
1

Provable Order Amplification for Code-based
Masking: How to Avoid Non-linear Leakages due

to Masked Operations
Weijia Wang∗, Yu Yu†‡ and François-Xavier Standaert§

∗Universit catholique de Louvain,
EPL, ICTEAM, ELEN, Crypto Group,
B-1348, Louvain-la-Neuve, Belgium

Email: weijia.wang@uclouvain.be
†School of Electronic Information and Electrical Engineering,

Shanghai Jiao Tong University, China
Email: yyuu@sjtu.edu.cn

‡ Westone Cryptologic Research Center
§Universit catholique de Louvain,

EPL, ICTEAM, ELEN, Crypto Group,
B-1348, Louvain-la-Neuve, Belgium

Email: fstandae@uclouvain.be

Abstract—Code-based masking schemes have been shown to
provide higher theoretical security guarantees than the Boolean
masking. In particular, one interesting feature put forward at
CARDIS 2016 and then analyzed at CARDIS 2017 is the so-
called security order amplification: under the assumption that the
leakage function is linear, it guarantees that an implementation
performing only linear operations will have a security order in
the bounded moment leakage model larger than d− 1, where d
is the number of shares.

The main question regarding this feature is its practical
relevance. First of all, concrete block ciphers do not only
perform linear operations. Second, it may be that actual leakage
functions are not perfectly linear (raising questions regarding
what happens when one deviates from such assumptions). In
this paper, we show that the issue of only linear operations
can be provably avoided, and that it is possible to obtain
security order amplification for any functionality to implement.
We then show that (not so) slightly non-linear leakage functions
do not annihilate the nice properties (i.e., that the code-based
schemes we consider remain interesting compared to the Boolean
masking). We conclude with a performance evaluation of the
proposals, showing that the performance overheads are moderate
for a reasonable number of shares (we studied when the number
of the shares d = 2, 3, 4). Additionally, our results could be
specified to the case of provable security for low entropy masking,
which can be considered as a side bonus of our contributions. We
give some preliminary results on how to construct low entropy
masking schemes with provable high security order against linear
leakage.

Index Terms—Side-channel attack; Masking; Order amplifica-
tion; Bounded moment model; Probing model

I. INTRODUCTION

Masking aims to provide a leakage-resilient implementation
for the cryptographic algorithm, by encoding each sensitive
variable into several shares. Typically, the security of this
technique largely relies on the noise of the side-channel

measurements. As proved in [1], [2], [3], [4], [5], given
sufficient noise, the leakage of Boolean masking scheme
exponentially decreases with the number of shares. However,
this security guarantee does not always hold in the low noise
scenario, and various high order attacks exploiting leakages of
multiple intermediate variables (shares) have been proposed
(see, e.g., [6], [7], [8], [9] for incomplete list of related
studies). Thus, some recent literature tries to mitigate this
problem by increasing the algebraic complexity of the shares
(e.g., applying linear transformations to the shares of Boolean
masking), resulting in various code-based masking schemes.
Examples include inner product masking [10], [11], [12],
polynomial masking [13], [14], [15], leakage squeezing [16],
[17], [18] and affine masking [19]. Further, it is observed by
[11] and further studied by [20] that this strategy (increasing
the algebraic complexity of shares) provides a higher security
order in linear leakage beyond the guarantees of the Boolean
masking with the same number of shares, which is referred
to as order amplification. However, there are some more
promising but challenging tasks on this topic.

First, to the best of our knowledge, how to construct a
full-fledged masking scheme (for both linear and non-linear
operations) with order amplification is non-trivial and remains
an open problem, because intermediate results in a masked
operation may leak a non-linear function of the inputs. Second,
the order amplification observed in [11] was only confirmed
by the specific leakage function (Hamming weight), and it is
necessary to provide a formal proof for any linear leakages.
Finally, as the development of chip industry moves towards
smaller technologies, the leakage of cryptographic implemen-
tations in nanoscale devices tends to be non-linear, and thus
the analysis of order amplification under non-linear leakage is
also very meaningful.

A. Our contributions

In this paper, we provide a formal study on the order
amplification by giving the following contributions:

First, we give the first masking scheme with provable secure
order amplification, i.e., for a certain number of shares, its
security order in linear leakage is provably higher than that
of the Boolean masking. Meanwhile, to reduce the amount of
randomness used in masked multiplication, we provide another
randomness-efficient (masked multiplication) Algorithm by
putting an additional constraint on the sequential in which the
operations (of the Algorithm) are carried out. Furthermore, we
revisit the bit-probing model [20], which facilitates the security
proof in the bounded moment model of the masking scheme
in the presence of any linear leakage functions. Thus, the
security order amplification of our proposed masking scheme
can be derived from the security in the bit-probing model.
Additionally, we show that the bit-probing model is also a
good tool to design and analyze the low entropy masking and
we provide a possible construction of low entropy masking
with higher security order under linear leakages.

Second, we provide an analysis in the presence of non-linear
leakage. It shows that, although non-linearity can break the
order amplification in the high noise regime, the code-based
masking still keeps a high level of security under restricted
noise rates. Additionally, it is possible to reduce the non-
linearity by some dedicated designs, in order to achieve order
amplification for a larger range of noise levels.

Finally, as for the performance, we give some discussions
on the efficient implementations of our new masking. In terms
of software implementations, we discuss how to implement
the Boolean matrix multiplication efficiently in cases of us-
ing different instruction sets. On the other hand, we also
investigate the possibility of the parallel computation of the
masked Boolean matrix multiplication (even with reduced
randomness), and present its hardware implementation. At last,
the software evaluations of the masking scheme based on the
protection of AES are given.

