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Transparency (as a measure of maturity)

• Block ciphers & symmetric encryption
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Transparency (as a measure of maturity)

• Secure cryptographic implementations
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Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

1. Leakage-resistant AE designs (& implementations)
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes 

2. Conclusions (& the need of open evaluations)
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Acknowledgments & cautionary note 

• Mixing (very) different abstraction levels
• Hopefully in a consistent manner (be forgiving if not)
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Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

1. Leakage-resistant AE designs (& implementations)
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes 

2. Conclusions (& the need of open evaluations)



AES Rijndael: 𝑦 = AES𝐾(𝑥) 1.1



Leaking AES: 𝑦 = AES𝐾(𝑥) → 𝑳 1.1



Leakage function definition

• Leakages are vectors: 𝑳 = (𝐿1, 𝐿2, … , 𝐿𝑡)
• Made of many samples (𝑡 ≈ 103-106)

• Leakages are noisy: 𝑳𝑥(𝑘) ≈ δ𝑥(𝑘) + 𝑵

• Signal-to-Noise Ratio:  SNR𝑖 =
var(𝛿𝑥

𝑖 )

var(𝑁𝑖)

• The shape of 𝜹 & 𝑵 is technology-dependent
• Their exact representation is unknown
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Basic facts (I)

• Computing less means leaking less
• E.g., unprotected 32-bit implem. (HW leakages)

# rounds
# ops.

/ round
# samples

/ op.
MI (bits)
/ sample

10 100 5
log(32) = 5

1 +
1

SNR

𝜆 (bits)
/ trace

25,000

1 +
1

SNR
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Basic facts (I)

• Computing less means leaking less
• E.g., unprotected 32-bit implem. (HW leakages)

• Unprotected 128-bit implem. (HW leakages)

# rounds
# ops.

/ round
# samples

/ op.
MI (bits)
/ sample

10 100 5
log(32) = 5

1 +
1

SNR

𝜆 (bits)
/ trace

25,000

1 +
1

SNR

# rounds
# ops.

/ round
# samples

/ op.
MI (bits)
/ sample

10 1 5
log(128) = 7

1 +
1

SNR

𝜆 (bits)
/ trace

350

1 +
1

SNR

1.3



Consequence (for theoretical analysis)

• Games that give the adversary the ability to 
compare the leakages of two identical device
states are in general trivial to win. For example, 
given a keyed offline leakage oracle 𝑳(. , 𝐾):

• Just compare 𝑳 𝑥𝑏 , 𝐾 with 𝑳 𝑥0, 𝐾 and 𝑳 𝑥1, 𝐾

• (SC stands for « state comparison » attack)

Pr 𝐴SC
𝑳(.,𝐾)

𝑥0, 𝑥1, 𝑳 𝑥𝑏, 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 1
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• Just compare 𝑳 𝑥𝑏 , 𝐾 with 𝑳 𝑥0, 𝐾 and 𝑳 𝑥1, 𝐾

• (SC stands for « state comparison » attack)

⇒ Distinguishing games without anything fresh
and secret in the challenge are trivial to win

Pr 𝐴SC
𝑳(.,𝐾)

𝑥0, 𝑥1, 𝑳 𝑥𝑏, 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 1
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Basic facts (II)

• Key recovery attacks may not easily exploit all 
leakage samples (since 𝐴 needs to guess the state), 
leading to reduced « effective » 𝜆’s, e.g.,

• One key byte recovered in ≈
128

0.14
≈ 1000 traces

exploited
# rounds

# ops.
/ round

# samples
/ op.

MI (bits)
/ sample

1 1 ≈ 𝟐 (indep.)
log(128) = 7

𝟏𝟎𝟎

eff. 𝜆 (bits)
/ trace & subkey

14

100
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Basic facts (II)

• Key recovery attacks may not easily exploit all 
leakage samples (since 𝐴 needs to guess the state), 
leading to reduced « effective » 𝜆’s, e.g.,

• With the masking countermeasures (see next) 

• (128-bit example, 32-bit case significantly harder)

1.5
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Basic facts (III)

• (𝑞, 𝑟)-bounded SCAs are « continuous » attacks
• with 𝑞 different message blocks per key
• and each measurement repeated 𝑟 times

⇒ Typical success probability (e.g., for key recovery):

• There are two main types of attacks (jargon)
• SPA: 𝑞 is a small constant, indep. of message size
• DPA: 𝑞 = poly(𝑛), depends on message size

• Larger 𝑟’s can improve the SNR (average the noise)

1.6

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)



Basic facts (III)

• (𝑞, 𝑟)-bounded SCAs are « continuous » attacks
• with 𝑞 different message blocks per key
• and each measurement repeated 𝑟 times

⇒ Typical success probability (e.g., for key recovery):

