
Towards an Open Approach to Secure
Cryptographic Implementations

François-Xavier Standaert

UCLouvain, ICTEAM, Crypto Group (Belgium)

EUROCRYPT 2019, Darmstadt, Germany

Transparency (as a measure of maturity)

• Block ciphers & symmetric encryption

I

Transparency (as a measure of maturity)

• Secure cryptographic implementations

II

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

4. Leakage-resistant AE designs (& implementations)

5. Conclusions (& the need of open evaluations)

III

Acknowledgments IV

C. Archambeau

J. Balasch

G. Barthe

S. Belaïd

D. Bellizia

F. Berti

O. Bronchain

G. Cassiers

C. Dobraunig

A. Duc

F. Dupressoir

F. Durvaux

S. Duval

S. Dziembowski

S. Faust

P.-A. Fouque

B. Gierlichs

C. Glowacz

D. Goudarzi

B. Grégoire

V. Grosso

S. Guilley

T. Güneysu

Chun Guo

Qian Guo

G. Herold

A. Journault

D. Kamel

G. Leander

L. Lerman

G. Leurent

I. Levi

T. Malkin

S. Mangard

D. Masny

C. Massart

P. Méaux

M. Medwed

C. Momin

A. Moradi

M. Naya-Plasencia

A. Olshevsky

Y. Oren

E. Oswald

C. Paglialonga

O. Pereira

T. Peters

C. Petit

K. Pietrzak

R. Poussier

E. Prouff

F. Regazzoni

M. Renauld

O. Reparaz

M. Rivain

T. Schneider

J. Schüth

P.-Y. Strub

N. Veyrat-Charvillon

S. Vivek

Weijia Wang

C. Whitnall

Yu Yu

M. Yung

Acknowledgments & cautionary note

• Mixing (very) different abstraction levels
• Hopefully in a consistent manner (be forgiving if not)

IV

C. Archambeau

J. Balasch

G. Barthe

S. Belaïd

D. Bellizia

F. Berti

O. Bronchain

G. Cassiers

C. Dobraunig

A. Duc

F. Dupressoir

F. Durvaux

S. Duval

S. Dziembowski

S. Faust

P.-A. Fouque

B. Gierlichs

C. Glowacz

D. Goudarzi

B. Grégoire

V. Grosso

S. Guilley

T. Güneysu

Chun Guo

Qian Guo

G. Herold

A. Journault

D. Kamel

G. Leander

L. Lerman

G. Leurent

I. Levi

T. Malkin

S. Mangard

D. Masny

C. Massart

P. Méaux

M. Medwed

C. Momin

A. Moradi

M. Naya-Plasencia

A. Olshevsky

Y. Oren

E. Oswald

C. Paglialonga

O. Pereira

T. Peters

C. Petit

K. Pietrzak

R. Poussier

E. Prouff

F. Regazzoni

M. Renauld

O. Reparaz

M. Rivain

T. Schneider

J. Schüth

P.-Y. Strub

N. Veyrat-Charvillon

S. Vivek

Weijia Wang

C. Whitnall

Yu Yu

M. Yung

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

4. Leakage-resistant AE designs (& implementations)

5. Conclusions (& the need of open evaluations)

AES Rijndael: 𝑦 = AES𝐾(𝑥) 1.1

Leaking AES: 𝑦 = AES𝐾(𝑥) → 𝑳 1.1

Leakage function definition

• Leakages are vectors: 𝑳 = (𝐿1, 𝐿2, … , 𝐿𝑡)
• Made of many samples (𝑡 ≈ 103-106)

• Leakages are noisy: 𝑳𝑥(𝑘) ≈ δ𝑥(𝑘) + 𝑵

• Signal-to-Noise Ratio: SNR𝑖 =
var(𝛿𝑥

𝑖)

var(𝑁𝑖)

• The shape of 𝜹 & 𝑵 is technology-dependent
• Their exact representation is unknown

1.2

Leakage function definition

• Leakages are vectors: 𝑳 = (𝐿1, 𝐿2, … , 𝐿𝑡)
• Made of many samples (𝑡 ≈ 103-106)

• Leakages are noisy: 𝑳(𝑥, 𝐾) ≈ 𝜹(𝑥, 𝐾) + 𝑵

• Signal-to-Noise Ratio: SNR𝑖 =
var(𝛿𝑥

𝑖)

var(𝑁𝑖)

• The shape of 𝜹 & 𝑵 is technology-dependent
• Their exact representation is unknown

1.2

Leakage function definition

• Leakages are vectors: 𝑳 = (𝐿1, 𝐿2, … , 𝐿𝑡)
• Made of many samples (𝑡 ≈ 103-106)

• Leakages are noisy: 𝑳(𝑥, 𝐾) ≈ 𝜹(𝑥, 𝐾) + 𝑵

• Signal-to-Noise Ratio: SNR𝑖 =
var(𝛿𝑥

𝑖)

var(𝑁𝑖)

• The shape of 𝜹 & 𝑵 is technology-dependent
• Their exact representation is unknown

1.2

Basic facts (I)

• Computing less means leaking less
• E.g., unprotected 32-bit implem. (HW leakages)

rounds
ops.

/ round
samples

/ op.
MI (bits)
/ sample

10 100 5
log(32) = 5

1 +
1

SNR

𝜆 (bits)
/ trace

25,000

1 +
1

SNR

1.3

Basic facts (I)

• Computing less means leaking less
• E.g., unprotected 32-bit implem. (HW leakages)

• Unprotected 128-bit implem. (HW leakages)

rounds
ops.

/ round
samples

/ op.
MI (bits)
/ sample

10 100 5
log(32) = 5

1 +
1

SNR

𝜆 (bits)
/ trace

25,000

1 +
1

SNR

rounds
ops.

/ round
samples

/ op.
MI (bits)
/ sample

10 1 5
log(128) = 7

1 +
1

SNR

𝜆 (bits)
/ trace

350

1 +
1

SNR

1.3

Consequence (for theoretical analysis)

• Games that give the adversary the ability to
compare the leakages of two identical device
states are in general trivial to win. For example,
given a keyed offline leakage oracle 𝑳(. , 𝐾):

• Just compare 𝑳 𝑥𝑏 , 𝐾 with 𝑳 𝑥0, 𝐾 and 𝑳 𝑥1, 𝐾

• (SC stands for « state comparison » attack)

Pr 𝐴SC
𝑳(.,𝐾)

𝑥0, 𝑥1, 𝑳 𝑥𝑏, 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 1

1.4

Consequence (for theoretical analysis)

• Games that give the adversary the ability to
compare the leakages of two identical device
states are in general trivial to win. For example,
given a keyed offline leakage oracle 𝑳(. , 𝐾):

• Just compare 𝑳 𝑥𝑏 , 𝐾 with 𝑳 𝑥0, 𝐾 and 𝑳 𝑥1, 𝐾

• (SC stands for « state comparison » attack)

⇒ Distinguishing games without anything fresh
and secret in the challenge are trivial to win

Pr 𝐴SC
𝑳(.,𝐾)

𝑥0, 𝑥1, 𝑳 𝑥𝑏, 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 1

1.4

Basic facts (II)

• Key recovery attacks may not easily exploit all
leakage samples (since 𝐴 needs to guess the state),
leading to reduced « effective » 𝜆’s, e.g.,

• One key byte recovered in ≈
128

0.14
≈ 1000 traces

exploited
rounds

ops.
/ round

samples
/ op.

