonstrate the
good generalization of our ResNet model by comparing its
performances with the published optimized ASCADCNN

model using all 16 S-boxes data from their published AS-
CAD data set.

2 Background

2.1 Target implementations

We investigated two main target implementations in this work,
and additionally used the simple case of an AES software
implementation on the ChipWhisperer Lite board for pre-
liminary assessments. In this warming up case, we capture
90,000 profiling power traces with a 16-byte randomized
AES input and key, and 10,000 attack power traces with a
fixed random AES key and randomized AES input.

For our first Device Under Test (DUT1), we target the
AES key during its transportation. The latter is important
for security evaluations, since it frequently happens thatthe
keys encrypted in some Non-volatile Memory (NVM) has
to be transported to the cryptographic co-processor when in-
voking the corresponding cryptographic encryption/decryption
operations. In case the key is decrypted/masked/unmasked
during this transportation, it may lead to additional sources
of leakages that could be exploited by an adversary. Con-
cretely, our DUT is a modern 32-bit secure microcontroller
with a built-in secure AES coprocessor and the AES key is
encrypted and stored in an EEPROM. To invoke AES en-
cryption, the encrypted AES key is decrypted and masked
during its transfer from EEPROM to the AES coprocessor.
We acquire 80,000 EM traces for profiling and 20,000 traces
for attack.

Finally, our second DUT is a more standard case of an
AES co-processor for another secure microcontroller resis-
tant to first-order leakage, where we target the S-box out-
put of the first block cipher round. For this one, we measure
500,000 EM traces for profiling and 30,000 traces for attack.

We note that the different ratios between the numbers of
profiling and attack traces can be connected to the fact that
it is in general more complex to profile a leaking device than
to attack it once a model is well estimated [27]. As a result,
the more secure an implementation (e.g., due to masking or
other countermeasures), the larger this ratio can be.

2.2 Alignment method

Due to the complex architecture (and potential countermea-
sures) of our DUT, their raw measured EM traces are very
misaligned. To get better aligned traces for our investiga-
tions, we use the same method as in [21], which exploits
correlation in order to synchronize the EM traces focusing
on the leakage part of targeted sensitive data (e.g., the AES
key for the transportation case in Section4 and the AES S-
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box output for the case in Section5). This method works in
three steps.

– Firstly, a searching intervalA that contains the operation
to be synchronized is manually selected among all the
traces.

– Secondly, a smaller reference intervalBq specific to each
traceq is also manually chosen.

– For each trace, we finally find the portion to be synchro-
nized by using the second windowBq to search over the
whole intervalA. The right portion is selected as the one
having the maximum correlation with the reference in-
terval. If the correlation is lower than a given threshold
(chosen by the attacker/evaluator), the trace is assumed
not good enough and discarded.

Note that concretely, this method was usually applied
multiple times for each DUT by targeting different time in-
tervals (for both the searching interval and reference inter-
val). During the measurement, no very distinguishable fea-
ture close to the target interval can be used to trigger the os-
cilloscope. So we have to align the traces step by step to get
close to the target interval, and then within the target interval
we do more local alignments. Roughly, we choose new inter-
vals when the misalignment is getting larger, and we repeat
this process until the target interval is well aligned. Thisal-
lowed us to recursively improve the alignment for the part of
the traces that corresponds to the target leakage. Before we
measure the traces for profiling attacks, we used SPA/SEMA
and CPA/CEMA techniques to narrow down the potential
target interval. For DUT1, we first try to find the leakage of
key data using a CPA by measuring the whole AES encryp-
tion command execution with a randomized AES key data
per execution, so the interval is rather large. We try differ-
ent alignments and calculate the correlation of key data after
each alignment. For DUT2, we cannot find the leakage of
the S-box output because it is a masked implementation, but
we figure out which interval is likely related to AES encryp-
tion by SPA and SEMA techniques. The length of the target
interval is changing when the input length is increasing. In
order to recursively align the traces to the target interval,
we accordingly choose the distinguishable feature of most
traces step by step. After we recursively aligned the traces
to the target interval, the segment around the target interval
of each trace is taken off from the original traces to be used
for profiling attacks. In general, the required time of this re-
cursive alignment process depends on the number of traces,
the number of sample points per trace and the size of the
chosen interval. For DUT1 it takes less than one hour and
for DUT2 it takes about 7 hours.