• There are two main types of attacks (jargon)
• SPA: 𝑞 is a small constant (e.g., thanks to re-keying)
• DPA: 𝑞 can be large & is adversarially chosen

1.6

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)



Basic facts (III)

• (𝑞, 𝑟)-bounded SCAs are « continuous » attacks
• with 𝑞 different message blocks per key
• and each measurement repeated 𝑟 times

⇒ Typical success probability (e.g., for key recovery):

• There are two main types of attacks (jargon)
• SPA: 𝑞 is a small constant (e.g., thanks to re-keying)
• DPA: 𝑞 can be large & is adversarially chosen

• Larger 𝑟’s can improve the SNR (average the noise)

1.6

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)



Summarizing (taxonomy of attacks)

• Key Recovery (KR) attacks (with known/chosen 𝑥𝑖’s)

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

• May require large amounts of leakage vectors to succeed
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Noise (hardware) is not enough

• Additive noise ≈ cost × 2 ⇒ security × 2
⇒ not a good (crypto) security parameter

• ≈ same holds for all hardware countermeasures

2.1

Y = 0 Y = 1 Y = 0 Y = 1



Masking (≈ noise amplification)

• Example: Boolean encoding

• With 𝑦1, 𝑦2, … , 𝑦𝑑−2, 𝑦𝑑−1 ← {0,1}𝑛

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

2.2



Masking (abstract view)

• Private circuits / probing security [ISW03]

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

A
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Masking (abstract view)

• Private circuits / probing security [ISW03]

• But 𝑑 probes completely reveal 𝑦

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

2.2

A



• Private circuits / probing security [ISW03]

• Noisy leakage security [PR13]

Masking (concrete view)

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

A

2.2



• Private circuits / probing security [ISW03]

• Bounded information MI(𝑌; 𝑳)<MI(𝑌𝑖; 𝑳𝑌𝑖)
𝑑
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• Private circuits / probing security [ISW03]

• Bounded information MI(𝑌; 𝑳)<MI(𝑌𝑖; 𝑳𝑌𝑖)
𝑑

Masking (reduction)

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑 n
o

ise
+ in

d
e

p
e

n
d

e
n

ce
[D

D
F1

4
]
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Masked operations [ISW03] 

• Linear operations: f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)
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Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

⇒ Quadratic overheads & randomness
• (Many published optimizations [R+15,Be+16,GM18])

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)
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𝑎1𝑏1 ⊕𝑎1𝑏2 ⊕𝑎1𝑏3 = 𝒂𝟏𝒃 leaks on 𝑏
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Statistical intuition (2 shares)

• Leakage mean vector for 𝑌 = 0,1 = [0.5 0.5]

2.6



Statistical intuition (2 shares)

• Leakage mean value for 𝑌 = 0,1 = 1

2.6



Case study: ARM Cortex M4 [JS17]

secu
rity
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Summarizing

• Sounds easy but implementation is complex
• Independence issue: physical defaults (e.g., glitches)   

can re-combine shares (e.g., [MPG05,NRS11,F+18])
• Security against horizontal attacks require more 

noise/randomness as 𝑑 increases [BCPZ16,CS19] 
• Scalability/composition are challenging [Ba+15,Ba+16]

⇒ High security against DPA can be reached but
• It implies large performance overheads

• E.g., industry currently uses 2-4 shares (?)
• It « only » protects the key (plaintexts are not shared)

• SPA security expected to be (much) cheaper

2.8
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2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
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• Why not extending [RS06]’s all in one definition?

• 𝐴 cannot ask a decryption query on (𝑁, 𝐴𝐷, 𝐶) after
𝐶 is returned by an (𝑁, 𝐴𝐷,.) encryption query

• Problem: the leakage of ideal objects (which do not 

have implementations) seems difficult to define

Authenticated Encryption (AEAD) 3.1
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Ciphertext Integrity 3.2



• CIL1: leagage in encryption only [Be+18]

Ciphertext Integrity with Leakage 3.2



• CIL2: leagage in encryption and decryption [BPPS17]
• Natural extensions (no definitional challenges)   

with many applications (e.g., secure bootloading)

Ciphertext Integrity with Leakage 3.2



Chosen Ciphertext Security 3.3



CCA Security with Leakage [GPPS18] 3.3

• CCAL1: leakage in encryption



CCA Security with Leakage [GPPS18] 3.3

• CCAL2: leakage in encryption and decryption



• + challenge Ldec* (applications: IP protection, …)

CCA Security with Leakage [GPPS18] 3.3



The challenge leakage controversy (I)