MI (bits)
/ sample

1 1 ≈ 𝟐 (indep.)
log(128) = 7

𝟏𝟎𝟎

eff. 𝜆 (bits)
/ trace & subkey

14

100

1.5

Basic facts (II)

• Key recovery attacks may not easily exploit all
leakage samples (since 𝐴 needs to guess the state),
leading to reduced « effective » 𝜆’s, e.g.,

• With the masking countermeasures (see next)

1.5

exploited
rounds

ops.
/ round

samples
/ op.

MI (bits)
/ sample

1 1 ≈ 𝟐 (indep.)
log(128) = 7

𝟏𝟎𝟎

eff. 𝜆 (bits)
/ trace & subkey

≈
14

100

𝒅

Basic facts (II)

• Key recovery attacks may not easily exploit all
leakage samples (since 𝐴 needs to guess the state),
leading to reduced « effective » 𝜆’s, e.g.,

• With the masking countermeasures (see next)

• (128-bit example, 32-bit case significantly harder)

1.5

exploited
rounds

ops.
/ round

samples
/ op.

MI (bits)
/ sample

1 1 ≈ 𝟐 (indep.)
log(128) = 7

𝟏𝟎𝟎

eff. 𝜆 (bits)
/ trace & subkey

≈
14

100

𝒅

Basic facts (III)

• (𝑞, 𝑟)-bounded SCAs are « continuous » attacks
• with 𝑞 different message blocks per key
• and each measurement repeated 𝑟 times

⇒ Typical success probability (e.g., for key recovery):

• There are two main types of attacks (jargon)
• SPA: 𝑞 is a small constant, indep. of message size
• DPA: 𝑞 = poly(𝑛), depends on message size

• Larger 𝑟’s can improve the SNR (average the noise)

1.6

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

Basic facts (III)

• (𝑞, 𝑟)-bounded SCAs are « continuous » attacks
• with 𝑞 different message blocks per key
• and each measurement repeated 𝑟 times

⇒ Typical success probability (e.g., for key recovery):

• There are two main types of attacks (jargon)
• SPA: 𝑞 is a small constant (e.g., thanks to re-keying)
• DPA: 𝑞 can be large & is adversarially chosen

1.6

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

Basic facts (III)

• (𝑞, 𝑟)-bounded SCAs are « continuous » attacks
• with 𝑞 different message blocks per key
• and each measurement repeated 𝑟 times

⇒ Typical success probability (e.g., for key recovery):

• There are two main types of attacks (jargon)
• SPA: 𝑞 is a small constant (e.g., thanks to re-keying)
• DPA: 𝑞 can be large & is adversarially chosen

• Larger 𝑟’s can improve the SNR (average the noise)

1.6

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

Summarizing (taxonomy of attacks)

• Key Recovery (KR) attacks (with known/chosen 𝑥𝑖’s)

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

• May require large amounts of leakage vectors to succeed

1.7

Summarizing (taxonomy of attacks)

• Key Recovery (KR) attacks (with known/chosen 𝑥𝑖’s)

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

• May require large amounts of leakage vectors to succeed
• Or have bounded success probability in case of SPA

1.7

Summarizing (taxonomy of attacks)

• Key Recovery (KR) attacks (with known/chosen 𝑥𝑖’s)

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

• May require large amounts of leakage vectors to succeed
• Or have bounded success probability in case of SPA

• Message Comparison (MC) attacks (with fresh key)

Pr 𝐴MC
𝑳(.,.)

𝑥0, 𝑥1, 𝑳 𝑥𝑏 , 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 2−128+D 𝑳 𝑥0 ;𝑳 𝑥1

• Significanly simpler than KR - but not trivial for all 𝑥0, 𝑥1 (!)
• Depends on similarity of the message blocks’ leakages

• State Comparison (SC) attacks (with keyed oracle)

• Pr 𝐴SC
𝑳(.,𝐾)

𝑥0, 𝑥1, 𝑳 𝑥𝑏 , 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 1 anyway

1.7

Summarizing (taxonomy of attacks)

• Key Recovery (KR) attacks (with known/chosen 𝑥𝑖’s)

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

• May require large amounts of leakage vectors to succeed
• Or have bounded success probability in case of SPA

• Message Comparison (MC) attacks (with fresh challenge)

Pr 𝐴MC
𝑳(.,.)

𝑥0, 𝑥1, 𝑳 𝑥𝑏 , 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 2−128+D 𝑳 𝑥0,𝐾 ;𝑳 𝑥1,𝐾

• Significanly simpler than KR - but not trivial for all 𝑥0, 𝑥1 (!)
• Depends on similarity of the message blocks’ leakages

• State Comparison (SC) attacks (with keyed oracle)

• Pr 𝐴SC
𝑳(.,𝐾)

𝑥0, 𝑥1, 𝑳 𝑥𝑏 , 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 1 anyway

1.7

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

4. Leakage-resistant AE designs (& implementations)

5. Conclusions (& the need of open evaluations)

Noise (hardware) is not enough 2.1

Y = 0
Y = 1

Noise (hardware) is not enough 2.1

Y = 0
Y = 1

Y = 0
Y = 1

Noise (hardware) is not enough

• Additive noise ≈ cost × 2 ⇒ security × 2
⇒ not a good (crypto) security parameter

• ≈ same holds for all hardware countermeasures

2.1

Y = 0
Y = 1

Y = 0
Y = 1

Masking (≈ noise amplification)

• Example: Boolean encoding

• With 𝑦1, 𝑦2, … , 𝑦𝑑−2, 𝑦𝑑−1 ← {0,1}𝑛

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

2.2

Masking (abstract view)

• Private circuits / probing security [ISW03]

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

A

2.2

Masking (abstract view)

• Private circuits / probing security [ISW03]

• 𝑑 − 1 probes do not reveal anything on 𝑦

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

A

2.2

Masking (abstract view)

• Private circuits / probing security [ISW03]

• But 𝑑 probes completely reveal 𝑦

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

2.2

A

• Private circuits / probing security [ISW03]

• Noisy leakage security [PR13]

Masking (concrete view)

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

A

2.2

• Private circuits / probing security [ISW03]

• Bounded information MI(𝑌; 𝑳)<MI(𝑌𝑖; 𝑳𝑌𝑖)
𝑑

Masking (concrete view)

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

2.2

A

• Private circuits / probing security [ISW03]

• Bounded information MI(𝑌; 𝑳)<MI(𝑌𝑖; 𝑳𝑌𝑖)
𝑑

Masking (reduction)