Fig. 1: Structure of ResNet.

2.3 Deep Residual Network

Since they have been proposed/applied in the computer vi-
sion field with great successes [8], deep ResNets [9] have
been widely applied in different fields such as machine trans-
lation [30], speech synthesis [29], speech recognition [31]
and AlphaGo [25]. Thanks to the open source deep learning
libraries Keras [6] and Tensorflow [1], it is straightforward
to build a model for performing profiling attacks in a side-
channel context. We refer to these original papers for the
details of the method and next list the parameters that we
used in our experiments.

The core design idea of ResNets is to extend neural net-
works to very deep structures without degradation problems
thanks to a so-calledshortcut connection. ResNet is a stack
of residual blocks: each residual block consists of several
layers and a shortcut connection, the shortcut connection
connects the input and output of that residual block. As de-
picted in Figure1, the latter is inserted in each residual block
such that the gradient flows directly through the bottom lay-
ers. Each residual block consists of three basic blocks and
each basic block is composed of three layers: a convolu-
tional layerγ followed by a batch normalization layerβ [13]
and a ReLU activation layerσ [16]. After stacking three
residual blocks, a global average pooling layerδ is adopted
(instead of a fully connected layer), in order to reduce the
number of weights to be trained. Finally a softmax layers is
adopted to generate the class label of the input side-channel
trace. In summary, the ResNet model can be written as:

ResNet= s◦δ ◦ [σ ◦ [β ◦ γ ◦ [σ ◦β ◦ γ ]n1−1
⊕1]]n2

, (1)

wheren2 denotes the number of residual blocks (we set it
to 3 for all our experiments) andn1 is the number of basic
blocks per residual block (we also set it to 3 in this work).
We further use 128, 256 and 256 filters for these three resid-
ual blocks. That is, all the convolutional layers within one
residual block are using the same amount of filters. Fol-
lowing the original ResNet paper [8], we also did not use
a dropout layer.

2.4 Accuracy, Loss and key rank

Accuracy andLoss are twin metrics that are widely used in
the machine learning community to monitor and evaluate
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neural network models. Training accuracy is the successful
classification rate over the training data and training lossis
the error rate over the training data. After each epoch, the
trained model is applied to the validation data to calculate
validation accuracy and validation loss. These two values
indicate how good the trained model is at predicting outputs
for inputs it has never seen before. Validation accuracy in-
creases initially and saturates as the model starts to overfit.
We also use the key rank (i.e., guessing entropy) as classical
metric for side-channel security evaluations [28].

3 Warming up: results on CWL (AES S-box)

In order to verify that the ResNet model is applicable in a
side-channel context, we used it to analyze an unprotected
AES implementation on the ChipWhisperer Lite board, and
fed the Hamming weight of the first-round S-box outputs
into the ResNet model as described in2.3. We then per-
formed key recovery by classifying the Hamming weight of
the S-box outputs of the attack traces and translating this
into key information. We followed the best practice of deep
learning to use balanced data per class (also for our other ex-
periments), and we captured 90,000 profiling traces as men-
tioned in Section2.1. Due to the uneven distribution of the 9
Hamming weight classes, in the end we have only 320 pro-
filing traces per Hamming weight class. We use 20% profil-
ing traces as validation data to improve the training of the
weights and 3,000 sample points per trace to feed into the
ResNet model. Figure2 displays the rank of the correct sub-
key candidates of all 16 S-boxes. As can be seen, with a few
attack traces the correct subkeys of S-box 8 and S-box 16
can be disclosed. All the other S-boxes show similar results
except that S-box 15 needs a few hundred traces to recover
the subkey. For the CWL experiments, we use a batch size
of 32 and 100 epochs, “Adadelta” optimizer with an initial
learning rate of 1.0, adaptively reducing the learning rate
with a factor of 10 if the validation loss is not decreased
within 5 consecutive epochs.

3.1 Performance comparison with the state-of-the-art

To compare the performance of our ResNet model with other
state-of-the-art neural networks in a side-channel context,
we performed the similar attacks using other three neural
network models published in [15,20,22].