• [MR04] (and [NS09,BG10,…]): indistinguishability
with Lenc*  is hard (one bit breaks it with 𝑝 = 1)
• So it is quite tempting to ignore it
• Which can make sense (e.g., if you tolerate « local 

attacks »  but not « global » security degradations)
• Leakage-resilience vs. leakage-resistance
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• [MR04] (and [NS09,BG10,…]): indistinguishability
with Lenc*  is hard (one bit breaks it with 𝑝 = 1)
• So it is quite tempting to ignore it
• Which can make sense (e.g., if you tolerate « local 

attacks »  but not « global » security degradations)
• Leakage-resilience vs. leakage-resistance

• Ignoring challenge leakages means that an 
implementation leaking messages in full is OK
• This is not what we want in general / theory
• It can have big impact (e.g., TLS [CHV03],[AP13], …)

• Different attacks but they show plaintext leakage matters
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The challenge leakage controversy (II)

• If we do not make it part of the definition it will 
never be a goal for cryptographers & engineers
• Cryptographers: minimize the message manipulation
• Engineers: minimize message leakage, e.g., with

special encodings (which is not much studied yet)
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The challenge leakage controversy (II)

• If we do not make it part of the definition it will 
never be a goal for cryptographers & engineers
• Cryptographers: minimize the message manipulation
• Engineers: minimize message leakage, e.g., with

special encodings (which is not much studied yet)

• We need to understand what can be achieved
• Even if results are not ideal  (e.g., no negl. Adv.)

• Technically: more greyscale view than [MR04]
• Challenge leakages allow Message Comparison (MC) 

attacks which are not always tivial, e.g.,
• Remote timing attacks: scalar leakages (vs. vectors)
• Proxy re-encryption: messages are not chosen
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• Tree-based leakage-resilient PRF [GGM84,FPS12]
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An motivating example

• Tree-based leakage-resilient PRF [GGM84,FPS12]

• Leads to simple MC attacks
• Message encrypted bit per 

bit ⇒ no algorithmic noise
• Constant block cipher

inputs « all zeros » and 
« all ones » easy to 
distinguish with HWs [B12]

• (Yet is quite good against KR)

3.6
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• Black box: only identical (𝑁,𝑀) pairs should be at risk
• Typically achieved by having a 2-pass mode (e.g., SIV)

Misuse-Resistance (MR) [RS06] 3.7



• With leakage: a SC attack against 𝑀1 = 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 
𝑀2 = 𝑥1, 𝑥2, 𝑥3, 𝑥4

∗ leaks that they first blocks are equal

Misuse-Resistance (MR) [RS06] 3.7



• Fresh challenge nonce circumvent this impossibility
• Intuition: leaves mostly MC attacks and DPAs

Misuse-Resilience (mR) [ADL17] 3.8
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misuse-resistance (excluding trivial / leak-free solutions) 
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Summarizing

• For confidentiality, no meaningful encryption scheme
seem to ensure leakage-resistance and (nonce) 
misuse-resistance (excluding trivial / leak-free solutions) 

• Natural combinations include:
a. Misuse-resilience/leakage-resistance: CCAmL [GPPS18]
b. Misuse-resistance/leakage-resilience: CCAMl [BMOS17]

• ≈ a choice between the need for applications to limit
the leakage or for implementers to control nonces

• Strongest def.: AEML=CIML2+CCAmL2+CCAMl2

• Weaker variants can be meaningful: for instance 
AEmL=CIML2+CCAmL2 [Be+19], CPAl1 [DM19], …

3.9
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Mode analysis (I)

• Identify main steps, e.g., inner keyed sponge

• Choose the target for confidentiality & integrity

4.1

initialization bulk computation finalization verif.



Mode analysis (II)

• Reduce the mode to (weak) assumptions (tightly)

4.2

leak-free components

strong unpredictability with leakage 

oracle-free leakages      […]

hard-to-invert leakages

bounded leakage 

simulatable leakages

only computation leaks



• Translate assumptions into necessary design goals

• Set the target security level (2𝑚 leakages, 2𝑡 time)

• Evaluate implementation cost & performances

DPA
(key recovery)

Practical evaluation (I)  4.3

DPA
(key recovery)

init./final. bulk comp. tag verif.

int.

conf.