II. BACKGROUNDS

A. Notations

Let lowercases (e.g., i, x) denote integer variables or binary
vectors, and let capital letters (e.g., A) be the Boolean (binary)
matrices. A(i, :) denotes the i-th row of matrix A, x(i) denotes
the i-th element of vector x, and A(:, i) denotes the i-th
column of matrix A. Let A(i : j, k) (resp., A(k, i : j)) be
the elements of k-th column (resp., k-th row) and i-th to j-th
row (resp., i-th to j-th column). Let the bold lowercases (e.g.,
x = (x1, x2, . . .)) denote a vector whose elements are binary
vectors, and let the bold capital letters be vectors of Boolean
matrices (e.g., A = (A1, A2, . . .))). Let Em denote an m×m
identity matrix, and A−1 and AT denote the (generalized)
inverse and transpose of the matrix A respectively. Finally,
for Boolean matrices A and B, we denote their product and
tensor product by A × B and A ⊗ B respectively, and for
binary vectors x and y, we denote their product in Galois
field as x · y. The concatenation of two matrices A1 and A2

in column direction is denoted as (A1;A2). For any integer
n ≥ 1, we use [1, n] to denote the set of {1, . . . , n}

B. Encoding of code-based masking

In this paper, we consider the encoding that applies linear
transformations to the shares of the Boolean masking. That
is, for an m-bit secret variable (say, x), we have x = (A1 ×
x1)⊕(A2×x2)⊕ . . .⊕(Ad×xd), where {xi}i∈[1,d] are shares
and {Ai}i∈[1,d] are the public linear transformation matrices.
Algorithm 1 shows the encoding, and it should be noted that
this encoding can be seen as the generalized version of the
encodings in masking schemes from some recent literature.
For example, the inner product masking [10] is equivalent to
the code-based masking whose encoding takes the matrices
{Ai}i∈[1,d] corresponding to the Galois field multiplication
(rather than any nonsingular Boolean matrices), and the matrix
product masking [11] applies linear transformation only to one
share.

Algorithm 1 Enc: encoding of the code-based masking
Require: an m-bit secret variable x, public nonsingular

Boolean matrices A = {A1, . . . , Ad} and their inverses
A−1 = {A−11 , . . . , A−1d }

Ensure: Enc(x) = x = (x1, . . . , xd) as the masked variables
1: for i := 1; i < d; i++ do
2: Generate a random m-bit value xi+1.
3: end for
4: x1 := A−11 × (x⊕

⊕d
i=2(Ai × xi))

It should be noted that, Massey et al. have proved that any
linear sharing / masking may be represented by an encoding
with a linear error correcting code [21]. For example, the
Boolean masking can be represented by an encoding with
a parity check code. The link between the property of the
masking / sharing and the corresponding code has been
studied, e.g. in [22], [15], [16]. However, in this paper, we
focus on the constructions of secure masked operations, rather
than the encoding of code-based maskings.

C. The bounded moment model in [23]

Recently, the bounded moment model was introduced in
[23], which formalizes a weaker notion of security frequently
used in the side-channel literature. Recall that in [23], the
mixed moment at orders o1, o2, . . . , od for d-order masking
(number of shares is d) are defined as

∏d
i=1(xi − E(xi))

oi ,
where E(·) is the expectation, x1, . . . , xd are shares and oi ∈
{0, 1, . . . , d}. The degree of a mixed moment is defined by
o =

∑d
i=1 oi. Thus, the security order of the bound moment

model equals to the degree of the lowest key-dependent mixed
moments (denoted by omin).

The security in the bounded moment model is defined as
follows.

Definition 1 (security in the bounded moment model): An
implementation is secure at order o in the bounded moment
model if the degree of the lowest key-dependent mixed mo-
ments of all the intermediate variables is at least o.

2

D. The probing model and bit-probing model

The probing model was proposed in [3], and it has been
widely used in the security definitions for various masking
schemes. Following is the definition of security in the probing
model, where “perfect simulation” means that the answers
of the simulator is identically distributed to the output of
adversary.

Definition 2 (security in the probing model): An implemen-
tation is secure at order o in the probing model, if any o
variables (e.g., the shares) in it can be perfectly simulated
without any knowledge of the secret input.

The bit-probing model was introduced in [20] which sim-
ulates the bits (rather than the variables). Following is the
definition of the security in the bit-probing model.

Definition 3 (security in the bit-probing model): An imple-
mentation is secure at order o in the bit-probing model, if any
o bits in it can be perfectly simulated without any knowledge
of the secret input.

We can see that the security in the probing model implies
the security in the bit-probing model, but not vice versa. This
is because that the simulator of the bit-probing model can
simply call the simulator of the probing model. Meanwhile,
we can take the encoding of the code-based masking as a
counterexample showing that the security in the probing model
does not imply the security in the bit-probing model with
the same order (the security order in the bit-probing model
is larger than that in the probing model in this case). Poussier
et al. studied the connection between the bit-probing model
and the bounded moment model in [20, Proposition 2]. We
recall Poussier et al’s result in Lemma 1, where a leakage
function L : Fl2 → R maps the value of an l-bit intermediate
variable to a real number.

Lemma 1: For any leakage function of degree up to d, any
implementation is secure at order b d̂dc on the bounded moment
model if it is secure at order d̂ in the bit-probing model.

Lemma 1 shows that, under linear leakage assumption (i.e.,
the degree of the leakage function is 1, and the bits in a
variable leak independently), the bit-probing model can be
seen as a generalization of the bounded moment leakage
model. That is, the security in the bit-probing model implies
the security in the bounded moment model with the same
order. Thanks to this generalization, we can investigate the
security order of our constructions in Section III.

E. Security order amplification of the shares

One advantage of the code-based masking is the order
amplification, which means that some code-based maskings
may indicate a higher security order in linear leakage beyond
the guarantees of the Boolean masking with the same number
of shares. [11] gives some preliminary results suggesting
that these phenomena are related to the minimum Hamming
weights of the matrices {Ai}i∈[1,d] and {A−1i }i∈[1,d]. Besides,
[20] establishes a more concrete connection based on the dual
distance between order amplification and the code properties
of the masking scheme. We give the definition of order
amplification:

Definition 4 (security order amplification): If a masking
scheme has a property of order amplification, then its security
order in the bounded moments model is larger than that in the
probing model.

