
Towards an Open Approach to Side-Channel
Resistant Authenticated Encryption

François-Xavier Standaert

UCLouvain, ICTEAM, Crypto Group (Belgium)

ASHES 2019, London, UK

Transparency (as a measure of maturity)

• Block ciphers & symmetric encryption

I

Transparency (as a measure of maturity)

• Secure cryptographic implementations

II

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

1. Leakage-resistant AE designs (& implementations)
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

2. Conclusions (& the need of open evaluations)

III

Acknowledgments IV

C. Archambeau

J. Balasch

G. Barthe

S. Belaïd

D. Bellizia

F. Berti

O. Bronchain

G. Cassiers

C. Dobraunig

A. Duc

F. Dupressoir

F. Durvaux

S. Duval

S. Dziembowski

S. Faust

P.-A. Fouque

B. Gierlichs

C. Glowacz

D. Goudarzi

B. Grégoire

V. Grosso

S. Guilley

T. Güneysu

Chun Guo

Qian Guo

G. Herold

A. Journault

D. Kamel

G. Leander

L. Lerman

G. Leurent

I. Levi

T. Malkin

S. Mangard

D. Masny

C. Massart

P. Méaux

M. Medwed

C. Momin

A. Moradi

M. Naya-Plasencia

A. Olshevsky

Y. Oren

E. Oswald

C. Paglialonga

O. Pereira

T. Peters

C. Petit

K. Pietrzak

R. Poussier

E. Prouff

F. Regazzoni

M. Renauld

O. Reparaz

M. Rivain

T. Schneider

J. Schüth

P.-Y. Strub

N. Veyrat-Charvillon

S. Vivek

Weijia Wang

C. Whitnall

Yu Yu

M. Yung

Acknowledgments & cautionary note

• Mixing (very) different abstraction levels
• Hopefully in a consistent manner (be forgiving if not)

IV

C. Archambeau

J. Balasch

G. Barthe

S. Belaïd

D. Bellizia

F. Berti

O. Bronchain

G. Cassiers

C. Dobraunig

A. Duc

F. Dupressoir

F. Durvaux

S. Duval

S. Dziembowski

S. Faust

P.-A. Fouque

B. Gierlichs

C. Glowacz

D. Goudarzi

B. Grégoire

V. Grosso

S. Guilley

T. Güneysu

Chun Guo

Qian Guo

G. Herold

A. Journault

D. Kamel

G. Leander

L. Lerman

G. Leurent

I. Levi

T. Malkin

S. Mangard

D. Masny

C. Massart

P. Méaux

M. Medwed

C. Momin

A. Moradi

M. Naya-Plasencia

A. Olshevsky

Y. Oren

E. Oswald

C. Paglialonga

O. Pereira

T. Peters

C. Petit

K. Pietrzak

R. Poussier

E. Prouff

F. Regazzoni

M. Renauld

O. Reparaz

M. Rivain

T. Schneider

J. Schüth

P.-Y. Strub

N. Veyrat-Charvillon

S. Vivek

Weijia Wang

C. Whitnall

Yu Yu

M. Yung

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

1. Leakage-resistant AE designs (& implementations)
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

2. Conclusions (& the need of open evaluations)

AES Rijndael: 𝑦 = AES𝐾(𝑥) 1.1

Leaking AES: 𝑦 = AES𝐾(𝑥) → 𝑳 1.1

Leakage function definition

• Leakages are vectors: 𝑳 = (𝐿1, 𝐿2, … , 𝐿𝑡)
• Made of many samples (𝑡 ≈ 103-106)

• Leakages are noisy: 𝑳𝑥(𝑘) ≈ δ𝑥(𝑘) + 𝑵

• Signal-to-Noise Ratio: SNR𝑖 =
var(𝛿𝑥

𝑖)

var(𝑁𝑖)

• The shape of 𝜹 & 𝑵 is technology-dependent
• Their exact representation is unknown

1.2

Leakage function definition

• Leakages are vectors: 𝑳 = (𝐿1, 𝐿2, … , 𝐿𝑡)
• Made of many samples (𝑡 ≈ 103-106)

• Leakages are noisy: 𝑳(𝑥, 𝐾) ≈ 𝜹(𝑥, 𝐾) + 𝑵

• Signal-to-Noise Ratio: SNR𝑖 =
var(𝛿𝑥

𝑖)

var(𝑁𝑖)

