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Acknowledgments & cautionary note 

• Mixing (very) different abstraction levels
• Hopefully in a consistent manner (be forgiving if not)
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AES Rijndael: 𝑦 = AES𝐾(𝑥) 1.1



Leaking AES: 𝑦 = AES𝐾(𝑥) → 𝑳 1.1



Leakage function definition

• Leakages are vectors: 𝑳 = (𝐿1, 𝐿2, … , 𝐿𝑡)
• Made of many samples (𝑡 ≈ 103-106)

• Leakages are noisy: 𝑳𝑥(𝑘) ≈ δ𝑥(𝑘) + 𝑵

• Signal-to-Noise Ratio:  SNR𝑖 =
var(𝛿𝑥

𝑖 )

var(𝑁𝑖)

• The shape of 𝜹 & 𝑵 is technology-dependent
• Their exact representation is unknown
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Basic facts (I)

• Computing less means leaking less
• E.g., unprotected 32-bit implem. (HW leakages)

# rounds
# ops.

/ round
# samples

/ op.
MI (bits)
/ sample

10 100 5
log(32) = 5

1 +
1

SNR

𝜆 (bits)
/ trace

25,000

1 +
1

SNR
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Basic facts (I)

• Computing less means leaking less
• E.g., unprotected 32-bit implem. (HW leakages)

• Unprotected 128-bit implem. (HW leakages)

# rounds
# ops.

/ round
# samples

/ op.
MI (bits)
/ sample

10 100 5
log(32) = 5

1 +
1

SNR

𝜆 (bits)
/ trace

25,000

1 +
1

SNR

# rounds
# ops.

/ round
# samples

/ op.
MI (bits)
/ sample

10 1 5
log(128) = 7

1 +
1

SNR

𝜆 (bits)
/ trace

350

1 +
1

SNR

1.3



Consequence (for theoretical analysis)

• Games that give the adversary the ability to 
compare the leakages of two identical device
states are in general trivial to win. For example, 
given a keyed offline leakage oracle 𝑳(. , 𝐾):

• Just compare 𝑳 𝑥𝑏 , 𝐾 with 𝑳 𝑥0, 𝐾 and 𝑳 𝑥1, 𝐾

• (SC stands for « state comparison » attack)

Pr 𝐴SC
𝑳(.,𝐾)

𝑥0, 𝑥1, 𝑳 𝑥𝑏, 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 1
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• Just compare 𝑳 𝑥𝑏 , 𝐾 with 𝑳 𝑥0, 𝐾 and 𝑳 𝑥1, 𝐾

• (SC stands for « state comparison » attack)

⇒ Distinguishing games without anything fresh
and secret in the challenge are trivial to win
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𝑥0, 𝑥1, 𝑳 𝑥𝑏, 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 1
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Basic facts (II)

• Key recovery attacks may not easily exploit all 
leakage samples (since 𝐴 needs to guess the state), 
leading to reduced « effective » 𝜆’s, e.g.,

• One key byte recovered in ≈
128

0.14
≈ 1000 traces

exploited
# rounds

# ops.
/ round

# samples
/ op.

MI (bits)
/ sample

1 1 ≈ 𝟐 (indep.)
log(128) = 7

𝟏𝟎𝟎

eff. 𝜆 (bits)
/ trace & subkey

14

100
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Basic facts (II)

• Key recovery attacks may not easily exploit all 
leakage samples (since 𝐴 needs to guess the state), 
leading to reduced « effective » 𝜆’s, e.g.,

• With the masking countermeasures (see next) 

• (128-bit example, 32-bit case significantly harder)

1.5

exploited
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Basic facts (III)

• (𝑞, 𝑟)-bounded SCAs are « continuous » attacks
• with 𝑞 different message blocks per key
• and each measurement repeated 𝑟 times

⇒ Typical success probability (e.g., for key recovery):

• There are two main types of attacks (jargon)
• SPA: 𝑞 is a small constant, indep. of message size
• DPA: 𝑞 = poly(𝑛), depends on message size

• Larger 𝑟’s can improve the SNR (average the noise)

1.6

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)
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Summarizing (taxonomy of attacks)

• Key Recovery (KR) attacks (with known/chosen 𝑥𝑖’s)

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

• May require large amounts of leakage vectors to succeed
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• Message Comparison (MC) attacks (with fresh key) 
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𝑳(.,.)