To give a more clear view of the order amplifica-
tion, we compute the security order of the shares for
code-based masking with 2 shares, the matrices of the
code-based masking are chosen from the identity ma-
trix E, A′ = ((1 1 0 0; 0 0 1 1; 1 0 1 0; 1 1 0 1) and A′′ =
(1 1 1 0; 1 1 0 1; 1 0 1 1; 0 1 1 1). Assuming that the leakage
function is the Hamming weight, table I shows the security
orders of the shares in different models for different matrices
and the property of order amplification.

However, despite the existence of order amplification for the
shares with specific leakage function (Hamming weight), it is
more challenging to provide a full-fledged masking scheme
(including linear and non-linear operations) and a formal proof
for any linear leakage functions. Specifically, for two masked
variables, x and y, known schemes cannot avoid the leakage
of xi ·yj for i, j ∈ [1, d], which includes a non-linear function
of xi and yi and may break the order amplification (because
of the non-linear function of the input shares).

III. CONSTRUCTIONS OF MASKED OPERATIONS

In this section, we present the construction of masked
operations with security order amplification. We use d and d̂
to denote the number of shares the amplified security order for
the d-order encoding, and the latter one equals to the security
order in the bounded moment model for linear leakage (by
definition) and the bit-probing model (by Lemma 1). Clearly,
we have d̂ ≥ d− 1.

A. Mask refreshing

We first present the mask refreshing operation that will be
used as the building block for the other operations. Mask
refreshing is a re-randomized procedure to re-encode the secret
variables, and our scheme is a modified version of the parallel
refreshing in [23] by applying the linear transformations to
the shares. Algorithm 2 is the masking refresh, and Figure 1
presents its process. For the reason of security, Algorithm 2
should be invoked for at least d times for a refreshing.

Algorithm 2 Refresh: mask refreshing
Require: shares x = {xi} and A = {Ai}i∈[1,d]
Ensure: y = {yi}i∈[1,d]

1: generate m-bit random numbers r = {ri} for i ∈ [1, d]
2: r′i = A−1(i−1) mod d ×Ai × ri
3: for i := 1; i ≤ d; i++ do
4: x′i := xi ⊕ ri
5: end for
6: for i := 1; i ≤ d; i++ do
7: yi := x′i ⊕ r′(i+1) mod d

8: end for

3

TABLE I
THE SECURITY ORDERS OF THE SHARES FOR DIFFERENT MATRICES

masking type A1 A2 security order in the bounded moment model security order in the probing model order amplification
Boolean - - 1 1 no

Code-based E A′ 1 2 yes
Code-based E A′′ 1 3 yes

… …
⊕ ⊕ ⊕……

⊕ ⊕ ⊕……

… …

… …

……

1x 2x
dx

1r 2r dr

1

1 2 2A A r 1

2 3 3A A r 1

1d d dA A r

1

1 1dA A r

1y
2y dy

Fig. 1. Mask refreshing.

B. Linear operations

1) Addition.: The addition of two masked variables x and
y is the same as what Boolean masking do. Algorithm 3 gives
the masked addition of x = (x1, . . . , xd) and y = (y1, . . . , yd)
that are encodings of two secret values x and y respectively.

Algorithm 3 SecAdd: addition of two masked variables
Require: two masked variables x = (x1, ..., xd) and y =

(y1, ..., yd)
Ensure: encoding of x ⊕ y (namely, (Enc(x ⊕ y) = z =

(z1, ..., zd))
1: for i := 1; i ≤ d; i++ do
2: zi := xi ⊕ yi
3: end for

2) Linear transformation.: Another more complicated lin-
ear operation is the linear transformation, which can be rep-
resented by left-multiplying a matrix, i.e., L(x) = y = L× x,
where L(·) is the linear transformation, and matrix L is the
corresponding linear transformation matrix. A straight-forward
construction in the masked domain is left-multiplying each
share of x by a pre-computed matrix, that is, yi = Li × xi,
where the pre-computed matrix is Li = A−1i × L × Ai.
However, this construction may break the security order am-
plification. This is because that a bit of yi may be related to
multiple bits of xi (i.e., yi may be the output of a non-linear
function of xi), which means that the bits of xi may not be
independent even when one bit of yi leaks.

In Algorithm 4 we present a new construction for the
linear transformation, and we show its process in Figure 2.
Basically, we insert the linear transformation into a refreshing
operation. We refer to Section IV for the formal security
proof. To prove the correctness of Algorithm 4. We have:

d⊕
i=1

Ai × yi

=

d⊕
i=1

Ai ×
(
ti ⊕ (

d′⊕
j=1

r′i,j)
)

=

d⊕
i=1

Ai ×
(
A−1i × L×Ai × ui ⊕ (

d′⊕
j=1

r′i,j)
)

=

d⊕
i=1

Ai ×
(
A−1i × L×Ai × ui ⊕ (

d′⊕
j=1

r′i,j)
)

=

d⊕
i=1

Ai ×
(
A−1i × L×Ai × (xi ⊕

d′⊕
k=0

ri,k)⊕ (

d′⊕
j=1

r′i,j)
)

=

d⊕
i=1

Ai × (A−1i × L×Ai × xi)

=L×
d⊕
i=1

Ai × xi

=L× x .