• The shape of 𝜹 & 𝑵 is technology-dependent
• Their exact representation is unknown

1.2

Leakage function definition

• Leakages are vectors: 𝑳 = (𝐿1, 𝐿2, … , 𝐿𝑡)
• Made of many samples (𝑡 ≈ 103-106)

• Leakages are noisy: 𝑳(𝑥, 𝐾) ≈ 𝜹(𝑥, 𝐾) + 𝑵

• Signal-to-Noise Ratio: SNR𝑖 =
var(𝛿𝑥

𝑖)

var(𝑁𝑖)

• The shape of 𝜹 & 𝑵 is technology-dependent
• Their exact representation is unknown

1.2

Basic facts (I)

• Computing less means leaking less
• E.g., unprotected 32-bit implem. (HW leakages)

rounds
ops.

/ round
samples

/ op.
MI (bits)
/ sample

10 100 5
log(32) = 5

1 +
1

SNR

𝜆 (bits)
/ trace

25,000

1 +
1

SNR

1.3

Basic facts (I)

• Computing less means leaking less
• E.g., unprotected 32-bit implem. (HW leakages)

• Unprotected 128-bit implem. (HW leakages)

rounds
ops.

/ round
samples

/ op.
MI (bits)
/ sample

10 100 5
log(32) = 5

1 +
1

SNR

𝜆 (bits)
/ trace

25,000

1 +
1

SNR

rounds
ops.

/ round
samples

/ op.
MI (bits)
/ sample

10 1 5
log(128) = 7

1 +
1

SNR

𝜆 (bits)
/ trace

350

1 +
1

SNR

1.3

Consequence (for theoretical analysis)

• Games that give the adversary the ability to
compare the leakages of two identical device
states are in general trivial to win. For example,
given a keyed offline leakage oracle 𝑳(. , 𝐾):

• Just compare 𝑳 𝑥𝑏 , 𝐾 with 𝑳 𝑥0, 𝐾 and 𝑳 𝑥1, 𝐾

• (SC stands for « state comparison » attack)

Pr 𝐴SC
𝑳(.,𝐾)

𝑥0, 𝑥1, 𝑳 𝑥𝑏, 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 1

1.4

Consequence (for theoretical analysis)

• Games that give the adversary the ability to
compare the leakages of two identical device
states are in general trivial to win. For example,
given a keyed offline leakage oracle 𝑳(. , 𝐾):

• Just compare 𝑳 𝑥𝑏 , 𝐾 with 𝑳 𝑥0, 𝐾 and 𝑳 𝑥1, 𝐾

• (SC stands for « state comparison » attack)

⇒ Distinguishing games without anything fresh
and secret in the challenge are trivial to win

Pr 𝐴SC
𝑳(.,𝐾)

𝑥0, 𝑥1, 𝑳 𝑥𝑏, 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 1

1.4

Basic facts (II)

• Key recovery attacks may not easily exploit all
leakage samples (since 𝐴 needs to guess the state),
leading to reduced « effective » 𝜆’s, e.g.,

• One key byte recovered in ≈
128

0.14
≈ 1000 traces

exploited
rounds

ops.
/ round

samples
/ op.

MI (bits)
/ sample

1 1 ≈ 𝟐 (indep.)
log(128) = 7

𝟏𝟎𝟎

eff. 𝜆 (bits)
/ trace & subkey

14

100

1.5

Basic facts (II)

• Key recovery attacks may not easily exploit all
leakage samples (since 𝐴 needs to guess the state),
leading to reduced « effective » 𝜆’s, e.g.,

• With the masking countermeasures (see next)

1.5

exploited
rounds

ops.
/ round

samples
/ op.

MI (bits)
/ sample

1 1 ≈ 𝟐 (indep.)
log(128) = 7

𝟏𝟎𝟎

eff. 𝜆 (bits)
/ trace & subkey

≈
14

100

𝒅

Basic facts (II)

• Key recovery attacks may not easily exploit all
leakage samples (since 𝐴 needs to guess the state),
leading to reduced « effective » 𝜆’s, e.g.,

• With the masking countermeasures (see next)

• (128-bit example, 32-bit case significantly harder)

1.5

exploited
rounds

ops.
/ round

samples
/ op.