Those three models are the best ones according to their
experiments and we are using their default hyper-parameters.
(We did not have enough information to replicate the CHES
2017 CNN model [3]). We adapt those models to 9 Ham-
ming weight classes. Figure3 compares the rank of correct
subkey candidates of S-box 8 and S-box 16 respectively us-
ing our ResNet model and the other 3 models. It can be
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Fig. 2: Rank of correct subkey candidates of all 16 S-boxes
with CWL data set.

observed that our ResNet model compares positively to the
others (in terms of convergence).

4 Experimental results on DUT1 (AES key transfer)

We start with an analysis of a key transportation layer which
is a less usual target in the academic literature, but a quite
important one in industry. The fact that key transportation
leaks information on the key is indeed a critical weakness.

In this context, our profiling traces are obtained by ran-
domizing all the 16 bytes of AES key and fixing the 16-
byte AES input to execute AES encryption (the fixed input
data is not detrimental since we are targeting the key trans-
portation). For the attack traces, it is pretty different: we are
targeting the value of the first byte of a 16-byte AES key
considering the other bytes are leaking in a similar way. We
randomize the first byte from 0x00 to 0xFF , so that we have
256 classes of attack traces for it and set the other 15 bytes
to fixed random values. That is a realistic scenario that the
attackers normally encounter: when an attacker wants to at-
tack a fixed AES key, he needs to attack the AES key bytes
one by one while the other bytes are fixed random values.
From a security evaluation viewpoint, we want to simulate
the attack scenario as realistic as possible. The key bytes
cannot be changed and we cannot attack all the 2128 possible
keys (for 16-byte AES key). We still want to evaluate how
well we can correctly identify all 256 possible values of one
key byte (consider it as an example of all 16 bytes), so nor-
mally we choose one example byte and vary it from 00x00
to 0xFF , but the other 15 bytes are fixed random values just
like what the attacker will face for attacking a 16-byte key .

We use 256 classes of profiling traces to train the ResNet
model, and 20% of profiling traces as validation data to im-
prove the training. We then use the trained model in order
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Fig. 3: Performance comparison of 4 NN models using
CWL data set.

to classify all the 256 classes of attack traces to see how
many classes can be correctly identified. From attack per-
spective, it is a profiling-based SPA attack. So we consider
the percentage of correctly identified classes during the at-
tack phase. For the DUT1 experiments, we use a batch size
of 32 and 40 epochs, “Adadelta” optimizer with an initial
learning rate of 1.0, adaptively reducing the learning rate
with a factor of 10 if the validation loss is not decreased
within 10 consecutive epochs.

For this target, in order to figure out the impact of mis-
alignment with regards to the deep learning attacks, we con-
duct the deep learning attacks using the same ResNet model
with two data sets: aligned traces (applying our synchroniza-
tion method 6 times) and misaligned ones (applying our syn-
chronization method 4 times). This impact of the alignment
is visually illustrated by Figure4.

We further calculate the SOST [7] trace per data set of
DUT1 as shown in Figure5 for better showing the impact of
misalignment.

(a) Aligned

(b) MisAligned

Fig. 4: 256 overlapped aligned and misaligned EM traces of
DUT1.
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Fig. 5: SOST traces of aligned and misaligned EM traces of
DUT1.
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Both aligned and misaligned traces have 1,600 sample
points to be fed into the ResNet model, and we are using
the same number of profiling and attack traces and the same
batch size for both cases. The training accuracy and valida-
tion accuracy (as described in Section2.4) of the ResNet
model are given in Figure6. From the profiling perspec-
tive, the training accuracy using aligned traces is converg-
ing much faster and higher than the one using misaligned
traces, although we are using the same ResNet model. Be-
sides, from the attack perspective, as shown in Figure7, the
aligned traces also show much better percentage of correctly
identified classes results. With aligned traces, the percentage
of correctly identified classes already reaches 100% after
7 epochs and afterward the percentage of correctly identi-
fied classes is stabilized at 100%. On the other hand, with
the misaligned traces, the percentage of correctly identified
classes reaches 100% after 18 epochs.
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Fig. 8: Performance comparison of 4 NN models using
DUT1 data sets.