Algorithm 4 MaskedLinear: linear transformation to a masked
variable
Require: x = (x1, . . . , xd), A = {Ai}i∈[1,d], linear transfor-

mation matrix L, security order for linear leakage d̂
Ensure: linear transformation of x (i.e., y = (y1, . . . , yd))

1: Li = A−1i × L×Ai
2: d′ = d̂− d+ 1
3: generate m-bit random numbers r =
{ri,k}i∈(1,...,d),k∈(1,...,d′)

4: r′i,k = A−1(i−1) mod d ×A
−1
i × Li × ri,k

5: for i := 1; i ≤ d; i++ do
6: ui := xi ⊕ ri,1 ⊕ . . .⊕ ri,d′ . First part of refreshing
7: end for
8: for i := 1; i ≤ d; i++ do
9: ti := Li × ui . Linear transformation

10: end for
11: for i := 1; i ≤ d; i++ do
12: yi := ti ⊕ r′i,1 ⊕ . . .⊕ r′i,d′ . Second part of

refreshing
13: end for

C. Non-linear operations

For the non-linear operations, we use the multiplication in
GF(2m) as a case study, which can be used as the building

4

… …
⊕ ⊕ ⊕……

… …
⊕ ⊕ ⊕……

…… ⊕ ⊕ ⊕……
… …

… …

… …
⊕ ⊕ ⊕……

… …
⊕ ⊕ ⊕……

…… ⊕ ⊕ ⊕……
… …

… …

Linear transformation

L1× L2× Ld×

Refreshing

1x 2x dx

1,1r 2,1r ,1dr

1,1r

1, 'dr 2, 'dr , 'd dr

1t
2t dt

1u 2u du

1,1'r 2,1'r ,1'dr

1, '' dr 2, '' dr , ''d dr

1z 2z dz

Fig. 2. Masked linear transformation.

block for many Sboxes such as the one in AES. For simplicity,
we first consider the case that two inputs are independently
masked, which can usually achieved by refreshing one of the
inputs before the multiplication.

As discussed in [11], for any m-bits variables x and y, the
multiplication in GF(2m) can be rewritten as

x · y = G× (x⊗ y) , (1)

where G is an m×m2 Boolean matrix. It should be noted that
other non-linear operations of degree 2 can use a very similar
construction and we refer to [11] for the “tensor product”
representation of the bitand.

Without loss of generality, we consider the case for the
mask order d = 2 (which can be easily generalized to a higher
order). The variables x and y, are encoded as x = (x1, x2) and
y = (y1, y2) respectively, and we have x = (A1×x1)⊕(A2×
x2) and y = (A1 × y1)⊕ (A2 × y2). Then the multiplication
in the masked domain can be written as:

(A1 × x1 ⊕A2 × x2) · (A1 × y1 ⊕A2 × y2)

=
(
(A1 × x1) · (A1 × y1)

)
⊕

(
(A1 × x1) · (A2 × y2)

)
⊕(

(A2 × x2) · (A1 × y1)
)
⊕

(
(A2 × x2) · (A2 × y2)

)
=A1 × c1,1 ⊕ A1 × c1,2 ⊕
A2 × c2,1 ⊕ A2 × c2,2 ,

(2)
where we define ci,j as:

ci,j = A−1i × (Ai × xi) · (Aj × yj) . (3)

Next, we need to compute ci,j without leaking neither Ai×xi
nor Aj × yj . By (1) and (3), we have:

ci,j = A−1i ×G×
(
(Ai × xi)⊗ (Aj × yj)

)
. (4)

Applying the following distributive property of tensor product:

(Ai × xi)⊗ (Aj × yj) = (Ai ⊗Aj)× (xi ⊗ yj) , (5)

ci,j can be rewritten as:

ci,j =
(
A−1i ×G× (Ai ⊗Aj)

)
× (xi ⊗ yj) . (6)

Therefore, in Equation (6) the secret (i.e., xi⊗ yj) and public
(i.e., A−1i ×G× (Ai ⊗Aj)) parts are separated. We can pre-
compute the public matrices: Mi,j = A−1i ×G× (Ai ⊗ Aj),
and have: ci,j = Mi,j × (xi ⊗ yj). However, as discussed in
Section II-E, ci,j leaks a non-linear function of the inputs xi
and yj , and thus the directly computing of ci,j may break the
security order amplification.

1) Achieving provable security using more randomness: It
should be noted that the variable ui,j = xi ⊗ yj is a linear
function of xi or yj 1 (which is a different situation from ci,j).
Thus, as shown in Figure 3, we design the mask multiplication
in an alternative way to achieve the order amplification:

First (Step 1 and 2), we compute tensor products: ui,j =
xi⊗yj , and then refresh them using the random bits generated
from Algorithm 6, which is based on the scheme in [24]
and [3], but in the tensor product domain, and the shares
{u′i,i}i∈[1,d] should also be refreshed. To this point, (because
of the refreshing) any d2−1 of the variables u′i,j is independent
of both x and y.

Second (Step 3), we can get the ti,j simply by multiplying
the pre-computed matrix: ti,j = Mi,j×u′i,j . To this point, ti,j
may indeed leak a non-linear function of u′i,j . But (thanks to
the refreshing in Algorithm 6) we have d2 shares in this step,
and any d2 − 1 of them are independent of the input x or y.
Thus, we still have the order amplification property.

At last (Step 4), similar to the construction in [24], we
compress the variables {ti,j}i,j∈[1,d] to get the final outputs.
That is, the output for 2 shares is z1 = t1,1 ⊕ t1,2 and
z2 = t2,2 ⊕ t2,1.

Algorithm 5 presents the process of masked multiplication
mentioned above. To prove the correctness of Algorithm 5.
We have:

d⊕
i=1

Ai × zi

=

d⊕
i=1

Ai × (

d⊕
j=1

ti,j)

=

d⊕
i=1

Ai × (

d⊕
j=1

Mi,j × u′i,j)

=

d⊕
i=1

Ai ×
(d⊕
j=1

Mi,j × (ui,j ⊕
d′⊕
k=1

ri,j,k)
)

=

d⊕
i=1

Ai ×
(d⊕
j=1

Mi,j × ((xi ⊗ yj)⊕
d′⊕
k=1

ri,j,k)
)

=

d⊕
i=1

Ai ×
(d⊕
j=1

Mi,j × (xi ⊗ yj)⊕Mi,j ×
d′⊕
k=1

ri,j,k
)

=

d⊕
i=1

Ai ×
(
(

d⊕
i=1

Ai × xi) · (
d⊕
i=1

Ai × yi)
)
,

where ri,j,k denotes the random variable in the k-th call of
the RefreshGen, for k ≤ d′.