MI (bits)
/ sample

1 1 ≈ 𝟐 (indep.)
log(128) = 7

𝟏𝟎𝟎

eff. 𝜆 (bits)
/ trace & subkey

≈
14

100

𝒅

Basic facts (III)

• (𝑞, 𝑟)-bounded SCAs are « continuous » attacks
• with 𝑞 different message blocks per key
• and each measurement repeated 𝑟 times

⇒ Typical success probability (e.g., for key recovery):

• There are two main types of attacks (jargon)
• SPA: 𝑞 is a small constant, indep. of message size
• DPA: 𝑞 = poly(𝑛), depends on message size

• Larger 𝑟’s can improve the SNR (average the noise)

1.6

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

Basic facts (III)

• (𝑞, 𝑟)-bounded SCAs are « continuous » attacks
• with 𝑞 different message blocks per key
• and each measurement repeated 𝑟 times

⇒ Typical success probability (e.g., for key recovery):

• There are two main types of attacks (jargon)
• SPA: 𝑞 is a small constant (e.g., thanks to re-keying)
• DPA: 𝑞 can be large & is adversarially chosen

1.6

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

Basic facts (III)

• (𝑞, 𝑟)-bounded SCAs are « continuous » attacks
• with 𝑞 different message blocks per key
• and each measurement repeated 𝑟 times

⇒ Typical success probability (e.g., for key recovery):

• There are two main types of attacks (jargon)
• SPA: 𝑞 is a small constant (e.g., thanks to re-keying)
• DPA: 𝑞 can be large & is adversarially chosen

• Larger 𝑟’s can improve the SNR (average the noise)

1.6

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

Summarizing (taxonomy of attacks)

• Key Recovery (KR) attacks (with known/chosen 𝑥𝑖’s)

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

• May require large amounts of leakage vectors to succeed

1.7

Summarizing (taxonomy of attacks)

• Key Recovery (KR) attacks (with known/chosen 𝑥𝑖’s)

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

• May require large amounts of leakage vectors to succeed
• Or have bounded success probability in case of SPA

1.7

Summarizing (taxonomy of attacks)

• Key Recovery (KR) attacks (with known/chosen 𝑥𝑖’s)

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

• May require large amounts of leakage vectors to succeed
• Or have bounded success probability in case of SPA

• Message Comparison (MC) attacks (with fresh key)

Pr 𝐴MC
𝑳(.,.)

𝑥0, 𝑥1, 𝑳 𝑥𝑏 , 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 2−128+D 𝑳 𝑥0 ;𝑳 𝑥1

• Significanly simpler than KR - but not trivial for all 𝑥0, 𝑥1 (!)
• Depends on similarity of the message blocks’ leakages

• State Comparison (SC) attacks (with keyed oracle)

• Pr 𝐴SC
𝑳(.,𝐾)

𝑥0, 𝑥1, 𝑳 𝑥𝑏 , 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 1 anyway

1.7

Summarizing (taxonomy of attacks)

• Key Recovery (KR) attacks (with known/chosen 𝑥𝑖’s)

Pr 𝐴KR 𝑥1, 𝑳 𝑥1, 𝐾 , … , 𝑥𝑞 , 𝑳 𝑥𝑞 , 𝐾 → 𝐾|𝐾 ← $ ≈ 2−128+𝑞∙𝜆(𝑟)

• May require large amounts of leakage vectors to succeed
• Or have bounded success probability in case of SPA

• Message Comparison (MC) attacks (with fresh challenge)

Pr 𝐴MC
𝑳(.,.)

𝑥0, 𝑥1, 𝑳 𝑥𝑏 , 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 2−128+D 𝑳 𝑥0,𝐾 ;𝑳 𝑥1,𝐾

• Significanly simpler than KR - but not trivial for all 𝑥0, 𝑥1 (!)
• Depends on similarity of the message blocks’ leakages

• State Comparison (SC) attacks (with keyed oracle)

• Pr 𝐴SC
𝑳(.,𝐾)

𝑥0, 𝑥1, 𝑳 𝑥𝑏 , 𝐾 = 𝑏|𝐾, 𝑏 ← $ ≈ 1 anyway

1.7

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

1. Leakage-resistant AE designs (& implementations)
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

2. Conclusions (& the need of open evaluations)

Noise (hardware) is not enough 2.1

Y = 0 Y = 1

Noise (hardware) is not enough 2.1

Y = 0 Y = 1 Y = 0 Y = 1

Noise (hardware) is not enough

• Additive noise ≈ cost × 2 ⇒ security × 2
⇒ not a good (crypto) security parameter