𝑥0, 𝑥1, 𝑳 𝑥𝑏 , 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 2−128+D 𝑳 𝑥0 ;𝑳 𝑥1

• Significanly simpler than KR - but not trivial for all 𝑥0, 𝑥1 (!)
• Depends on similarity of the message blocks’ leakages

• State Comparison (SC) attacks (with keyed oracle)

• Pr 𝐴SC
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Noise (hardware) is not enough

• Additive noise ≈ cost × 2 ⇒ security × 2
⇒ not a good (crypto) security parameter

• ≈ same holds for all hardware countermeasures

2.1

Y = 0
Y = 1

Y = 0
Y = 1



Masking (≈ noise amplification)

• Example: Boolean encoding

• With 𝑦1, 𝑦2, … , 𝑦𝑑−2, 𝑦𝑑−1 ← {0,1}𝑛

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

2.2



Masking (abstract view)

• Private circuits / probing security [ISW03]

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

A
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• Private circuits / probing security [ISW03]
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Masking (abstract view)

• Private circuits / probing security [ISW03]

• But 𝑑 probes completely reveal 𝑦

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

2.2

A



• Private circuits / probing security [ISW03]

• Noisy leakage security [PR13]

Masking (concrete view)

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

A

2.2



• Private circuits / probing security [ISW03]

• Bounded information MI(𝑌; 𝑳)<MI(𝑌𝑖; 𝑳𝑌𝑖)
𝑑

Masking (concrete view)
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• Private circuits / probing security [ISW03]

• Bounded information MI(𝑌; 𝑳)<MI(𝑌𝑖; 𝑳𝑌𝑖)
𝑑

Masking (reduction)

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑 n
o

ise
+

in
d

e
p

e
n

d
e

n
ce

[D
D

F1
4

]
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Masked operations [ISW03] 

• Linear operations: f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)
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Masked operations [ISW03]

• Linear operations:
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Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

⇒ Quadratic overheads & randomness
• (Many published optimizations [R+15,Be+16,GM18])

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)
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𝑎1𝑏1 ⊕𝑎1𝑏2 ⊕𝑎1𝑏3 = 𝒂𝟏𝒃 leaks on 𝑏

refreshing
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Statistical intuition (2 shares)

• Leakage mean vector for 𝑌 = 0,1 = [0.5 0.5]

2.6



Statistical intuition (2 shares)

• Leakage mean value for 𝑌 = 0,1 = 1

2.6



Case study: ARM Cortex M4 [JS17]

secu
rity
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Summarizing

• Sounds easy but implementation is complex
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Summarizing

• Sounds easy but implementation is complex
• Independence issue: physical defaults (e.g., glitches)   

can re-combine shares (e.g., [MPG05,NRS11,F+18])
• Security against horizontal attacks require more 

noise/randomness as 𝑑 increases [BCPZ16,CS19] 
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Summarizing

• Sounds easy but implementation is complex
• Independence issue: physical defaults (e.g., glitches)   

can re-combine shares (e.g., [MPG05,NRS11,F+18])
• Security against horizontal attacks require more 

noise/randomness as 𝑑 increases [BCPZ16,CS19] 
• Scalability/composition are challenging [Ba+15,Ba+16]

⇒ High security against DPA can be reached but
• It implies large performance overheads

• E.g., industry currently uses 2-4 shares (?)
• It « only » protects the key (plaintexts are not shared)

• SPA security expected to be (much) cheaper

2.8
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• Why not extending [RS06]’s all in one definition?
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• Why not extending [RS06]’s all in one definition?