2) How to reduce the randomness?: As presented in the
last sub-section, we can see that the main idea to guarantee the
security at amplified order is that t is masked independently of
the tensor product u. To achieve this, Algorithm 5 applies the
refreshing to u, which uses (d2/2 + d− 1)m2d′ random bits.
It may not be practical since the cost of the random number
generators are usually expensive [25]. In this sub-section, we

1We certainly need to assume that x and y are independently masked, which
can also be achieved by using refreshing, i.e., d calls of Algorithm 2.

5

STEP 1: Compute the tensor product:
ui,j = xi ⊗ yj ; linear leakage

STEP 2: Refresh in the
tensor product domain:

u′ = u′ ⊕ RefreshGen()

STEP 3: Multiply the pre-computed matrix
Mi,j by u′i,j : ti,j = Mi,j × u′i,j ; non-linear
leakage indeed, but more shares provide a
larger security order in the probing model

STEP 4: Summate the terms: zi =
∑
j ti,j ; linear leakage

d′ times

Fig. 3. Masked multiplication

Algorithm 5 MaskedMul: masked multiplication
Require: x = (x1, . . . , xd), y = (y1, . . . , yd), M = {Mi,j}

for i, j ∈ [1, d], security order for linear leakage d̂
Ensure: encoding of x · y (i.e., z = (z1, . . . , zd))

1: d′ = d̂− d+ 1
2: for i := 1; i ≤ d; i++ do . STEP 1
3: for j := 1; j ≤ d; j++ do
4: ui,j := (xi ⊗ yj)
5: end for
6: end for
7: u′ := {ui,j}i,j∈[1,d];
8: for i := 1; i ≤ d′; i++ do . STEP 2
9: u′ := u′ ⊕ RefreshGen();

10: end for
11: for i := 1; i ≤ d; i++ do . STEP 3
12: for j := 1; j ≤ d; j++ do
13: ti,j := Mi,j × u′i,j
14: end for
15: end for
16: for i := 1; i ≤ d; i++ do . STEP 4
17: zi :=

∑d
j=1 ti,j

18: end for

provide a randomness-efficient scheme with still preserving
the order amplification property.

A naive way (with less randomness) to compute ti,j is to
first calculate ci,j = Mi,j × ui,j and then to refresh them.
But it may break the order amplification property, due to the
issue of the straight-forward linear transformation described
in Section III-B2. That is, a bit of ci,j may relates to multiple
bits of ui,j , which means that the bits of ui,j may not be
independent even when one bit of ci,j leaks. Hence we need to
compute the refreshed value of Mi,j×ui,j without leaking any
linear combinations of ui,j (except itself). We can abstract this
problem as the computing of the product between an m×m2

Algorithm 6 RefreshGen: randomness generation in the tensor
product domain
Require:
Ensure: a random matrix {ri,j}i,j∈[1,d]

1: generate m2-bit random numbers r = {ri,j} for i, j ∈
[1, d] and i < j

2: for i := 2; i ≤ d; i++ do
3: for j := 1; j < i; j++ do
4: ri,j = (M−1i,j ×A

−1
i ×Aj ×Mj,i)× rj,i

5: end for
6: end for
7: generate m2-bit random numbers ri,i for i ∈ [1, d− 1]

8: ud,d := M−1d,d ×A
−1
d ×

∑d−1
i=1 (Ai ×Mi,i × ri,j)

matrix M and a vector t and adding a vector of random values
r: t = (M × u)⊕ r, without any non-linear leakages of u.

We first represent the matrix M as the concatenation of m
matrices of size of m×m: M = (M(1), . . . ,M(m)). Similarly,
the vector t can also be represented as the concatenation of m
(column) vector of size of m: t = (u(1); . . . ;u(m)). Then, the
multiplication M ×u can be rewritten as (M(1), . . . ,M(m))×
(u(1); . . . ;u(m)) = (M(1) × u(1)) ⊕ . . . ⊕ (M(m) × u(m)).
By combining the refreshing with the above multiplication (to
avoid any non-linear leakages), we have:

t =(M × t)⊕ r
=(r ⊕ (M(1) × u(1)))⊕ (M(2) × u(2))⊕ . . .⊕

(M(m) × u(m)) .

(7)

As shown in Figure 4, Equation 7 can be calculated in a
secure and efficient manner. We apply the concept of Trichina
masked AND gate [26], [27] to compute the ti,j . 2 The internal
values v1, . . . , vm are calculated one by one: the first internal
value is calculated as v1 = (r ⊕ (M(1) × u(1))) = M(1) ×
(M−1(1) × r ⊕ u(1)), and the second one is v2 = v1 ⊕ (M(2) ×
u(2)) = M(2) × (M−1(2) × v1 ⊕ u(2)). Other internal values
v3, . . . , vm can be calculated in a similar way and the last
internal value vm is the output. Figure 4 illustrates the process
of the computation. It should be noted that the security order
of the modified scheme in the bit-probing model is still d.

Furthermore, we illustrate that by applying of so-called
“masked shares multiplication trick” [28], [29], [30], the
masked multiplication can be more efficiently adapted to the
situation when the inputs are not independently masked. For
two variables x and y, and a random variable r, the masked
shares multiplication trick computes the product of x and y
by XORing r (i.e., xy ⊕ r) in the way that one probing to
the computation only relates to one variable from x and y. To
achieve this, the masked shares multiplication trick computes
the tuple (α1, α2) = (xr ⊕ r, x(r ⊕ y)) whose sum is indeed
xy⊕r. Algorithm 7 and 8 give the process of the above masked
multiplication.