• ≈ same holds for all hardware countermeasures

2.1

Y = 0 Y = 1 Y = 0 Y = 1

Masking (≈ noise amplification)

• Example: Boolean encoding

• With 𝑦1, 𝑦2, … , 𝑦𝑑−2, 𝑦𝑑−1 ← {0,1}𝑛

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

2.2

Masking (abstract view)

• Private circuits / probing security [ISW03]

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

A

2.2

Masking (abstract view)

• Private circuits / probing security [ISW03]

• 𝑑 − 1 probes do not reveal anything on 𝑦

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

A

2.2

Masking (abstract view)

• Private circuits / probing security [ISW03]

• But 𝑑 probes completely reveal 𝑦

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

2.2

A

• Private circuits / probing security [ISW03]

• Noisy leakage security [PR13]

Masking (concrete view)

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

A

2.2

• Private circuits / probing security [ISW03]

• Bounded information MI(𝑌; 𝑳)<MI(𝑌𝑖; 𝑳𝑌𝑖)
𝑑

Masking (concrete view)

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑

2.2

A

• Private circuits / probing security [ISW03]

• Bounded information MI(𝑌; 𝑳)<MI(𝑌𝑖; 𝑳𝑌𝑖)
𝑑

Masking (reduction)

𝑦 = 𝑦1 ⊕𝑦2 ⊕⋯⊕𝑦𝑑−1 ⊕𝑦𝑑 n
o

ise
+ in

d
e

p
e

n
d

e
n

ce
[D

D
F1

4
]

2.4

Masked operations [ISW03]

• Linear operations: f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

2.5

Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

2.5

Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
−𝑟1 0 𝑟3
−𝑟2 −𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

partial products refreshing compression

2.5

Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
−𝑟1 0 𝑟3
−𝑟2 −𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

partial products refreshing compression

2.5

Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
−𝑟1 0 𝑟3
−𝑟2 −𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

partial products refreshing compression

2.5

Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
−𝑟1 0 𝑟3
−𝑟2 −𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

partial products compression

𝑎1𝑏1 ⊕𝑎1𝑏2 ⊕𝑎1𝑏3 = 𝒂𝟏𝒃 leaks on 𝑏

refreshing

2.5

Masked operations [ISW03]

• Linear operations:

• Multiplications: c = 𝑎 × 𝑏 in three steps

⇒ Quadratic overheads & randomness
• (Many published optimizations [R+15,Be+16,GM18])

f(a) = f(𝑎1) ⊕ f(𝑎2) ⊕⋯⊕ f(𝑎𝑑)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
−𝑟1 0 𝑟3
−𝑟2 −𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

partial products compression

𝑎1𝑏1 ⊕𝑎1𝑏2 ⊕𝑎1𝑏3 = 𝒂𝟏𝒃 leaks on 𝑏

refreshing

2.5

Statistical intuition (2 shares)

• Leakage mean vector for 𝑌 = 0,1 = [0.5 0.5]

2.6

Statistical intuition (2 shares)

• Leakage mean value for 𝑌 = 0,1 = 1

2.6

Case study: ARM Cortex M4 [JS17]

secu
rity

2.7

Case study: ARM Cortex M4 [JS17]

secu
rity

p
erfo

rm
an

ce

2.7

Case study: ARM Cortex M4 [JS17]

secu
rity

p
erfo

rm
an

ce

2.7

Summarizing

• Sounds easy but implementation is complex

2.8

Summarizing

• Sounds easy but implementation is complex
• Independence issue: physical defaults (e.g., glitches)

can re-combine shares (e.g., [MPG05,NRS11,F+18])
• Security against horizontal attacks require more

noise/randomness as 𝑑 increases [BCPZ16,CS19]
• Scalability/composition are challenging [Ba+15,Ba+16]

2.8

Summarizing

• Sounds easy but implementation is complex
• Independence issue: physical defaults (e.g., glitches)

can re-combine shares (e.g., [MPG05,NRS11,F+18])
• Security against horizontal attacks require more

noise/randomness as 𝑑 increases [BCPZ16,CS19]
• Scalability/composition are challenging [Ba+15,Ba+16]

⇒ High security against DPA can be reached but
• It implies large performance overheads

• E.g., industry currently uses 2-4 shares (?)
• It « only » protects the key (plaintexts are not shared)