4.1 Performance comparison with the state-of-the-art

Similarly, Figure8 shows the percentage of correctly iden-
tified classes using our ResNet model and the other three
models with both the aligned and misaligned DUT1 data
sets. As can be seen for both aligned and misaligned traces,
our ResNet model converges faster and gives better results
from the attack perspective (less epochs of training are needed).
In particular, considering the misaligned traces, our ResNet
model outperforms the others a lot. It further confirms that
the generalization of the ResNet model is can bing an inter-
esting alternative to the other models.

5 Experimental results on DUT2 (AES S-box)

We now consider a more standard attack scenario where an
adversary exploits the leakage of an S-box execution in the
first round of the AES block cipher. In this case, for the pro-
filing traces, we randomize all the 16 bytes of AES key and
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AES input data to execute an AES encryption. And for the
attack traces, we fixed a random 16-byte AES key and ran-
domize the input data per trace. Similarly to the previous
section, we train the ResNet model using 256 classes cor-
responding to the S-box outputs with the profiling traces,
and we also use 20% profiling traces as validation data. For
the DUT2 experiments, we use a batch size of 32 and 30
epochs, “Adadelta” optimizer with an initial learning rateof
1.0, adaptively reducing the learning rate with a factor of 10
if the validation loss is not decreased within 10 consecutive
epochs.

To evaluate the impact of misalignment in this attack
scenario, the same ResNet model is again used to perform
deep learning attacks with aligned traces and misaligned
ones, this time considering three different data sets. In the
first one, next denoted as theAligned 1 data set (applying
our synchronization method 9 times) and shown in the top
graph of Figure9, the traces are well aligned at the leakage
part marked red and every trace has 634 sample points. The
second data set (next denoted as themisAligned 1 data set
and shown in the middle graph of Figure9) corresponds to
the most misaligned traces. It is obtained by applying the
alignment method only three times to the raw traces. In this
case, to include the leakage part in the traces, every trace
consists of 11,598 sample points. Finally, for the last data
set (denoted as themisAligned 2 data set and shown in the
bottom graph of Figure9), we apply only one alignment step
less than what we do for theAligned 1 data set. As a result,
the raw traces are aligned very close to the leakage part, but
still the traces are not aligned at the leakage interval, and
every trace contains 744 sample points.

To further demonstrate the impact of misalignment, we
also calculate the SOST trace per data set of DUT2 as shown
in Figure10.

Based on this setup, first we launch the deep learning at-
tacks using theAligned 1 data set. All the 16 S-boxes are
getting similar results as depicted in the top graph of Fig-
ure11. We then performed the same attacks as in the previ-
ous section against themisAligned 1 data set. In this case,
it took about one week per S-box for 30 epochs with a sin-
gle NVIDIA GTX 1080Ti GPU card, hence highlighting the
importance of alignment also for time complexity reasons.
The attacks took about 4 hours per S-box for 30 epochs for
theAligned 1 data set. Even after running it for a few weeks
with different hyper-parameters (e.g., optimizer, numberof
residual blocks, number of filters, batch size, number of epochs,
adding dropout layer [26] right before the last softmax layer
in Figure 1), the rank of the correct subkey candidate re-
mained very low and it was not possible to recover the sub-
keys. This result moderates the intuition that in a deep learn-
ing context, the best practice is to use the raw data without
dimensional reduction, and the previous observation in [15,

(a) Aligned1

(b) MisAligned 1

(c) MisAligned 2

Fig. 9: 256 overlapped aligned and misaligned EM traces of
DUT2.

22] that dimensional reduction methods lead to worse results
in deep learning SCA context.

Following, we further conduct the deep learning attacks
on themisAligned 2 data set. For this purpose, we first use
the same ResNet model and the same amount of profiling
traces as what we used in themisAligned 1 data set case,
which is 1,000 profiling traces per class of S-box output
value including 20% of validation traces. In this case, the
rank of the correct subkey remained stuck at high values.
We next tweak the hyper-parameters of the ResNet model
and still get similar results. Eventually, we increase the num-
ber of profiling traces to 1,200 and add a dropout layer (with
a dropout factor of 0.3) right before the last softmax layer.
To speed up the tests, we use dual NVIDIA GTX 1080Ti
GPU cards. The best rank results are shown in the bottom
graph of Figure11. We also perform similar attacks (using
the same ResNet model with the same amount of profiling
traces and same dropout factor) on the other S-boxes using
the samemisAligned 2 data set, this time with worse results.