2It should be noted that the Trichina masked AND gate in previous literature
is a first-order secure masking scheme, but our construction applies its idea
that how to sequentially summate several terms with randomness in a secure
manner.

6

Cautionary note: Although we still need to invoke the
mask refreshing before the multiplication, only a single call
of Algorithm 2 is sufficient, which is more efficient than the
case without the masked shares multiplication trick. The latter
case requires d calls of Algorithm 2.

Algorithm 7 MatrixMul: more efficient masked multiplication
with less randomness
Require: m×1 variables x and y, an m×m2 matrix M and

m× 1 vector r
Ensure: t = (M × (x⊗ y))⊕ r

1: (M(1), . . . ,M(m)) := M
2: (u(1); . . . ;u(m)) := u
3: v0 = 0
4: for i := 1; i ≤ m; i++ do
5: if i = 1 then
6: vi−1 := vi−1 ⊕ r
7: end if
8: vi := M(i) ×MSM(x, y(i),M−1(i) × vi−1)
9: end for

10: u := vm

Algorithm 8 MSM: masked shares multiplication trick
Require: two variables x and y, a random variable r
Ensure: z = r ⊕ x · y

1: α1 = (y · r)⊕ r
2: α2 = y · (x⊕ r)
3: z = α1 ⊕ α2

M t

⊕

⊕ ⊕

refreshing

...

...

×

×

 × ⊕⊕…… ×

1

(1) (1) (1) 1()M M r u v

(1)M (1)u

r

(2)M (2)u
()mM ()mu

(1)M ()mM

r

(1)u

()mu

1

() () 1 ()()m m m m mM M v u v

……

Fig. 4. Matrix multiplication with refreshing.

Algorithm 7 reduces the number of random bits by means
of sequential evaluation of the linear transformation. Thus, as
shown in Algorithm 9 we can construct a randomness-efficient
masked multiplication by replacing the Steps 1, 2 and 3 of
Algorithm 5 with the counterparts of Algorithm 7.

To prove the correctness of Algorithm 7. We have:

d⊕
i=1

Ai × zi

=

d⊕
i=1

Ai × (

d⊕
j=1

ti,j)

=

d⊕
i=1

Ai × (

d⊕
j=1

Mi,j × ui,j)

=

d⊕
i=1

Ai × (

d⊕
j=1

Mi,j × vi,j,m)

=

d⊕
i=1

Ai ×
(d⊕
j=1

Mi,j × ((xi × yj)⊕ ri,j)
)

=

d⊕
i=1

Ai ×
(
(

d⊕
i=1

Ai × xi) · (
d⊕
i=1

Ai × yi)
)
,

where vi,j,m is the output of Algorithm 7 for the computation
of xi · yj ⊕ ri,j

Algorithm 9 MaskedMul2: multiplication of two masked
variables with less randomness
Require: x = (x1, . . . , xd), y = (y1, . . . , yd), M = Mi,j for

i, j ∈ [1, d]
Ensure: encoding of x · y (i.e., z = (z1, . . . , zd))

1: y = Refresh(y)
2: Generate m-bit random numbers {ri,j}i,j∈[1,d] for i ≤ j
3: ri,j := (Ai ×Aj)× rj,i for i > j
4: Generate m-bit random numbers {ri,i}i∈[1,d−1]
5: rd,d := A−1d ×

∑d−1
i=1 (Ai × ri,i)

6: for i := 1; i ≤ d; i++ do
7: for j := 1; j ≤ d; j++ do
8: ti,j := MatrixMul(xi, yj ,Mi,j , ri,j)
9: end for

10: end for
11: for i := 1; i ≤ d; i++ do
12: zi :=

∑d
j=1 ti,j

13: end for

IV. SECURITY ANALYSIS IN LINEAR LEAKAGE

By using the bit-probing model and Lemma 1, we can prove
the (amplified) security order of code-based masking under the
bounded moment model. For (a simple) example, the encoding
of 4-bit variable x = (A× x1)⊕ x2 ⊕ . . .⊕ xd, where A is a
4×4 matrix:(0111; 1011; 1101; 1110). We can prove that every
(d+1)-tuple of bits from its shares (i.e., {x1, . . . , xd}) can be
perfectly simulated without any knowledge of x, and thus the
security order of the encoding for the bounded moment model
under linear leakage is d+ 1. This is because that (thanks to
the linear code to the first share) to know only one bit of x,
the adversary at least needs to know 3 bits of x1 and 1 bit of
each of {xi}i∈[2,d].

In the rest of this section, we prove the order amplification
of the linear and non-linear operations introduced in Section

7

III, i.e., Algorithm 4, 5 and 9. In the following theorem, we
give the (amplified) security order of the operations under
linear leakages.

Theorem 1: Given that the number of shares is d, and the
security order of the encoding is d̂ in the bounded moment
model under linear leakages, the security orders of Algorithm
4, 5 and 9 equal to d̂, min(d̂, d(d̂−d+1), d2) and d respectively
in the bounded moment model under linear leakages.