2.8

Summarizing

• Sounds easy but implementation is complex
• Independence issue: physical defaults (e.g., glitches)

can re-combine shares (e.g., [MPG05,NRS11,F+18])
• Security against horizontal attacks require more

noise/randomness as 𝑑 increases [BCPZ16,CS19]
• Scalability/composition are challenging [Ba+15,Ba+16]

⇒ High security against DPA can be reached but
• It implies large performance overheads

• E.g., industry currently uses 2-4 shares (?)
• It « only » protects the key (plaintexts are not shared)

• SPA security expected to be (much) cheaper

2.8

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

1. Leakage-resistant AE designs (& implementations)
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

2. Conclusions (& the need of open evaluations)

• Why not extending [RS06]’s all in one definition?

• 𝐴 cannot ask a decryption query on (𝑁, 𝐴𝐷, 𝐶) after
𝐶 is returned by an (𝑁, 𝐴𝐷,.) encryption query

Authenticated Encryption (AEAD) 2.1

re
a

l id
e

a
l

• Why not extending [RS06]’s all in one definition?

• 𝐴 cannot ask a decryption query on (𝑁, 𝐴𝐷, 𝐶) after
𝐶 is returned by an (𝑁, 𝐴𝐷,.) encryption query

• Problem: the leakage of ideal objects (which do not

have implementations) seems difficult to define

Authenticated Encryption (AEAD) 3.1

re
a

l id
e

a
l

Ciphertext Integrity 3.2

• CIL1: leagage in encryption only [Be+18]

Ciphertext Integrity with Leakage 3.2

• CIL2: leagage in encryption and decryption [BPPS17]
• Natural extensions (no definitional challenges)

with many applications (e.g., secure bootloading)

Ciphertext Integrity with Leakage 3.2

Chosen Ciphertext Security 3.3

CCA Security with Leakage [GPPS18] 3.3

• CCAL1: leakage in encryption

CCA Security with Leakage [GPPS18] 3.3

• CCAL2: leakage in encryption and decryption

• + challenge Ldec* (applications: IP protection, …)

CCA Security with Leakage [GPPS18] 3.3

The challenge leakage controversy (I)

• [MR04] (and [NS09,BG10,…]): indistinguishability
with Lenc* is hard (one bit breaks it with 𝑝 = 1)
• So it is quite tempting to ignore it
• Which can make sense (e.g., if you tolerate « local

attacks » but not « global » security degradations)
• Leakage-resilience vs. leakage-resistance

3.4

The challenge leakage controversy (I)

• [MR04] (and [NS09,BG10,…]): indistinguishability
with Lenc* is hard (one bit breaks it with 𝑝 = 1)
• So it is quite tempting to ignore it
• Which can make sense (e.g., if you tolerate « local

attacks » but not « global » security degradations)
• Leakage-resilience vs. leakage-resistance

• Ignoring challenge leakages means that an
implementation leaking messages in full is OK
• This is not what we want in general / theory
• It can have big impact (e.g., TLS [CHV03],[AP13], …)

• Different attacks but they show plaintext leakage matters

3.4

The challenge leakage controversy (II)

• If we do not make it part of the definition it will
never be a goal for cryptographers & engineers
• Cryptographers: minimize the message manipulation
• Engineers: minimize message leakage, e.g., with

special encodings (which is not much studied yet)

3.5

The challenge leakage controversy (II)

• If we do not make it part of the definition it will
never be a goal for cryptographers & engineers
• Cryptographers: minimize the message manipulation
• Engineers: minimize message leakage, e.g., with

special encodings (which is not much studied yet)

• We need to understand what can be achieved
• Even if results are not ideal (e.g., no negl. Adv.)

3.5

The challenge leakage controversy (II)

• If we do not make it part of the definition it will
never be a goal for cryptographers & engineers
• Cryptographers: minimize the message manipulation
• Engineers: minimize message leakage, e.g., with

special encodings (which is not much studied yet)

• We need to understand what can be achieved
• Even if results are not ideal (e.g., no negl. Adv.)