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑 n
o

ise
+

in
d

e
p

e
n

d
e

n
ce

[D
D

F1
4

]

2.4

Masked operations [ISW03]

• Linear operations: f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

2.5

Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

2.5

Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
−𝑟1 0 𝑟3
−𝑟2 −𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

partial products refreshing compression

2.5

Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
−𝑟1 0 𝑟3
−𝑟2 −𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

partial products refreshing compression

2.5

Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
−𝑟1 0 𝑟3
−𝑟2 −𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

partial products refreshing compression

2.5

Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
−𝑟1 0 𝑟3
−𝑟2 −𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

partial products compression

𝑎1𝑏1 ⊕𝑎1𝑏2 ⊕𝑎1𝑏3 = 𝒂𝟏𝒃 leaks on 𝑏

refreshing

2.5

Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

⇒ Quadratic overheads & randomness
• (Many published optimizations [R+15,Be+16,GM18])

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
−𝑟1 0 𝑟3
−𝑟2 −𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

partial products compression

𝑎1𝑏1 ⊕𝑎1𝑏2 ⊕𝑎1𝑏3 = 𝒂𝟏𝒃 leaks on 𝑏

refreshing

2.5

Statistical intuition (2 shares)

• Leakage mean vector for 𝑌 = 0,1 = [0.5 0.5]

2.6

Statistical intuition (2 shares)

• Leakage mean value for 𝑌 = 0,1 = 1

2.6

Case study: ARM Cortex M4 [JS17]

secu
rity

2.7

Case study: ARM Cortex M4 [JS17]

secu
rity

p
erfo

rm
an

ce

2.7

Case study: ARM Cortex M4 [JS17]

secu
rity

p
erfo

rm
an

ce

2.7

Summarizing

• Sounds easy but implementation is complex

2.8

Summarizing

• Sounds easy but implementation is complex
• Independence issue: physical defaults (e.g., glitches)

can re-combine shares (e.g., [MPG05,NRS11,F+18])
• Security against horizontal attacks require more

noise/randomness as 𝑑 increases [BCPZ16,CS19]
• Scalability/composition are challenging [Ba+15,Ba+16]

2.8

Summarizing

• Sounds easy but implementation is complex
• Independence issue: physical defaults (e.g., glitches)

can re-combine shares (e.g., [MPG05,NRS11,F+18])
• Security against horizontal attacks require more

noise/randomness as 𝑑 increases [BCPZ16,CS19]
• Scalability/composition are challenging [Ba+15,Ba+16]

⇒ High security against DPA can be reached but
• It implies large performance overheads

• E.g., industry currently uses 2-4 shares (?)
• It « only » protects the key (plaintexts are not shared)

2.8

Summarizing

• Sounds easy but implementation is complex
• Independence issue: physical defaults (e.g., glitches)

can re-combine shares (e.g., [MPG05,NRS11,F+18])
• Security against horizontal attacks require more

noise/randomness as 𝑑 increases [BCPZ16,CS19]
• Scalability/composition are challenging [Ba+15,Ba+16]

⇒ High security against DPA can be reached but
• It implies large performance overheads

• E.g., industry currently uses 2-4 shares (?)
• It « only » protects the key (plaintexts are not shared)

• SPA security expected to be (much) cheaper

2.8

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

4. Leakage-resistant AE designs (& implementations)

5. Conclusions (& the need of open evaluations)

• Why not extending [RS06]’s all in one definition?

• 𝐴 cannot ask a decryption query on (𝑁, 𝐴𝐷, 𝐶) after
𝐶 is returned by an (𝑁, 𝐴𝐷,.) encryption query

Authenticated Encryption (AEAD) 2.1

re
a

l id
e

a
l

• Why not extending [RS06]’s all in one definition?

• 𝐴 cannot ask a decryption query on (𝑁, 𝐴𝐷, 𝐶) after
𝐶 is returned by an (𝑁, 𝐴𝐷,.) encryption query

• Problem: the leakage of ideal objects (which do not

have implementations) seems difficult to define

Authenticated Encryption (AEAD) 3.1

re
a

l id
e

a
l

Ciphertext Integrity 3.2

• CIL1: leagage in encryption only [Be+18]

Ciphertext Integrity with Leakage 3.2

• CIL2: leagage in encryption and decryption [BPPS17]
• Natural extensions (no definitional challenges)

with many applications (e.g., secure bootloading)

Ciphertext Integrity with Leakage 3.2

Chosen Ciphertext Security 3.3

CCA Security with Leakage [GPPS18] 3.3

• CCAL1: leakage in encryption

CCA Security with Leakage [GPPS18] 3.3

• CCAL2: leakage in encryption and decryption

• + challenge Ldec* (applications: IP protection, …)

CCA Security with Leakage [GPPS18] 3.3

The challenge leakage controversy (I)

• [MR04] (and [NS09,BG10,…]): indistinguishability
with Lenc* is hard (one bit breaks it with 𝑝 = 1)
• So it is quite tempting to ignore it
• Which can make sense (e.g., if you tolerate « local

attacks » but not « global » security degradations)
• Leakage-resilience vs. leakage-resistance

3.4

The challenge leakage controversy (I)

• [MR04] (and [NS09,BG10,…]): indistinguishability
with Lenc* is hard (one bit breaks it with 𝑝 = 1)
• So it is quite tempting to ignore it
• Which can make sense (e.g., if you tolerate « local

attacks » but not « global » security degradations)
• Leakage-resilience vs. leakage-resistance

• Ignoring challenge leakages means that an
implementation leaking messages in full is OK
• This is not what we want in general / theory
• It can have big impact (e.g., TLS [CHV03],[AP13], …)

• Different attacks but they show plaintext leakage matters

3.4

The challenge leakage controversy (II)

• If we do not make it part of the definition it will
never be a goal for cryptographers & engineers
• Cryptographers: minimize the message manipulation
• Engineers: minimize message leakage, e.g., with

special encodings (which is not much studied yet)

3.5

The challenge leakage controversy (II)

• If we do not make it part of the definition it will
never be a goal for cryptographers & engineers
• Cryptographers: minimize the message manipulation
• Engineers: minimize message leakage, e.g., with

special encodings (which is not much studied yet)

• We need to understand what can be achieved
• Even if results are not ideal (e.g., no negl. Adv.)

3.5

The challenge leakage controversy (II)

• If we do not make it part of the definition it will
never be a goal for cryptographers & engineers
• Cryptographers: minimize the message manipulation
• Engineers: minimize message leakage, e.g., with

special encodings (which is not much studied yet)

• We need to understand what can be achieved
• Even if results are not ideal (e.g., no negl. Adv.)