DPA (key recovery)

SPA (key recovery)

unbounded leakages

DPA (tag recovery)

unbounded leakages

MC

DPA (key recovery)

SPA (key recovery) ∅



• Approximate performance overheads

• DPA security: high-order masking, shuffling, …
• SPA security: parallel implementations, noise, …

x 5 – 10 – >100

Practical evaluation (II)  4.4

x 5 – 10 – >100

init./final. bulk comp. tag verif.

int.

conf.

x 5 – 10 – >100
x 1 – 5

x 1

x 5 – 10 – >100

x 1 – 5

???

x 5 – 10 – >100
x 1 – 5 ∅
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OCB-Pyjamask [G+19]

• Target: CCAL1, CIL1 (L in enc only, no misuse)

• Needs DPA resistance for all E   blocks
• Primitive/implementation SCA security only 

• Others: SKINNY-AEAD, SUNDAE-GIFT, OCB-AES, …
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• Target: CCAL1, CIL1 (L in enc only, no misuse)

• Bulk computation only requires SPA security
• Light green: no averaging is possible (fresh states)

• Calling for so-called “levelled” implementations 
• Energy gains thanks to 2 different implementations

PHOTON-Beetle [B+19] 4.6



• Target: CCAmL1, CIML1 (L in enc only, misuse)

• DPA security needed everywhere with nonce 
misuse (idem with decryption leakages)
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• Target: CCAmL1, CIML1 (L in enc only, misuse)

• DPA security needed everywhere with nonce 
misuse (idem with decryption leakages)

• Others: Gimli, Ketje, Oribatida, …
• (Roughly applies to all inner-keyed sponges)

PHOTON-Beetle [B+19] 4.7
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• Target: CCAL1 (L in enc only, no misuse)

• Similar to inner-keyed sponges

Ascon [DEMS19] (confidentiality) 4.8



• Target: CCAmL1 (L in enc only, misuse-resilience)

• Strengthened init./final. steps maintain the SPA 
resistance requirement for the bulk computation 
with nonce misuse and encryption leakages

Ascon [DEMS19] (confidentiality) 4.9



• Target: CCAmL2 (L in enc/dec, misuse-resilience)

• Limited confidentiality with decryption leakages
• Dark orange/green: message decrypted before 

verification ⇒ the same state can be repeatedly 
measured, allowing SPA with averaged leakage 

Ascon [DEMS19] (confidentiality) 4.10



• Target: CIL1 (L in enc only, no misuse)

• Bulk computation leakage can be unbounded
• Shows interest of composite definitions! 

Ascon [DEMS19] (integrity) 4.11



• Target: CIML1 (L in enc only, misuse-resistance)

• Same feature (unbounded leakages for the bulk) 

Ascon [DEMS19] (integrity) 4.12



• Target: CIML2 (L in enc/dec, misuse-resistance)

• Tag verification must be protected against DPA
• Shows key recovery security is not enough!
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• Target: CIML2 (L in enc/dec, misuse-resistance)

• Tag verification must be protected against DPA
• Shows key recovery security is not enough!

• Others: ACE, GIBBON, Spix, WAGE, …

Ascon [DEMS19] (integrity) 4.13



Spook [B+19] (confidentiality)

• CCAL1, CCAmL1

≈ further exploiting the leveled implementation concept

• Similar to ASCON (but smaller masked state)

4.14



Spook [B+19] (confidentiality)

• CCAmL2

≈ further exploiting the leveled implementation concept

• Similar to ASCON (but smaller masked state)

4.15



Spook [B+19] (confidentiality)

• CIL1, CIML1

≈ further exploiting the leveled implementation concept

• Similar to ASCON (but smaller masked state)
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Spook [B+19] (integrity) 

• CIML2 (L in enc/dec, misuse-resistance)

• Tag verification tolerates unbounded leakages
• (Inverse-free DPA resistant tag verif. also possible) 

• Others: TBC-only variant (TET)

4.17
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ISAP [D+19] (confidentiality) 

• CCAmL2 (L in enc/dec, misuse-resilience)

• 2 pass ⇒ confidentiality in dec. if DPA-resistant verif.

4.18



TEDTSponge [GPPS19] (confidentiality) 

• CCAmL2 (L in enc/dec, misuse-resilience)

• Tag verification with unbounded leakages

4.19
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A theory to guide practice? 5.1

• Overall, ∃ a wide zoo of definitions including
• Leakage-resilience vs. leakage-resistance
• Misuse-resilience vs. misuse-resistance
• Leakage in encryption and decryption
• For integrity and confidentiality

• Not black & white notions: all security notions can be
reached using more demanding physical assumptions
• Best solutions to reach each target have to be evaluated

• Which requires (tight) bounds and concrete
(primitive-dependent) security evaluations

⇒ Hope: strong assumptions in the proofs/analyzes
indicate where implementers must put most efforts 



Open problems 5.2

• We have good ingredients ⇒ how to mix them?

• Evaluation of AE schemes for various security targets
• Links between the different security notions
• Graceful degradations (for CIML2, CCAmL2) 
• Proofs under weaker physical assumptions
• Application to signatures/PKE?

• Cipher designs / key-homomorphic primitives
• Masking (physical defaults, composition, …)

• Improved confidentiality for 1-block messages
• Prototype (open source) implementations

• Anything leading to simple(r) hardware guidelines…
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Evaluation challenge

tighter
bounds

proof-based evaluations [DFS15,GS18]
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