• Technically: more greyscale view than [MR04]
• Challenge leakages allow Message Comparison (MC)

attacks which are not always tivial, e.g.,
• Remote timing attacks: scalar leakages (vs. vectors)
• Proxy re-encryption: messages are not chosen

3.5

An motivating example

• Tree-based leakage-resilient PRF [GGM84,FPS12]

3.6

An motivating example

• Tree-based leakage-resilient PRF [GGM84,FPS12]

• Leads to simple MC attacks
• Message encrypted bit per

bit ⇒ no algorithmic noise
• Constant block cipher

inputs « all zeros » and
« all ones » easy to
distinguish with HWs [B12]

• (Yet is quite good against KR)

3.6

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

1. Leakage-resistant AE designs (& implementations)
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

2. Conclusions (& the need of open evaluations)

• Black box: only identical (𝑁,𝑀) pairs should be at risk
• Typically achieved by having a 2-pass mode (e.g., SIV)

Misuse-Resistance (MR) [RS06] 3.7

• With leakage: a SC attack against 𝑀1 = 𝑥1, 𝑥2, 𝑥3, 𝑥4 and
𝑀2 = 𝑥1, 𝑥2, 𝑥3, 𝑥4

∗ leaks that they first blocks are equal

Misuse-Resistance (MR) [RS06] 3.7

• Fresh challenge nonce circumvent this impossibility
• Intuition: leaves mostly MC attacks and DPAs

Misuse-Resilience (mR) [ADL17] 3.8

Summarizing

• For confidentiality, no meaningful encryption scheme
seem to ensure leakage-resistance and (nonce)
misuse-resistance (excluding trivial / leak-free solutions)

3.9

Summarizing

• For confidentiality, no meaningful encryption scheme
seem to ensure leakage-resistance and (nonce)
misuse-resistance (excluding trivial / leak-free solutions)

• Natural combinations include:
a. Misuse-resilience/leakage-resistance: CCAmL [GPPS18]
b. Misuse-resistance/leakage-resilience: CCAMl [BMOS17]

3.9

Summarizing

• For confidentiality, no meaningful encryption scheme
seem to ensure leakage-resistance and (nonce)
misuse-resistance (excluding trivial / leak-free solutions)

• Natural combinations include:
a. Misuse-resilience/leakage-resistance: CCAmL [GPPS18]
b. Misuse-resistance/leakage-resilience: CCAMl [BMOS17]

• ≈ a choice between the need for applications to limit
the leakage or for implementers to control nonces

3.9

Summarizing

• For confidentiality, no meaningful encryption scheme
seem to ensure leakage-resistance and (nonce)
misuse-resistance (excluding trivial / leak-free solutions)

• Natural combinations include:
a. Misuse-resilience/leakage-resistance: CCAmL [GPPS18]
b. Misuse-resistance/leakage-resilience: CCAMl [BMOS17]

• ≈ a choice between the need for applications to limit
the leakage or for implementers to control nonces

• Strongest def.: AEML=CIML2+CCAmL2+CCAMl2

3.9

Summarizing

• For confidentiality, no meaningful encryption scheme
seem to ensure leakage-resistance and (nonce)
misuse-resistance (excluding trivial / leak-free solutions)

• Natural combinations include:
a. Misuse-resilience/leakage-resistance: CCAmL [GPPS18]
b. Misuse-resistance/leakage-resilience: CCAMl [BMOS17]

• ≈ a choice between the need for applications to limit
the leakage or for implementers to control nonces

• Strongest def.: AEML=CIML2+CCAmL2+CCAMl2

• Weaker variants can be meaningful: for instance
AEmL=CIML2+CCAmL2 [Be+19], CPAl1 [DM19], …

3.9

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

1. Leakage-resistant AE designs (& implementations)
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

2. Conclusions (& the need of open evaluations)

Mode analysis (I)

• Identify main steps, e.g., inner keyed sponge

4.1

initialization bulk computation finalization verif.

Mode analysis (I)

• Identify main steps, e.g., inner keyed sponge

• Choose the target for confidentiality & integrity

4.1

initialization bulk computation finalization verif.

Mode analysis (II)

• Reduce the mode to (weak) assumptions (tightly)

4.2

leak-free components

strong unpredictability with leakage

oracle-free leakages […]

hard-to-invert leakages

bounded leakage

simulatable leakages

only computation leaks

• Translate assumptions into necessary design goals

• Set the target security level (2𝑚 leakages, 2𝑡 time)

• Evaluate implementation cost & performances

DPA
(key recovery)

Practical evaluation (I) 4.3

DPA
(key recovery)

init./final. bulk comp. tag verif.

int.

conf.