From the profiling perspective, no big difference could
be observed between the training accuracy using aligned
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Fig. 10: SOST traces of aligned and misaligned EM traces
of DUT2.

traces from theAligned 1 data set and the one using mis-
aligned traces from themisAligned 2 data set.

However, from the attack perspective, as can be seen
from Figure11, the aligned traces show much better key
rank results. With aligned traces, the correct subkey is steadily
ranked at the top position with more than 750 attack traces.
The required number of attack traces for the misaligned case
is about 16,294 (with more tweaks of the hyper-parameters
and more profiling traces). We note again the larger ratio
between the number of profiling and attack traces, that typi-
cally reflects a more challenging target.
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Fig. 11: Rank of correct subkey candidate with DUT2 data
sets.

5.1 Performance comparison with the state-of-the-art

To further check the performance of our ResNet model, Fig-
ure 12 displays the rank of correct subkey candidates us-
ing our ResNet model and the other 3 models with both
Aligned 1 andmisAligned 2 data sets. For both aligned and
misaligned traces, again, our ResNet model can recover the
correct subkey byte faster than the others. Especially for the
misaligned traces, our ResNet model outperforms the others
a lot.

6 Comparison with ASCAD CNN Best model using
ASCAD data set

To further demonstrate the generalization of our ResNet model,
we compare the rank results of 16 S-boxes based on the pub-
lished ASCAD data set using both the ResNet model and
the published ASCADCNN Best model. For both models,
we use batch size of 100 and 200 epochs (the best choice for
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Fig. 12: Performance comparison of 4 NN models using
DUT2 data sets.

ASCAD CNN Best). For the ResNet model, we use “Adadelta”
optimizer with an initial learning rate of 1.0, adaptively re-
ducing the learning rate with a factor of 10 if the validation
loss is not decreased within 10 consecutive epochs. For AS-
CAD CNN Best model, we use “RMSProp” optimizer with
an initial learning rate of 10−5 and keep it fixed during the
training (the best choice for ASCADCNN Best).

Figure13 shows the rank of correct subkey candidates
of all 16 S-boxes using both models. For both models, all
16 subkey bytes can successfully be recovered using less
than 4,000 traces. The first two S-boxes are not masked and
the correct key candidates of them can be recovered with
only 1 trace. For our ResNet model, all the subkey bytes
can be recovered using less than 600 traces. For the AS-
CAD CNN Best model, 15 subkey bytes can be recovered
using around 1,000 traces but S-box 10 requires 3,000 traces
to get stable results. It further confirms the gppd generaliza-
tion of our ResNet model.
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Fig. 13: Performance comparison of ResNet and AS-
CAD CNN Best models using ASCAD data set.

7 Conclusions

Our results confirm that neural network models are pow-
erful tools for black box leakage analysis and demonstrate
the good generalization of the proposed ResNet model com-
pared with the other state-of-the-art NN models in a side-
channel context. Yet, even with such powerful tools, pre-
processing the leakage traces with alignment/re-synchronization
methods (and possibly filtering, . . . ) can be highly benefi-
cial to the attacks/evaluations’ success. This is true fromthe
data complexity point-of-view, and data complexity is gen-
erally accounted for the most important complexity measure
in side-channel analysis. But our second DUT shows that
it is also true from the time complexity point-of-view. In-
deed, alignment playing the role of data compressing due to
much shorter interval being used then allows significantly
reducing the number of samples in the traces to be fed to the
ResNet, which may reduce its execution time from weeks
to days (or even hours). The latter conclusions naturally be-
come increasingly relevant for devices protected with a va-
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riety of countermeasures. As stated in introduction, our con-
clusions are specific to the investigated datasets. In partic-
ular, deep ResNets only outperform other tested models in
our case study (and are not claimed to be universally better,
as popularized by the no-free-lunch theorem). We believe
our concludion regarding the interest and sometimes need
of preprocessing to be more general (since consistently ob-
served with different models and datasets).
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