• 𝐴 cannot ask a decryption query on (𝑁, 𝐴𝐷, 𝐶) after
𝐶 is returned by an (𝑁, 𝐴𝐷,.) encryption query

• Problem: the leakage of ideal objects (which do not 

have implementations) seems difficult to define
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Ciphertext Integrity 3.2



• CIL1: leagage in encryption only [Be+18]

Ciphertext Integrity with Leakage 3.2



• CIL2: leagage in encryption and decryption [BPPS17]
• Natural extensions (no definitional challenges)   

with many applications (e.g., secure bootloading)

Ciphertext Integrity with Leakage 3.2
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CCA Security with Leakage [GPPS18] 3.3

• CCAL1: leakage in encryption



CCA Security with Leakage [GPPS18] 3.3

• CCAL2: leakage in encryption and decryption



• + challenge Ldec* (applications: IP protection, …)

CCA Security with Leakage [GPPS18] 3.3



The challenge leakage controversy (I)

• [MR04] (and [NS09,BG10,…]): indistinguishability
with Lenc* is hard (one bit breaks it with 𝑝 = 1)
• So it is quite tempting to ignore it
• Which can make sense (e.g., if you tolerate « local 

attacks »  but not « global » security degradations)
• Leakage-resilience vs. leakage-resistance
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• [MR04] (and [NS09,BG10,…]): indistinguishability
with Lenc* is hard (one bit breaks it with 𝑝 = 1)
• So it is quite tempting to ignore it
• Which can make sense (e.g., if you tolerate « local 

attacks »  but not « global » security degradations)
• Leakage-resilience vs. leakage-resistance

• Ignoring challenge leakages means that an 
implementation leaking messages in full is OK
• This is not what we want in general / theory
• It can have big impact (e.g., TLS [CHV03],[AP13], …)

• Different attacks but they show plaintext leakage matters
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The challenge leakage controversy (II)

• If we do not make it part of the definition it will 
never be a goal for cryptographers & engineers
• Cryptographers: minimize the message manipulation
• Engineers: minimize message leakage, e.g., with

special encodings (which is not much studied yet)
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The challenge leakage controversy (II)

• If we do not make it part of the definition it will 
never be a goal for cryptographers & engineers
• Cryptographers: minimize the message manipulation
• Engineers: minimize message leakage, e.g., with

special encodings (which is not much studied yet)

• We need to understand what can be achieved
• Even if results are not ideal  (e.g., no negl. Adv.)

• Technically: more greyscale view than [MR04]
• Challenge leakages allow Message Comparison (MC) 

attacks which are not always tivial, e.g.,
• Remote timing attacks: scalar leakages (vs. vectors)
• Proxy re-encryption: messages are not chosen

3.5



An motivating example

• Tree-based leakage-resilient PRF [GGM84,FPS12]
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An motivating example

• Tree-based leakage-resilient PRF [GGM84,FPS12]

• Leads to simple MC attacks
• Message encrypted bit per 

bit ⇒ no algorithmic noise
• Constant block cipher

inputs « all zeros » and 
« all ones » easy to 
distinguish with HWs [B12]

• (Yet is quite good against KR)

3.6
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• Black box: only identical (𝑁,𝑀) pairs should be at risk
• Typically achieved by having a 2-pass mode (e.g., SIV)

Misuse-Resistance (MR) [RS06] 3.7



• With leakage: a SC attack against 𝑀1 = 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 
𝑀2 = 𝑥1, 𝑥2, 𝑥3, 𝑥4

∗ leaks that they first blocks are equal

Misuse-Resistance (MR) [RS06] 3.7



• Fresh challenge nonce circumvent this impossibility
• Intuition: leaves mostly MC attacks and DPAs

Misuse-Resilience (mR) [ADL17] 3.8
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resistance (excluding trivial / fully leak-free solutions) 