• Technically: more greyscale view than [MR04]
• Challenge leakages allow Message Comparison (MC)

attacks which are not always tivial, e.g.,
• Remote timing attacks: scalar leakages (vs. vectors)
• Proxy re-encryption: messages are not chosen

3.5

An motivating example

• Tree-based leakage-resilient PRF [GGM84,FPS12]

3.6

An motivating example

• Tree-based leakage-resilient PRF [GGM84,FPS12]

• Leads to simple MC attacks
• Message encrypted bit per

bit ⇒ no algorithmic noise
• Constant block cipher

inputs « all zeros » and
« all ones » easy to
distinguish with HWs [B12]

• (Yet is quite good against KR)

3.6

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

4. Leakage-resistant AE designs (& implementations)

5. Conclusions (& the need of open evaluations)

• Black box: only identical (𝑁,𝑀) pairs should be at risk
• Typically achieved by having a 2-pass mode (e.g., SIV)

Misuse-Resistance (MR) [RS06] 3.7

• With leakage: a SC attack against 𝑀1 = 𝑥1, 𝑥2, 𝑥3, 𝑥4 and
𝑀2 = 𝑥1, 𝑥2, 𝑥3, 𝑥4

∗ leaks that they first blocks are equal

Misuse-Resistance (MR) [RS06] 3.7

• Fresh challenge nonce circumvent this impossibility
• Intuition: leaves mostly MC attacks and DPAs

Misuse-Resilience (mR) [ADL17] 3.8

Summarizing

• For confidentiality, no meaningful encryption scheme
can ensure leakage-resistance and (nonce) misuse-
resistance (excluding trivial / fully leak-free solutions)

3.9

Summarizing

• For confidentiality, no meaningful encryption scheme
can ensure leakage-resistance and (nonce) misuse-
resistance (excluding trivial / fully leak-free solutions)

• Natural combinations include:
a. Misuse-resilience/leakage-resistance: CCAmL [GPPS18]
b. Misuse-resistance/leakage-resilience: CCAMl [BMOS17]

3.9

Summarizing

• For confidentiality, no meaningful encryption scheme
can ensure leakage-resistance and (nonce) misuse-
resistance (excluding trivial / fully leak-free solutions)

• Natural combinations include:
a. Misuse-resilience/leakage-resistance: CCAmL [GPPS18]
b. Misuse-resistance/leakage-resilience: CCAMl [BMOS17]

• ≈ a choice between the need for applications to limit
the leakage or for implementers to control nonces

3.9

Summarizing

• For confidentiality, no meaningful encryption scheme
can ensure leakage-resistance and (nonce) misuse-
resistance (excluding trivial / fully leak-free solutions)

• Natural combinations include:
a. Misuse-resilience/leakage-resistance: CCAmL [GPPS18]
b. Misuse-resistance/leakage-resilience: CCAMl [BMOS17]

• ≈ a choice between the need for applications to limit
the leakage or for implementers to control nonces

• Strongest (leak.-resist.) def.: AEML=CIML2+CCAmL2+MR

3.9

Summarizing

• For confidentiality, no meaningful encryption scheme
can ensure leakage-resistance and (nonce) misuse-
resistance (excluding trivial / fully leak-free solutions)

• Natural combinations include:
a. Misuse-resilience/leakage-resistance: CCAmL [GPPS18]
b. Misuse-resistance/leakage-resilience: CCAMl [BMOS17]

• ≈ a choice between the need for applications to limit
the leakage or for implementers to control nonces

• Strongest (leak.-resist.) def.: AEML=CIML2+CCAmL2+MR

• Weaker variants can be meaningful: for instance
AEmL=CIML2+CCAmL2 [Be+19], CPAl1 [DM19], …

3.9

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

4. Leakage-resistant AE designs (& implementations)

5. Conclusions (& the need of open evaluations)

• Forgeries can exploit two attack paths
• a DPA against the long-term key 𝐾
• a DPA against the tag verification 𝜏 = 𝜏𝑐?

• By monitoring the comparison with random tags

• Leakage on the dotted parts can be unbounded

Seed: a leakage-resilient MAC 4.1

• Forgeries can exploit two attack paths
• a DPA against the long-term key 𝐾
• a DPA against the tag verification 𝜏 = 𝜏𝑐?

• By monitoring the comparison with random tags

• Leakage on the dotted parts can be unbounded

• Can we « minimize the attack » surface?

Seed: a leakage-resilient MAC 4.1

• Natural option: inverse-based tag verification
• Only performs comparisons with a public ℎ

• So leakage can be unbounded for this part too
• Beneficial: good leakage assumtions hard to find

First tweak: LR tag verification 4.2

• Natural option: inverse-based tag verification
• Only performs comparisons with a public ℎ

• So leakage can be unbounded for this part too
• Beneficial: good leakage assumtions hard to find

• How to generalize this to an AE scheme?

First tweak: LR tag verification 4.2

• First ignoring confidentiality with leakage

• Many parts of the design can leak in full
• Strong motivation for composite definitions: allow

using the weakest possible assumptions for integrity
and confidentiality (which are not the same)

An AE scheme satisfying CIML2 4.3

• First ignoring confidentiality with leakage

• Many parts of the design can leak in full
• Strong motivation for composite definitions: allow

using the weakest possible assumptions for integrity
and confidentiality (which are not the same)

• How to add confidentiality guarantees?

An AE scheme satisfying CIML2 4.3

Engineering approach to CCAL security

• Requires protecting all the BC blocks against DPA
• And to deal with the (unavoidable) MC attacks

4.4

Engineering approach to CCAL security

• Requires protecting all the BC blocks against DPA
• And to deal with the (unavoidable) MC attacks

• Typically leads to (very) expensive implementations

4.4

A CCAmL2 encryption scheme

• Most BC executions can be protected against SPA only
(+ two DPA-secure BC calls and security against MC attacks)

[BM84,][DP08], [YSPY10], [SPY13], […]

4.5

Security reductions (simplified)

KR (DPA) security
of two BC executions

full fledged
scheme

• Formally, modeled as leak-free
• Graceful degradation seems possible

4.6

Security reductions (simplified)

full fledged
scheme

KR (SPA) & MC security
of one PRG iteration

• Formally, modeled as leak-free
• Graceful degradation seems hard

KR (DPA) security
of two BC executions

4.6

Security reductions (simplified)

full fledged
scheme

KR (SPA) & MC security
of one PRG iteration

• Formally, modeled as leak-free
• Graceful degradation seems hard

KR (DPA) security
of two BC executions

4.6

Example of full-fledged scheme

• S1P: 1-pass (online), CIML2, CCAmL1 [GPPS19]

• Encourages « leveled implementations »
• Strongly protected TBC: high-order masking
• Weakly protected permutation: low-latency

• For such implementations, two different primitives are
not an issue (since implementations are different)

4.7

Example of full-fledged scheme

• S1P: 1-pass (online), CIML2, CCAmL1 [GPPS19]

• Encourages « leveled implementations »
• Strongly protected TBC: high-order masking
• Weakly protected permutation: low-latency

• For such implementations, two different primitives are
not an issue (since implementations are different)

• (+ beyond birthday w.r.t. TBC key, multi-user security)

4.7

Example of full-fledged scheme

• S1P: 1-pass (online), CIML2, CCAmL1 [GPPS19]