A. Security proof of masked linear transformation in Algo-
rithm 4

We prove that every d̂-tuple of bits in the masked linear
transformation can be perfectly simulated without any knowl-
edge of its secret input x. As u is a linear transformation of
t, the leakage of the bits from t (resp., u) are not independent
any more conditioned on even a single bit of leakage from
u (resp., t), Thus, the leakage of t (resp., u) is non-linear in
the leakage of u (resp., t). Similarly, the linear transformation
of the random variables r and r′ are non-linear in leakage
of themselves. Hence, in view of the security analysis, the
process of masked linear transformation can be seen as a mask
refreshing but some internal variables (t, u, r, and r′) have
non-linear leakages. Thus, for any i ∈ [1, d] and j ∈ [1, d],
the leakage of intermediate variable ti (ui, ri,j or r′i,j) can
be treated in an all-or-nothing manner: either all bits of this
variable are leaked or nothing leaks at all (about this variable).
That is, in case of even a single bit leakage about t, u, r and
r′ we just treat it as a complete leakage of the corresponding
variable. For example, for any i ∈ [1, d], the leakage of any
bit from ti can be treated as the (whole) leakage of the ui. Let
the numbers of leaking bits from x, y, t and u be dx, dy , dt
and du respectively, and let the sum of leaking bits from both
r and r′ be dr. The simulator answers all adversary queries
(value of leaking bits) based on the evaluation of the masked
linear transformation when fed uniform and independent bits
as input. To prove this simulator works, we give our analysis
for different cases:

1) If 0 ≤ dr < d′, then the input x and output y are still
independently masked, and thus every d̂-tuple of bits can
be perfectly simulated without knowledge of x.

2) If dt = 0 and dr ≥ d′, then we have that dx + dy ≤
d̂− dr ≤ d̂− d′ ≤ d̂− (d̂− d+ 1) = d− 1. In this case,
Algorithm 4 can be seen as a mask refreshing, and thus
every d̂-tuple of bits can be perfectly simulated without
knowledge of x.

3) If dt > 0 and dr ≥ d′, then we have that dx + dy ≤
d̂− dr − dt ≤ d− dt − 1. In this case, we can see that
every d̂-tuple of bits can be perfectly simulated without
knowledge of x.

Moreover, from the analysis we can see that every t-tuple of
bits can be simulated from either t bits of the x or t−(d̂−d+1)
variables of x, for any t ≤ d̂.

B. Security proof of masked multiplication in Algorithm 5

Suppose that x and y are encoded independently, we prove
that every omin = min(d̂, d(d̂ − d + 1), d2)-tuple of bits in

the masked multiplication can be perfectly simulated without
knowledge of x and y. Let the numbers of leaking bits from
z be dz , and we use the same definitions of dt, du, dr, dx, dy
as that of Section IV-A. The simulator answers all adversary
queries (value of leaking bits) based on the evaluation of the
masked linear transformation when fed uniform and indepen-
dent bits as input. In order to prove this simulator works, we
give our analysis for different cases:

1) If dr ≤ d′ − 1 bits, we can see that the refresh step is
leakage free. In this case, we separate our analysis as
follows:

a) If the rest leaking bits come from the step 1, we
have dt = 0, dz = 0 and du+dx+dy ≤ omin ≤ d̂.
Since the input x and y are independently masked,
every leaking bits can be perfectly simulated with-
out knowledge of x or y.

b) If the rest bits come from the step 3, we have dx =
0, dy = 0, dz = 0 and du + dt ≤ omin ≤ d2.
Thanks to the refreshing, we have more shares in
this step and every leaking bits is independent of
the input x or y.

c) If the rest bits come from the step 4, then we have
dx = 0, dy = 0, du = 0 and dz + dt ≤ omin ≤
min(d2, d̂), similar to the case 1b every leaking
bits can be perfectly simulated without knowledge
of x or y.

d) Combining 1a, 1b and 1c, we have that every omin
bits from the step 1, 3 and 4 of multiplication can
be perfectly simulated without knowledge of x or
y.

2) If not (i.e., dr ≥ d′), the refreshing is not leakage
free, leaving at most omin − d′ bits leaking from other
variables. Then, the analysis is as follows:

a) If dz = 0, we have that dt + dx + dy + du +
dt ≤ omin − d′ ≤ d̂ − d′ = d − 1. Thus all the
leaking bits can be perfectly simulated because of
the independent masking of x and y.

b) If not, we separate our analysis as follows:
i) If dr < dd′, then every d − 1 bits from z can

be perfectly simulated without knowledge of x
or y. Combined with 2a, we can see that all the
leaking bits can be perfectly simulated without
any knowledge of x and y.

ii) If dr ≥ dd′, we can see that at least 1 bit from z
may relate to x or y. Therefore, an upper bound
on the number of the leaking bits in Algorithm
5 is dd′ = d(d̂− d+ 1).

Moreover, from the analysis we can see that every t-tuple
of bits can be simulated from either t bits or t − (d̂ − d +
1) variables of each of the inputs x and y, or, for any t ≤
min(d̂, d(d̂− d+ 1), d2).

C. Security proof of the masked shares multiplication trick in
Algorithm 8

We provide the security proof of the masked shares multi-
plication where the input x and r are m×1 bit vectors, and y is

8

over GF(2), which is called by Algorithm 9. We aim to prove
that any single bit in Algorithm 8 can be perfectly simulated
from only 1 bit of x or y. Let dx, dy , dr, dα1 and dα2 be the
number of leaking bits of x, y, r, the computations of α1 and
α2 respectively. The simulator answers all adversary queries
(value of leaking bits) based on the evaluation of the masked
linear transformation when fed uniform and independent bits
as input. In order to show this simulator works, we give our
analysis for different cases:

1) If dx = 1 or dy = 1, then we have tr = 0, dα1
= 0 and

dα2
= 0, and then one bit in x or y can be perfectly

simulated from only 1 bit of x or y.
2) If dr = 1, then we have dx = 0, dy = 0, dα1 = 0

and dα2 = 0, and then any bits in r can be perfectly
simulated without knowing about x or y.

3) If dα1
= 1, then we have dx = 0, dy = 0, dr = 0 and

dα2
= 0, and then we have that any bits in α1 can be

perfectly simulated from y and r.
4) If dα2 = 1, then we have dx = 0, dy = 0, dr = 0

and dα1
= 0, and then any 1 bit in α2 can be perfect

perfectly simulated from one bit of x or y.