3.9



Summarizing

• For confidentiality, no meaningful encryption scheme
can ensure leakage-resistance and (nonce) misuse-
resistance (excluding trivial / fully leak-free solutions) 

• Natural combinations include:
a. Misuse-resilience/leakage-resistance: CCAmL [GPPS18]
b. Misuse-resistance/leakage-resilience: CCAMl [BMOS17]

3.9



Summarizing

• For confidentiality, no meaningful encryption scheme
can ensure leakage-resistance and (nonce) misuse-
resistance (excluding trivial / fully leak-free solutions) 

• Natural combinations include:
a. Misuse-resilience/leakage-resistance: CCAmL [GPPS18]
b. Misuse-resistance/leakage-resilience: CCAMl [BMOS17]

• ≈ a choice between the need for applications to limit
the leakage or for implementers to control nonces

3.9



Summarizing

• For confidentiality, no meaningful encryption scheme
can ensure leakage-resistance and (nonce) misuse-
resistance (excluding trivial / fully leak-free solutions) 

• Natural combinations include:
a. Misuse-resilience/leakage-resistance: CCAmL [GPPS18]
b. Misuse-resistance/leakage-resilience: CCAMl [BMOS17]

• ≈ a choice between the need for applications to limit
the leakage or for implementers to control nonces

• Strongest (leak.-resist.) def.: AEML=CIML2+CCAmL2+MR

3.9



Summarizing

• For confidentiality, no meaningful encryption scheme
can ensure leakage-resistance and (nonce) misuse-
resistance (excluding trivial / fully leak-free solutions) 

• Natural combinations include:
a. Misuse-resilience/leakage-resistance: CCAmL [GPPS18]
b. Misuse-resistance/leakage-resilience: CCAMl [BMOS17]

• ≈ a choice between the need for applications to limit
the leakage or for implementers to control nonces

• Strongest (leak.-resist.) def.: AEML=CIML2+CCAmL2+MR

• Weaker variants can be meaningful: for instance 
AEmL=CIML2+CCAmL2 [Be+19], CPAl1 [DM19], …

3.9
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• Forgeries can exploit two attack paths
• a DPA against the long-term key 𝐾
• a DPA against the tag verification 𝜏 = 𝜏𝑐?

• By monitoring the comparison with random tags

• Leakage on the dotted parts can be unbounded
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• Forgeries can exploit two attack paths
• a DPA against the long-term key 𝐾
• a DPA against the tag verification 𝜏 = 𝜏𝑐?

• By monitoring the comparison with random tags

• Leakage on the dotted parts can be unbounded

• Can we « minimize the attack » surface?

Seed: a leakage-resilient MAC 4.1



• Natural option: inverse-based tag verification
• Only performs comparisons with a public ℎ

• So leakage can be unbounded for this part too
• Beneficial: good leakage assumtions hard to find
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• Natural option: inverse-based tag verification
• Only performs comparisons with a public ℎ

• So leakage can be unbounded for this part too
• Beneficial: good leakage assumtions hard to find

• How to generalize this to an AE scheme?

First tweak: LR tag verification 4.2



• First ignoring confidentiality with leakage

• Many parts of the design can leak in full
• Strong motivation for composite definitions: allow

using the weakest possible assumptions for integrity
and confidentiality (which are not the same)
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• First ignoring confidentiality with leakage

• Many parts of the design can leak in full
• Strong motivation for composite definitions: allow

using the weakest possible assumptions for integrity
and confidentiality (which are not the same)

• How to add confidentiality guarantees?