• Performance gains of leveled implementations

4.7

Example of full-fledged scheme

• S1P: 1-pass (online), CIML2, CCAmL1 [GPPS19]

• Performance gains of leveled implementations

4.7

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

4. Leakage-resistant AE designs (& implementations)

5. Conclusions (& the need of open evaluations)

A theory to guide practice? 5.1

• Overall, ∃ a wide zoo of definitions including
• Leakage-resilience vs. leakage-resistance
• Misuse-resilience vs. misuse-resistance
• Leakage in encryption and decryption
• For integrity and confidentiality

A theory to guide practice? 5.1

• Overall, ∃ a wide zoo of definitions including
• Leakage-resilience vs. leakage-resistance
• Misuse-resilience vs. misuse-resistance
• Leakage in encryption and decryption
• For integrity and confidentiality

• Not black & white notions, e.g., CIML2 is obtained
• With inv. verification in the unbounded leakage model
• With direct verification if it is secure against DPA

• What is best in practice still has to be evaluated

A theory to guide practice? 5.1

• Overall, ∃ a wide zoo of definitions including
• Leakage-resilience vs. leakage-resistance
• Misuse-resilience vs. misuse-resistance
• Leakage in encryption and decryption
• For integrity and confidentiality

• Not black & white notions, e.g., CIML2 is obtained
• With inv. verification in the unbounded leakage model
• With direct verification if it is secure against DPA

• What is best in practice still has to be evaluated

⇒ Hope: strong assumptions in the proofs/analyzes
indicate where implementers must put most efforts

Open problems 5.2

• We have good ingredients ⇒ how to mix them?

Open problems 5.2

• We have good ingredients ⇒ how to mix them?

• Classification of existing AE schemes
• E.g., NIST lightweight competition candidates

• Links between the different security notions
• Graceful degradations (for CIML2, CCAmL2)
• Proofs under weaker physical assumptions
• Application to signatures/PKE?

Open problems 5.2

• We have good ingredients ⇒ how to mix them?

• Classification of existing AE schemes
• E.g., NIST lightweight competition candidates

• Links between the different security notions
• Graceful degradations (for CIML2, CCAmL2)
• Proofs under weaker physical assumptions
• Application to signatures/PKE?

• Cipher designs / key-homomorphic primitives
• Masking (physical defaults, composition, …)

Open problems 5.2

• We have good ingredients ⇒ how to mix them?

• Classification of existing AE schemes
• E.g., NIST lightweight competition candidates

• Links between the different security notions
• Graceful degradations (for CIML2, CCAmL2)
• Proofs under weaker physical assumptions
• Application to signatures/PKE?

• Cipher designs / key-homomorphic primitives
• Masking (physical defaults, composition, …)

• Improved confidentiality for 1-block messages
• Prototype (open source) implementations

Open problems 5.2

• We have good ingredients ⇒ how to mix them?

• Classification of existing AE schemes
• E.g., NIST lightweight competition candidates

• Links between the different security notions
• Graceful degradations (for CIML2, CCAmL2)
• Proofs under weaker physical assumptions
• Application to signatures/PKE?

• Cipher designs / key-homomorphic primitives
• Masking (physical defaults, composition, …)

• Improved confidentiality for 1-block messages
• Prototype (open source) implementations

• Anything leading to simple(r) hardware guidelines…

Evaluation challenge

standard practice

co
m

p
u

ta
ti

o
n

𝟐𝟑𝟎220210

measurements

2128

264

20

bounds

5.3

evidence-based evaluations
(assumptions tested per device!)

Evaluation challenge

standard practice

co
m

p
u

ta
ti

o
n

𝟐𝟑𝟎220210

measurements

2128

264

20

bounds

5.3

> 𝟐𝟑𝟎

= 𝟐𝟒𝟎?

= 𝟐𝟖𝟎?

evidence-based evaluations
(assumptions tested per device!)

Evaluation challenge

tighter
bounds

proof-based evaluations [DFS15,GS18]

co
m

p
u

ta
ti

o
n

co
m

p
u

ta
ti

o
n

2128

264

20

𝟐𝟖𝟎…

measurements

standard practice

co
m

p
u

ta
ti

o
n

𝟐𝟑𝟎220210

measurements

2128

264

20

bounds

open design & evaluation

5.3

evidence-based evaluations
on reduced versions

THANKS
http://perso.uclouvain.be/fstandae/

http://perso.uclouvain.be/fstandae/

SUPPLEMENTARY SLIDES

Scalability & composability

𝒕-probing security [ISW03]
any 𝑡-tuple of shares in the
protected circuit is independent
of any sensitive variable

A.1

Scalability & composability

Problem: the cost of testing
probing security increases (very)
fast with circuit size and the # of
shares (∃ many tuples) [Ba+15]

𝒕-probing security [ISW03]
any 𝑡-tuple of shares in the
protected circuit is independent
of any sensitive variable

A.1

Scalability & composability

𝑞1 internal probes

𝑞2 output probes

𝑞1 + 𝑞2 ≤ 𝑞

𝒒-(Strong) Non Interference [Ba+16]: a circuit gadget (e.g., f1) is
(Strongly) Non-Interferent if any set of 𝑞1 + 𝑞2 probes can be

simulated with at most 𝑞1 + 𝑞2 (only 𝑞1) shares of each input

D(input shares||probes) ≈ D(input shares||simulation)

Problem: the cost of testing
probing security increases (very)
fast with circuit size and the # of
shares (∃ many tuples) [Ba+15]

A.1

Separation result (simplified)

• Why CI+CCA (while in black box: CI+CPA = PI+CCA)?

B.1

Separation result (simplified)

• Why CI+CCA (while in black box: CI+CPA = PI+CCA)?

• Let AEAD be CIML2 & CCAmL2 with Lenc and Ldec
• Define AEAD’ such that

• Lenc’(𝐾, 𝑀) = Lenc(𝐾, 𝑀)+Lenc(𝐾′, 𝑀′)
• Ldec’(𝐾, 𝐶)=Ldec(𝐾, 𝐶)+Lenc(𝐾′, 𝑀′)

• AEAD’ is still CIML2 but not CCAmL2 anymore
• Attack: use the Ldec’ query to leak about 𝑀′

and then use 𝑀′ as challenge plaintext

B.1

Separation result (simplified)

• Why CI+CCA (while in black box: CI+CPA = PI+CCA)?