DPA (key recovery)

SPA (key recovery)

unbounded leakages

DPA (tag recovery)

unbounded leakages

MC

DPA (key recovery)

SPA (key recovery) ∅

• Approximate performance overheads

• DPA security: high-order masking, shuffling, …
• SPA security: parallel implementations, noise, …

x 5 – 10 – >100

Practical evaluation (II) 4.4

x 5 – 10 – >100

init./final. bulk comp. tag verif.

int.

conf.

x 5 – 10 – >100
x 1 – 5

x 1

x 5 – 10 – >100

x 1 – 5

???

x 5 – 10 – >100
x 1 – 5 ∅

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

1. Leakage-resistant AE designs (& implementations)
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

2. Conclusions (& the need of open evaluations)

III

OCB-Pyjamask [G+19]

• Target: CCAL1, CIL1 (L in enc only, no misuse)

• Needs DPA resistance for all E blocks
• Primitive/implementation SCA security only

4.5

K

OCB-Pyjamask [G+19]

• Target: CCAL1, CIL1 (L in enc only, no misuse)

• Needs DPA resistance for all E blocks
• Primitive/implementation SCA security only

• Others: SKINNY-AEAD, SUNDAE-GIFT, OCB-AES, …

4.5

K

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

1. Leakage-resistant AE designs (& implementations)
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

2. Conclusions (& the need of open evaluations)

• Target: CCAL1, CIL1 (L in enc only, no misuse)

• Bulk computation only requires SPA security
• Light green: no averaging is possible (fresh states)

• Calling for so-called “levelled” implementations
• Energy gains thanks to 2 different implementations

PHOTON-Beetle [B+19] 4.6

• Target: CCAmL1, CIML1 (L in enc only, misuse)

• DPA security needed everywhere with nonce
misuse (idem with decryption leakages)

PHOTON-Beetle [B+19] 4.7

• Target: CCAmL1, CIML1 (L in enc only, misuse)

• DPA security needed everywhere with nonce
misuse (idem with decryption leakages)

• Others: Gimli, Ketje, Oribatida, …
• (Roughly applies to all inner-keyed sponges)

PHOTON-Beetle [B+19] 4.7

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

1. Leakage-resistant AE designs (& implementations)
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

2. Conclusions (& the need of open evaluations)

• Target: CCAL1 (L in enc only, no misuse)

• Similar to inner-keyed sponges

Ascon [DEMS19] (confidentiality) 4.8

• Target: CCAmL1 (L in enc only, misuse-resilience)

• Strengthened init./final. steps maintain the SPA
resistance requirement for the bulk computation
with nonce misuse and encryption leakages

Ascon [DEMS19] (confidentiality) 4.9

• Target: CCAmL2 (L in enc/dec, misuse-resilience)

• Limited confidentiality with decryption leakages
• Dark orange/green: message decrypted before

verification ⇒ the same state can be repeatedly
measured, allowing SPA with averaged leakage

Ascon [DEMS19] (confidentiality) 4.10

• Target: CIL1 (L in enc only, no misuse)

• Bulk computation leakage can be unbounded
• Shows interest of composite definitions!

Ascon [DEMS19] (integrity) 4.11

• Target: CIML1 (L in enc only, misuse-resistance)

• Same feature (unbounded leakages for the bulk)

Ascon [DEMS19] (integrity) 4.12

• Target: CIML2 (L in enc/dec, misuse-resistance)

• Tag verification must be protected against DPA
• Shows key recovery security is not enough!

Ascon [DEMS19] (integrity) 4.13

• Target: CIML2 (L in enc/dec, misuse-resistance)

• Tag verification must be protected against DPA
• Shows key recovery security is not enough!

• Others: ACE, GIBBON, Spix, WAGE, …

Ascon [DEMS19] (integrity) 4.13

Spook [B+19] (confidentiality)

• CCAL1, CCAmL1

≈ further exploiting the leveled implementation concept

• Similar to ASCON (but smaller masked state)

4.14

Spook [B+19] (confidentiality)

• CCAmL2

≈ further exploiting the leveled implementation concept

• Similar to ASCON (but smaller masked state)

4.15

Spook [B+19] (confidentiality)

• CIL1, CIML1

≈ further exploiting the leveled implementation concept

• Similar to ASCON (but smaller masked state)

4.16

Spook [B+19] (integrity)

• CIML2 (L in enc/dec, misuse-resistance)

• Tag verification tolerates unbounded leakages
• (Inverse-free DPA resistant tag verif. also possible)

• Others: TBC-only variant (TET)

4.17

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

1. Leakage-resistant AE designs (& implementations)
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

2. Conclusions (& the need of open evaluations)

ISAP [D+19] (confidentiality)

• CCAmL2 (L in enc/dec, misuse-resilience)

• 2 pass ⇒ confidentiality in dec. if DPA-resistant verif.