An AE scheme satisfying CIML2 4.3



Engineering approach to CCAL security

• Requires protecting all the BC blocks against DPA
• And to deal with the (unavoidable) MC attacks
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Engineering approach to CCAL security

• Requires protecting all the BC blocks against DPA
• And to deal with the (unavoidable) MC attacks

• Typically leads to (very) expensive implementations

4.4



A CCAmL2 encryption scheme

• Most BC executions can be protected against SPA only
(+ two DPA-secure BC calls and security against MC attacks)

[BM84,][DP08], [YSPY10], [SPY13], […]

4.5



Security reductions (simplified) 

KR (DPA) security
of two BC executions

full fledged
scheme

• Formally,         modeled as leak-free
• Graceful degradation seems possible 
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scheme

KR (SPA) & MC security
of one PRG iteration

• Formally,         modeled as leak-free
• Graceful degradation seems hard

KR (DPA) security
of two BC executions
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Example of full-fledged scheme

• S1P: 1-pass (online), CIML2, CCAmL1 [GPPS19] 

• Encourages « leveled implementations »
• Strongly protected TBC: high-order masking
• Weakly protected permutation: low-latency

• For such implementations, two different primitives are 
not an issue (since implementations are different)
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Example of full-fledged scheme

• S1P: 1-pass (online), CIML2, CCAmL1 [GPPS19] 

• Encourages « leveled implementations »
• Strongly protected TBC: high-order masking
• Weakly protected permutation: low-latency

• For such implementations, two different primitives are 
not an issue (since implementations are different)

• (+ beyond birthday w.r.t. TBC key, multi-user security)
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• Performance gains of leveled implementations
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A theory to guide practice? 5.1

• Overall, ∃ a wide zoo of definitions including
• Leakage-resilience vs. leakage-resistance
• Misuse-resilience vs. misuse-resistance
• Leakage in encryption and decryption
• For integrity and confidentiality

• Not black & white notions, e.g., CIML2 is obtained
• With inv. verification in the unbounded leakage model
• With direct verification if it is secure against DPA

• What is best in practice still has to be evaluated

⇒ Hope: strong assumptions in the proofs/analyzes
indicate where implementers must put most efforts 
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Open problems 5.2

• We have good ingredients ⇒ how to mix them?

• Classification of existing AE schemes
• E.g., NIST lightweight competition candidates

• Links between the different security notions
• Graceful degradations (for CIML2, CCAmL2) 
• Proofs under weaker physical assumptions
• Application to signatures/PKE?

• Cipher designs / key-homomorphic primitives
• Masking (physical defaults, composition, …)

• Improved confidentiality for 1-block messages
• Prototype (open source) implementations

• Anything leading to simple(r) hardware guidelines…
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Evaluation challenge

tighter
bounds

proof-based evaluations [DFS15,GS18]
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𝒕-probing security [ISW03]
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Scalability & composability 

𝑞1 internal probes

𝑞2 output probes

𝑞1 + 𝑞2 ≤ 𝑞

𝒒-(Strong) Non Interference [Ba+16]: a circuit gadget (e.g., f1) is 
(Strongly) Non-Interferent if any set of 𝑞1 + 𝑞2 probes can be 

simulated with at most 𝑞1 + 𝑞2 (only 𝑞1) shares of each input

D(input shares||probes) ≈ D(input shares||simulation)

Problem: the cost of testing 
probing security increases (very) 
fast with circuit size and the # of 
shares (∃ many tuples) [Ba+15]

A.1
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• Why CI+CCA (while in black box: CI+CPA = PI+CCA)?

• Let AEAD be CIML2 & CCAmL2 with Lenc and Ldec
• Define AEAD’ such that

• Lenc’(𝐾, 𝑀) = Lenc(𝐾, 𝑀)+Lenc(𝐾′, 𝑀′)
• Ldec’(𝐾, 𝐶)=Ldec(𝐾, 𝐶)+Lenc(𝐾′, 𝑀′)

• AEAD’ is still CIML2 but not CCAmL2 anymore
• Attack: use the Ldec’ query to leak about 𝑀′

and then use 𝑀′ as challenge plaintext

• First apparition of a recuring issue: somewhat
artificial attack related to the difficulty to model L