• Let AEAD be CIML2 & CCAmL2 with Lenc and Ldec
• Define AEAD’ such that

• Lenc’(𝐾, 𝑀) = Lenc(𝐾, 𝑀)+Lenc(𝐾′, 𝑀′)
• Ldec’(𝐾, 𝐶)=Ldec(𝐾, 𝐶)+Lenc(𝐾′, 𝑀′)

• AEAD’ is still CIML2 but not CCAmL2 anymore
• Attack: use the Ldec’ query to leak about 𝑀′

and then use 𝑀′ as challenge plaintext

• First apparition of a recuring issue: somewhat
artificial attack related to the difficulty to model L

B.1

• Analyses must deal with the information and the
computational complexity of the leakage function

Physical assumptions (challenge) C.1

• Analyses must deal with the information and the
computational complexity of the leakage function
• Information: obvious (full leakage ⇒ no secrecy)
• Computation: avoid « precomputation attacks » [DP08]

Physical assumptions (challenge) C.1

• Analyses must deal with the information and the
computational complexity of the leakage function
• Information: obvious (full leakage ⇒ no secrecy)
• Computation: avoid « precomputation attacks » [DP08]

• (Second apparition of a recuring issue: somewhat
artificial attack related to the difficulty to model L)

Physical assumptions (challenge) C.1

• Analyses must deal with the information and the
computational complexity of the leakage function
• Information: obvious (full leakage ⇒ no secrecy)
• Computation: avoid « precomputation attacks » [DP08]

• Background: the shape of L is unknown
• We don’t even know its complexity class, e.g.,

• Solving Maxwell’s equations for an AES circuit takes days
• But a physical circuit provides an instantaneous answer

Physical assumptions (challenge) C.1

• Information restriction

Physical assumptions (symmetric SOTA)

HILL pseudoentropy [DP08]

seed-preserving PRG [YPSM10]
(≈ hard to invert leakages [DKL09])

C.2

• Information restriction + computation restriction

Physical assumptions (symmetric SOTA)

HILL pseudoentropy [DP08]

only computation leaks [MR04]
+ alternating structure [DP08]

oracle-free leakage function [YPMS10]

seed-preserving PRG [YPSM10]
(≈ hard to invert leakages [DKL09,D+10])

C.2

• Information restriction + computation restriction

Physical assumptions (symmetric SOTA)

simulatability [SPY13]

∅

HILL pseudoentropy [DP08]

only computation leaks [MR04]
+ alternating structure [DP08]

oracle-free leakage function [YPMS10]

seed-preserving PRG [YPSM10]
(≈ hard to invert leakages [DKL09,D+10])

C.2

• Information restriction + computation restriction

• Safer strategy: try proofs with both combinations
• Weaker physical assumption but idealized analysis
• Stronger physical assmption in the standard model

Physical assumptions (symmetric SOTA)

simulatability [SPY13]

∅

oracle-free leakage function [YPMS10]

seed-preserving PRG [YPSM10]
(≈ hard to invert leakages [DKL09,D+10])

C.2

• L is hard to model ⇒ just don’t model it
• Give public I/O access to device & setup

Simulatable leakage (I) C.3

• L is hard to model ⇒ just don’t model it
• Give public I/O access to device & setup

• Assume L(𝑥, 𝐾) can be simulated
• Using the same hardware as the target
• But without knowing the secret key 𝐾

Simulatable leakage (I) C.3

• L(𝑥, 𝐾) can be simulated without knowledge of 𝐾

• E.g., FPGA implementation, 128-bit architecture

Simulatable leakages (II)

rounds (with fresh & unknown data)

SPA
𝑥

MC
𝑦 = BC𝐾(𝑥)

MC

C.4

• L(𝑥, 𝐾) can be simulated without knowledge of 𝐾

• E.g., FPGA implementation, 128-bit architecture

• Simulated traces should be consistent with 𝑥 and 𝑦

Simulatable leakages (II)

rounds (with fresh & unknown data)

SPA
𝑥

MC
𝑦 = BC𝐾(𝑥)

MC

C.4

• L(𝑥, 𝐾) can be simulated without knowledge of 𝐾

• E.g., FPGA implementation, 128-bit architecture

• Simulated traces should be consistent with 𝑥 and 𝑦

• Simple proposal [SPY13]: « split & concatenate »

S 𝑥, 𝐾, 𝑦 = L1/2 𝑥, 𝐾∗, 𝑦∗ ||L2/2 𝑥∗, 𝐾∗, 𝑦

Simulatable leakages (II)

rounds (with fresh & unknown data)

SPA
𝑥

MC
𝑦 = BC𝐾(𝑥)

MC

C.4

• Intra-trace correlation: ρ(𝐿𝑡𝑖 , 𝐿1:𝑡2500), real traces

The Longo et al. distinguisher [Lo+14] C.5

• Intra-trace correlation: ρ(𝐿𝑡𝑖 , 𝐿1:𝑡2500), real traces

• Same, with simulated traces L1/2 𝑥, 𝐾∗, 𝑦∗ ||L2/2 𝑥∗, 𝐾∗, 𝑦

The Longo et al. distinguisher [Lo+14] C.5

• Intra-trace correlation: ρ(𝐿𝑡𝑖 , 𝐿1:𝑡2500), real traces

• Same, with simulated traces L1/2 𝑥, 𝐾∗, 𝑦∗ ||L2/2 𝑥∗, 𝐾∗, 𝑦

• Fixing this requires modeling the physics of L (but the
goal of simulatability was to avoid such modeling)

The Longo et al. distinguisher [Lo+14] C.5

• Just look (exhaustively) for a key 𝐾∗ such that

BC𝐾∗ 𝑥 = 𝑦 → 𝑙 𝑦 and 𝑒 = 𝑙𝑦 − 𝑙 𝑦 is small

Another (new) approach C.6

• Just look (exhaustively) for a key 𝐾∗ such that

BC𝐾∗ 𝑥 = 𝑦 → 𝑙 𝑦 and 𝑒 = 𝑙𝑦 − 𝑙 𝑦 is small

• Add key-dep. noise s.t. ∀ 𝑥, 𝐾, 𝐾∗, E(𝑙∆) ≠ E(𝑙∆∗)

Another (new) approach C.6

• Assume a perfect (additive) leakage model
• Remove the contribution 𝑙𝑦 for each 𝑥, 𝐾 pair

Statistical distinguisher

real distributions
𝑙∆

simulated distributions

𝑙∆∗ + 𝑙𝑦 − 𝑙 𝑦

𝜇 𝜇 − 𝑒 𝜇 + 𝑒

C.6

• Assume a perfect (additive) leakage model
• Remove the contribution 𝑙𝑦 for each 𝑥, 𝐾 pair

• The difference btw. variances decreases in 𝑒2

Statistical distinguisher

real distributions
𝑙∆

simulated distributions

𝑙∆∗ + 𝑙𝑦 − 𝑙 𝑦

𝜇 𝜇 − 𝑒 𝜇 + 𝑒

C.6

• Assume a perfect (additive) leakage model
• Remove the contribution 𝑙𝑦 for each 𝑥, 𝐾 pair

• The difference btw. variances decreases in 𝑒2

• Error 𝑒 dercreases linearly in sim. complexity 𝐶
• Depending on the leakage function (experiments needed)