4.18

TEDTSponge [GPPS19] (confidentiality)

• CCAmL2 (L in enc/dec, misuse-resilience)

• Tag verification with unbounded leakages

4.19

Summarizing

• ∃ a tradeoff between mode-level and
implementation leakage-resistance

• As the security target and level increase, mode-
level leakage-resistance gains more interest

4.20

Summarizing

• ∃ a tradeoff between mode-level and
implementation leakage-resistance

• As the security target and level increase, mode-
level leakage-resistance gains more interest

• Performance gains of levelled implementations

4.20

Summarizing

• ∃ a tradeoff between mode-level and
implementation leakage-resistance

• As the security target and level increase, mode-
level leakage-resistance gains more interest

• Performance gains of levelled implementations

4.20

Outline

1. Side-channel (crypt)analysis: attacks taxonomy

2. Masking countermeasure: security vs. cost

3. Security definitions (authenticated encryption)
a. Nonce-respecting setting (i.e., AEL)
b. Nonce-misuse setting (i.e., AEmL)

1. Leakage-resistant AE designs (& implementations)
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

2. Conclusions (& the need of open evaluations)

A theory to guide practice? 5.1

• Overall, ∃ a wide zoo of definitions including
• Leakage-resilience vs. leakage-resistance
• Misuse-resilience vs. misuse-resistance
• Leakage in encryption and decryption
• For integrity and confidentiality

A theory to guide practice? 5.1

• Overall, ∃ a wide zoo of definitions including
• Leakage-resilience vs. leakage-resistance
• Misuse-resilience vs. misuse-resistance
• Leakage in encryption and decryption
• For integrity and confidentiality

• Not black & white notions: all security notions can be
reached using more demanding physical assumptions
• Best solutions to reach each target have to be evaluated

• Which requires (tight) bounds and concrete
(primitive-dependent) security evaluations

A theory to guide practice? 5.1

• Overall, ∃ a wide zoo of definitions including
• Leakage-resilience vs. leakage-resistance
• Misuse-resilience vs. misuse-resistance
• Leakage in encryption and decryption
• For integrity and confidentiality

• Not black & white notions: all security notions can be
reached using more demanding physical assumptions
• Best solutions to reach each target have to be evaluated

• Which requires (tight) bounds and concrete
(primitive-dependent) security evaluations

⇒ Hope: strong assumptions in the proofs/analyzes
indicate where implementers must put most efforts

Open problems 5.2

• We have good ingredients ⇒ how to mix them?

• Evaluation of AE schemes for various security targets
• Links between the different security notions
• Graceful degradations (for CIML2, CCAmL2)
• Proofs under weaker physical assumptions
• Application to signatures/PKE?

• Cipher designs / key-homomorphic primitives
• Masking (physical defaults, composition, …)

• Improved confidentiality for 1-block messages
• Prototype (open source) implementations

• Anything leading to simple(r) hardware guidelines…

Evaluation challenge

standard practice

co
m

p
u

ta
ti

o
n

𝟐𝟑𝟎220210

measurements

2128

264

20

bounds

5.3

evidence-based evaluations
(assumptions tested per device!)

Evaluation challenge

standard practice

co
m

p
u

ta
ti

o
n

𝟐𝟑𝟎220210

measurements

2128

264

20

bounds

5.3

> 𝟐𝟑𝟎

= 𝟐𝟒𝟎?

= 𝟐𝟖𝟎?

evidence-based evaluations
(assumptions tested per device!)

Evaluation challenge

tighter
bounds

proof-based evaluations [DFS15,GS18]

co
m

p
u

ta
ti

o
n

co
m

p
u

ta
ti

o
n

2128

264

20

𝟐𝟖𝟎…

measurements

standard practice

co
m

p
u

ta
ti

o
n

𝟐𝟑𝟎220210

measurements

2128

264

20

bounds

open design & evaluation

5.3

evidence-based evaluations
on reduced versions

THANKS
http://perso.uclouvain.be/fstandae/

http://perso.uclouvain.be/fstandae/