B.1
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• Analyses must deal with the information and the 
computational complexity of the leakage function
• Information: obvious (full leakage ⇒ no secrecy)
• Computation: avoid « precomputation attacks » [DP08]

• Background: the shape of L is unknown
• We don’t even know its complexity class, e.g.,

• Solving Maxwell’s equations for an AES circuit takes days
• But a physical circuit provides an instantaneous answer

Physical assumptions (challenge) C.1



• Information restriction

Physical assumptions (symmetric SOTA) 

HILL pseudoentropy [DP08]

seed-preserving PRG [YPSM10]
(≈ hard to invert leakages [DKL09])
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• Information restriction + computation restriction

Physical assumptions (symmetric SOTA) 

HILL pseudoentropy [DP08]

only computation leaks [MR04] 
+ alternating structure [DP08]

oracle-free leakage function [YPMS10] 

seed-preserving PRG [YPSM10]
(≈ hard to invert leakages [DKL09,D+10])
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• Information restriction + computation restriction

Physical assumptions (symmetric SOTA) 

simulatability [SPY13]

∅

HILL pseudoentropy [DP08]

only computation leaks [MR04] 
+ alternating structure [DP08]

oracle-free leakage function [YPMS10] 

seed-preserving PRG [YPSM10]
(≈ hard to invert leakages [DKL09,D+10])
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• Information restriction + computation restriction

• Safer strategy: try proofs with both combinations
• Weaker physical assumption but idealized analysis
• Stronger physical assmption in the standard model

Physical assumptions (symmetric SOTA) 

simulatability [SPY13]

∅

oracle-free leakage function [YPMS10] 

seed-preserving PRG [YPSM10]
(≈ hard to invert leakages [DKL09,D+10])
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• L is hard to model ⇒ just don’t model it
• Give public I/O access to device & setup
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• L is hard to model ⇒ just don’t model it
• Give public I/O access to device & setup

• Assume L(𝑥, 𝐾) can be simulated
• Using the same hardware as the target 
• But without knowing the secret key 𝐾

Simulatable leakage (I) C.3



• L(𝑥, 𝐾) can be simulated without knowledge of 𝐾

• E.g., FPGA implementation, 128-bit architecture

Simulatable leakages (II)

rounds (with fresh & unknown data) 

SPA
𝑥

MC
𝑦 = BC𝐾(𝑥)

MC
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• L(𝑥, 𝐾) can be simulated without knowledge of 𝐾

• E.g., FPGA implementation, 128-bit architecture

• Simulated traces should be consistent with 𝑥 and 𝑦

• Simple proposal [SPY13]: « split & concatenate »

S 𝑥, 𝐾, 𝑦 = L1/2 𝑥, 𝐾∗, 𝑦∗ ||L2/2 𝑥∗, 𝐾∗, 𝑦

Simulatable leakages (II)

rounds (with fresh & unknown data) 

SPA
𝑥

MC
𝑦 = BC𝐾(𝑥)

MC
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• Intra-trace correlation: ρ(𝐿𝑡𝑖 , 𝐿1:𝑡2500), real traces 

• Same, with simulated traces L1/2 𝑥, 𝐾∗, 𝑦∗ ||L2/2 𝑥∗, 𝐾∗, 𝑦

• Fixing this requires modeling the physics of L (but the 
goal of simulatability was to avoid such modeling)

The Longo et al. distinguisher [Lo+14] C.5



• Just look (exhaustively) for a key 𝐾∗ such that

BC𝐾∗ 𝑥 =  𝑦 → 𝑙  𝑦 and 𝑒 = 𝑙𝑦 − 𝑙  𝑦 is small
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• Just look (exhaustively) for a key 𝐾∗ such that

BC𝐾∗ 𝑥 =  𝑦 → 𝑙  𝑦 and 𝑒 = 𝑙𝑦 − 𝑙  𝑦 is small

• Add key-dep. noise s.t. ∀ 𝑥, 𝐾, 𝐾∗, E(𝑙∆) ≠ E(𝑙∆∗)