Statistical distinguisher

real distributions
𝑙∆

simulated distributions

𝑙∆∗ + 𝑙𝑦 − 𝑙 𝑦

𝜇 𝜇 − 𝑒 𝜇 + 𝑒

C.6

• For key-dep. noise variance 𝜎∆
2 and simulator error

𝑒, the simulation is distinguished in ≥
𝜎∆

2 2

𝑒2 traces

Distinguishing complexity C.7

• For key-dep. noise variance 𝜎∆
2 and simulator error

𝑒, the simulation is distinguished in ≥
𝜎∆

2 2

𝑒2 traces

• For example (experimental data)
• Key-dep. noise variance 𝜎∆

2 = 32 (ignoring +𝜎𝑛
2)

• Simulator complexity 𝐶 = 2𝑐 = 232

• Simulator error 𝑒 = 2−27

• Distinguishing complexity ≥ 264

Distinguishing complexity C.7

• For key-dep. noise variance 𝜎∆
2 and simulator error

𝑒, the simulation is distinguished in ≥
𝜎∆

2 2

𝑒2 traces

• For example (experimental data)
• Key-dep. noise variance 𝜎∆

2 = 32 (ignoring +𝜎𝑛
2)

• Simulator complexity 𝐶 = 2𝑐 = 𝟐𝟒𝟎

• Simulator error 𝑒 = 𝟐−𝟑𝟒

• Distinguishing complexity ≥ 𝟐𝟕𝟖

Distinguishing complexity C.7

• For key-dep. noise variance 𝜎∆
2 and simulator error

𝑒, the simulation is distinguished in ≥
𝜎∆

2 2

𝑒2 traces

• For example (experimental data)
• Key-dep. noise variance 𝜎∆

2 = 32 (ignoring +𝜎𝑛
2)

• Simulator complexity 𝐶 = 2𝑐 = 𝟐𝟒𝟎

• Simulator error 𝑒 = 𝟐−𝟑𝟒

• Distinguishing complexity ≥ 𝟐𝟕𝟖

⇒ Reductions: 𝑘-bit key gives (𝑘-𝑐)-bit confidentiality

Distinguishing complexity C.7

• For key-dep. noise variance 𝜎∆
2 and simulator error

𝑒, the simulation is distinguished in ≥
𝜎∆

2 2

𝑒2 traces

• For example (experimental data)
• Key-dep. noise variance 𝜎∆

2 = 32 (ignoring +𝜎𝑛
2)

• Simulator complexity 𝐶 = 2𝑐 = 𝟐𝟒𝟎

• Simulator error 𝑒 = 𝟐−𝟑𝟒

• Distinguishing complexity ≥ 𝟐𝟕𝟖

⇒ Reductions: 𝑘-bit key gives (𝑘-𝑐)-bit confidentiality

• (Imperfect model: 𝑙∆ + 𝑒′ and 𝑙∆∗ + 𝑒 + 𝑒′ get closer)

Distinguishing complexity

real simulation

C.8

rounds (fresh & unknown)
SPA

𝑥
MC

𝑦 = BC𝐾(𝑥)
MC

• [DP08] require HHILL 𝐾 𝑳 > 𝑘 − 𝜆
• Roughly: ∀𝒍, ∃ a set of 2𝑘−𝜆 keys s.t. BC𝐾∗(𝑥) → 𝒍 ≈ 𝒍

Simulatability vs. pseudoentropy

c

C.9

rounds (fresh & unknown)
SPA

𝑥
MC

𝑦 = BC𝐾(𝑥)
MC

• [DP08] require HHILL 𝐾 𝑳 > 𝑘 − 𝜆
• Roughly: ∀𝒍, ∃ a set of 2𝑘−𝜆 keys s.t. BC𝐾∗(𝑥) → 𝒍 ≈ 𝒍
• (Without the comp. limit., SPA samples become SC samples)

Simulatability vs. pseudoentropy

c

C.9

rounds (fresh & unknown)
SPA

𝑥
MC

• [DP08] require HHILL 𝐾 𝑳 > 𝑘 − 𝜆
• Roughly: ∀𝒍, ∃ a set of 2𝑘−𝜆 keys s.t. BC𝐾∗(𝑥) → 𝒍 ≈ 𝒍
• (Different parts of the leakages raise different challenges)

Simulatability vs. pseudoentropy

c

computational limits help

computational limits do not help

C.9

rounds (fresh & unknown)
SPA

𝑥
MC

𝑦 = BC𝐾(𝑥)
MC

• [DP08] require HHILL 𝐾 𝑳 > 𝑘 − 𝜆
• Roughly: ∀𝒍, ∃ a set of 2𝑘−𝜆 keys s.t. BC𝐾∗(𝑥) → 𝒍 ≈ 𝒍
• (Different parts of the leakages raise different challenges)

⇒ a fraction 1 2𝜆 of the keys can be used to simulate

• Theory [FH15]: 𝑞-SIM and HHILL disconnected

• Cryptanalysis: 𝑞-SIM ≤ HHILL ≪ CCAmL(for 1 block)

Simulatability vs. pseudoentropy

c

rounds (fresh & unknown)
SPA

𝑥
MC

computational limits help

computational limits do not help

C.9

• More formally, (,) has 𝑞-simulatable

leakages of ∃ a simulator 𝑆𝑳(.,.) such that the bit 𝑏
in the following game is hard to guess

• (Not exactly real vs. simulated due to the gen query)

Simulatable leakage definition

Game 𝑞-sim(𝐴, , 𝑆𝑳(.,.),𝑏) with 𝐾, 𝑲∗ uniformly random

𝑞 queries response if 𝑏 = 1response if 𝑏 = 0

enc(𝑥) 𝑦 = BC𝑘 𝑥 , 𝑆𝑳(.,.)(𝑥,𝑲∗, 𝑦)𝑦 = BC𝑘 𝑥 , 𝑳(𝑥, 𝐾)

1 query response if 𝑏 = 1response if 𝑏 = 0

gen(𝑧, 𝑥) 𝑆𝑳(.,.)(z, 𝑥, 𝑲∗)𝑆𝑳(.,.)(z, 𝑥, 𝐾)