Another (new) approach C.6



• Assume a perfect (additive) leakage model
• Remove the contribution 𝑙𝑦 for each 𝑥, 𝐾 pair

Statistical distinguisher

real distributions
𝑙∆

simulated distributions

𝑙∆∗ + 𝑙𝑦 − 𝑙  𝑦

𝜇 𝜇 − 𝑒 𝜇 + 𝑒

C.6
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• Assume a perfect (additive) leakage model
• Remove the contribution 𝑙𝑦 for each 𝑥, 𝐾 pair

• The difference btw. variances decreases in 𝑒2

• Error 𝑒 dercreases linearly in sim. complexity 𝐶
• Depending on the leakage function (experiments needed)
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• For example (experimental data)
• Key-dep. noise variance 𝜎∆

2 = 32 (ignoring +𝜎𝑛
2)

• Simulator complexity 𝐶 = 2𝑐 = 232

• Simulator error 𝑒 = 2−27

• Distinguishing complexity ≥ 264
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𝑒2 traces

• For example (experimental data)
• Key-dep. noise variance 𝜎∆

2 = 32 (ignoring +𝜎𝑛
2)

• Simulator complexity 𝐶 = 2𝑐 = 𝟐𝟒𝟎

• Simulator error 𝑒 = 𝟐−𝟑𝟒

• Distinguishing complexity ≥ 𝟐𝟕𝟖

⇒ Reductions: 𝑘-bit key gives (𝑘-𝑐)-bit confidentiality

• (Imperfect model: 𝑙∆ + 𝑒′ and 𝑙∆∗ + 𝑒 + 𝑒′ get closer)

Distinguishing complexity

real simulation
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rounds (fresh & unknown) 
SPA

𝑥
MC

𝑦 = BC𝐾(𝑥)
MC

• [DP08] require HHILL 𝐾 𝑳 > 𝑘 − 𝜆
• Roughly: ∀𝒍, ∃ a set of 2𝑘−𝜆 keys s.t. BC𝐾∗(𝑥) →  𝒍 ≈ 𝒍
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c
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rounds (fresh & unknown) 
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𝑥
MC

𝑦 = BC𝐾(𝑥)
MC

• [DP08] require HHILL 𝐾 𝑳 > 𝑘 − 𝜆
• Roughly: ∀𝒍, ∃ a set of 2𝑘−𝜆 keys s.t. BC𝐾∗(𝑥) →  𝒍 ≈ 𝒍
• (Different parts of the leakages raise different challenges)

⇒ a fraction  1 2𝜆 of the keys can be used to simulate

• Theory [FH15]: 𝑞-SIM and HHILL disconnected

• Cryptanalysis: 𝑞-SIM ≤ HHILL ≪ CCAmL(for 1 block)

Simulatability vs. pseudoentropy

c

rounds (fresh & unknown) 
SPA

𝑥
MC

computational limits help

computational limits do not help

C.9



• More formally, (       ,         ) has 𝑞-simulatable

leakages of ∃ a simulator 𝑆𝑳(.,.) such that the bit 𝑏
in the following game is hard to guess

• (Not exactly real vs. simulated due to the gen query)

Simulatable leakage definition

Game 𝑞-sim(𝐴,       , 𝑆𝑳(.,.),𝑏) with 𝐾, 𝑲∗ uniformly random

𝑞 queries response if 𝑏 = 1response if 𝑏 = 0

enc(𝑥) 𝑦 = BC𝑘 𝑥 , 𝑆𝑳(.,.)(𝑥,𝑲∗, 𝑦)𝑦 = BC𝑘 𝑥 , 𝑳(𝑥, 𝐾)

1 query response if 𝑏 = 1response if 𝑏 = 0

gen(𝑧, 𝑥) 𝑆𝑳(.,.)(z, 𝑥, 𝑲∗)𝑆𝑳(.,.)(z, 𝑥, 𝐾)
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