C.10

Proof intuition C.11

Proof intuition C.11

Proof intuition C.11

Proof intuition C.11

Bibliography D.1

[ADL17] Tomer Ashur, Orr Dunkelman, Atul Luykx: Boosting Authenticated Encryption
Robustness with Minimal Modifications. CRYPTO (3) 2017: 3-33. [AP13] Nadhem J. AlFardan,
Kenneth G. Paterson: Lucky Thirteen: Breaking the TLS and DTLS Record Protocols. IEEE
Symposium on Security and Privacy 2013: 526-540. [BCPZ16] Alberto Battistello, Jean-
Sébastien Coron, Emmanuel Prouff, Rina Zeitoun: Horizontal Side-Channel Attacks and
Countermeasures on the ISW Masking Scheme. CHES 2016: 23-39. [BG10] Zvika Brakerski,
Shafi Goldwasser: Circular and Leakage Resilient Public-Key Encryption under Subgroup
Indistinguishability - (or: Quadratic Residuosity Strikes Back). CRYPTO 2010: 1-20. [BMOS17]
Guy Barwell, Daniel P. Martin, Elisabeth Oswald, Martijn Stam: Authenticated Encryption in
the Face of Protocol and Side Channel Leakage. ASIACRYPT (1) 2017: 693-723. [BPPS17]
Francesco Berti, Olivier Pereira, Thomas Peters, François-Xavier Standaert: On Leakage-
Resilient Authenticated Encryption with Decryption Leakages. IACR Trans. Symmetric Cryptol.
2017(3): 271-293 (2017). [Ba+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain
Fouque, Benjamin Grégoire, Pierre-Yves Strub: Verified Proofs of Higher-Order Masking.
EUROCRYPT (1) 2015: 457-485. [Ba+16] Gilles Barthe, Sonia Belaïd, François Dupressoir,
Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub, Rébecca Zucchini: Strong Non-
Interference and Type-Directed Higher-Order Masking. ACM Conference on Computer and
Communications Security 2016: 116-129. [Be+16] Sonia Belaïd, Fabrice Benhamouda, Alain
Passelègue, Emmanuel Prouff, Adrian Thillard, Damien Vergnaud: Randomness Complexity of
Private Circuits for Multiplication. EUROCRYPT (2) 2016: 616-648.

Bibliography D.2

[Be+18] Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, François-Xavier
Standaert: Ciphertext Integrity with Misuse and Leakage: Definition and Efficient
Constructions with Symmetric Primitives. AsiaCCS 2018: 37-50. [Be+19] Francesco Berti,
Chun Guo, Olivier Pereira, Thomas Peters, François-Xavier Standaert: TEDT, a Leakage-
Resilient AEAD mode for High (Physical) Security Applications. IACR Cryptology ePrint
Archive 2019: 137 (2019). [CHV03] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, Martin
Vuagnoux: Password Interception in a SSL/TLS Channel. CRYPTO 2003: 583-599. [CS19]
Gaetan Cassiers, François-Xavier Standaert: Towards Globally Optimized Masking: From
Low Randomness to Low Noise Rate or Probe Isolating Multiplications with Reduced
Randomness and Security against Horizontal Attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2019(2): 162-198 (2019). [DDF14] Alexandre Duc, Stefan Dziembowski,
Sebastian Faust: Unifying Leakage Models: From Probing Attacks to Noisy Leakage.
EUROCRYPT 2014: 423-440. [DFS15] Alexandre Duc, Sebastian Faust, François-Xavier
Standaert: Making Masking Security Proofs Concrete - Or How to Evaluate the Security of
Any Leaking Device. EUROCRYPT (1) 2015: 401-429. [DKL09] Yevgeniy Dodis, Yael Tauman
Kalai, Shachar Lovett: On cryptography with auxiliary input. STOC 2009: 621-630. [DM19]
Christoph Dobraunig, Bart Mennink: Leakage Resilience of the Duplex Construction. IACR
Cryptology ePrint Archive 2019: 225 (2019). [DP08] Stefan Dziembowski, Krzysztof
Pietrzak: Leakage-Resilient Cryptography. FOCS 2008: 293-302.

Bibliography D.3

[D+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, Vinod
Vaikuntanathan: Public-Key Encryption Schemes with Auxiliary Inputs. TCC 2010: 361-381.
[FPS12] Sebastian Faust, Krzysztof Pietrzak, Joachim Schipper: Practical Leakage-Resilient
Symmetric Cryptography. CHES 2012: 213-232. [FH15] Benjamin Fuller, Ariel Hamlin:
Unifying Leakage Classes: Simulatable Leakage and Pseudoentropy. ICITS 2015: 69-86.
[F+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
François-Xavier Standaert: Composable Masking Schemes in the Presence of Physical
Defaults & the Robust Probing Model. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3):
89-120 (2018). [GGM84] Oded Goldreich, Shafi Goldwasser, Silvio Micali: How to Construct
Random Functions (Extended Abstract). FOCS 1984: 464-479. [GM18] Hannes Groß, Stefan
Mangard: A unified masking approach. J. Cryptographic Engineering 8(2): 109-124 (2018).
[GPPS18] Chun Guo, Olivier Pereira, Thomas Peters, François-Xavier Standaert: Leakage-
Resilient Authenticated Encryption with Misuse in the Leveled Leakage Setting: Definitions,
Separation Results, and Constructions. IACR Cryptology ePrint Archive 2018: 484 (2018).
[GPPS19] Chun Guo, Olivier Pereira, Thomas Peters, François-Xavier Standaert: Towards
Lightweight Side-Channel Security and the Leakage-Resilience of the Duplex Sponge. IACR
Cryptology ePrint Archive 2019: 193 (2019). [GS18] Vincent Grosso, François-Xavier
Standaert: Masking Proofs Are Tight and How to Exploit it in Security Evaluations.
EUROCRYPT (2) 2018: 385-412. [ISW03] Yuval Ishai, Amit Sahai, David A. Wagner: Private
Circuits: Securing Hardware against Probing Attacks. CRYPTO 2003: 463-481.

Bibliography D.4

[JS17] Anthony Journault, François-Xavier Standaert: Very High Order Masking: Efficient
Implementation and Security Evaluation. CHES 2017: 623-643. [Lo+14] Jake Longo, Daniel
P. Martin, Elisabeth Oswald, Daniel Page, Martijn Stam, Michael Tunstall: Simulatable
Leakage: Analysis, Pitfalls, and New Constructions. ASIACRYPT (1) 2014: 223-242. [MR04]
Silvio Micali, Leonid Reyzin: Physically Observable Cryptography (Extended Abstract). TCC
2004: 278-296. [MPG05] Stefan Mangard, Thomas Popp, Berndt M. Gammel: Side-Channel
Leakage of Masked CMOS Gates. CT-RSA 2005: 351-365. [NRS11] Svetla Nikova, Vincent
Rijmen, Martin Schläffer: Secure Hardware Implementation of Nonlinear Functions in the
Presence of Glitches. J. Cryptology 24(2): 292-321 (2011). [NS09] Moni Naor, Gil Segev:
Public-Key Cryptosystems Resilient to Key Leakage. CRYPTO 2009: 18-35. [PR13] Emmanuel
Prouff, Matthieu Rivain: Masking against Side-Channel Attacks: A Formal Security Proof.
EUROCRYPT 2013: 142-159. [RS06] Phillip Rogaway, Thomas Shrimpton: A Provable-
Security Treatment of the Key-Wrap Problem. EUROCRYPT 2006: 373-390. [R+15] Oscar
Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, Ingrid Verbauwhede: Consolidating
Masking Schemes. CRYPTO (1) 2015: 764-783. [SPY13] François-Xavier Standaert, Olivier
Pereira, Yu Yu: Leakage-Resilient Symmetric Cryptography under Empirically Verifiable
Assumptions. CRYPTO (1) 2013: 335-352. [YSPY10] Yu Yu, François-Xavier Standaert, Olivier
Pereira, Moti Yung: Practical leakage-resilient pseudorandom generators. ACM Conference
on Computer and Communications Security 2010: 141-151.