D. Security proof of masked multiplication in Algorithm 9

Algorithm 9 calls Algorithm 7 and 8. The security proof of
Algorithm 9 (which invokes Algorithm 7) is very similar to
that of Algorithm 5, and we use the same definitions of dt, dr,
dx, dy and dz . Like r, the linear transformation of the random
variables v are non-linear in leakage of themselves. Thus, for
any i ∈ [1, d], the intermediate variable vi is also leaked in
an all-or-nothing manner, and we let the numbers of leaking
bits from v be dv . It should be noted that, for any i ∈ [1, d],
the leakage of any bit from vi can be treated as the (whole)
leakage of the vi.

We can see that Algorithm 9 is secure at order d − 1
in the probing model. In Algorithm 7, the internal variables
{vi}i∈[1,d] are masked by random variable r, and thus any 1
bit from internal variables {vi}i∈[1,d] and r can be perfectly
simulated by 1 bit of x or y (in Algorithm 7). We can abstract
the leakage of vi and r by using the leakage of x and y in
Algorithm 7: the probing of 1 bits in Algorithm 7 can be
treated as the probing of 1 bit from x or y, and the probing of
more than 1 bit in Algorithm 7 can be treated as the probing
of (all bits of) x and y. The simulator answers all adversary
queries (i.e., values of d leaking bits) based on the evaluation
of the masked linear transformation when fed uniform and
independent bits as input. In order to prove this simulator
works, we give our analysis for different cases:

1) If the masking refresh process leaks at least 1 bit, then
we divide our analysis as follows:

a) If Algorithm 7 does not leak, we can see that (x,y)
and t are independent. Thus, every d-tuple of bits
relate to at most d bits of input, which can be
perfectly simulated without any knowledge of x
or y.

b) If not, then let the number of calls of Algorithm
7 leak 1 bit be dmul, and we have dmul ≤ d− 1.
Let the number of the calls of Algorithm 7 leak

more than 1 bit be d′mul, and we have 2d′mul +
dmul ≤ d − 1. At the same time, by the analysis
in Section IV-C, the leaking bits in the summing
process only related to dr variables from x and dt
variables from y, and dmul variables from x or y.
We can see that the total number of related input
shares is dr + dt + 2d′mul + dmul < d. This is
because that the leak of randomness only in the
calling of Algorithm 7. Therefore, every d-tuple of
bits of variables can be perfectly simulated without
any knowledge of x and y.

2) If the masking refresh process does not leak, then x and
y are independently masked, and we divide our analysis
as follows:

a) If Algorithm 7 does not leak, we can see that (x,y)
and t are independent. Thus, every d-tuple of bits
relate to at most d bits of input, which can be
perfectly simulated without any knowledge of x
or y.

b) If not, then let the number of calls of Algorithm 7
leak 1 bit be dmul, and we have dmul ≤ d. Let the
number of the calls of Algorithm 7 leak more than
1 bit be d′mul, and we have 2d′mul + dmul ≤ d. At
the same time, by the analysis in Section IV-C, the
leaking bits in the summing process only related to
dr variables from x and dt variables from y, and
dmul variables from x or y. We can see that the
total number of related input shares is dr + dt +
d′mul + dmul. We further separate the discussion
into cases:
i) If d′mul > 0, then we can see that dr + dt +
d′mul+dmul < d since clearly dr+dt+d

′
mul+

dmul ≤ d.
ii) If d′mul = 0 and dt > 0, then the total number

of related input shares is dr+dt+d′mul+dmul−
1 < d.

iii) If d′mul = 0 and dt = 0, then we can see that
the total number of related input bits is at most
d.

Therefore, every d-tuple of bits of variables can
be perfectly simulated without any knowledge of
x and y. Moreover, from the analysis we can see
that every t-tuple of bits can be simulated from
either t bits or t− 1 variables of the inputs x and
y, for any t ≤ d.

E. Security discussion on the composition of operations

As for the whole masking scheme, we give an informal
security analysis for the composition of multiple masked
operations.

Our analysis is similar to the works in [3], [1], [10], [11].
Assuming the security order in the bounded moment model
for a single operation is at least d̃, we first only provide
an analysis showing that the secure order of the composed
masked operations is d̃ in the bounded moment model under
linear leakages. Namely, the distribution of any tuple of d̃
or less intermediate bits in the masked cipher is independent

9

of any plaintext or key. This requires that, for a sequence of
operations, the adversary could learn di intermediate bits for
each operation, as long as

∑
i di ≤ d̃. As shown in Figure

5, we consider w masked operations F = (f1, . . . , fw) in
sequence. Suppose that the adversary probes di intermediate
bits in the i-th operation fi and let φw−1 be the inputs of the
last operation fw, then we can see that dw probes of fw relate
to either at most dw bits of φw−1, or at most dw− (d̂−d+ 1)
variables of φw−1. Since φw−1 is in turn the outputs of
fw−1, probing of dw intermediate bits of fw can be perfectly
simulated from either dw bits or dw−(d̂−d+1) variables of the
inputs of fq−1. This relies on the strategy that one refreshing
is added before each multiplication. By adding the probing of
dw−1 bits of fw−1, the probing of (dw+dw−1) bits of fw and
fw−1 can be perfectly simulated from either (dw +dw−1) bits
or (dw + dw−1 − (d̂− d+ 1)) variables of the input of fw−1.
At last, by induction, we can conclude that the probing of∑
i di bits of the sequence of the operations can be perfectly

simulated from either
∑
i di bits or (

∑
i di) − (d̂ − d + 1)

variables of the inputs of the whole masked operations.

f1 ϕ1 f2 fw-1 ϕW-1 fw……

Plaintext

and key

Ciphertext

Fig. 5. A sequence of operations in consideration.

It should be noted that, we rely on the general strategy of
adding one refresh before each multiplication in the setting
of multiple inputs and outputs (see for example the “greedy
strategy” discussed in [28, Section 3.1]). We leave the opti-
mization of the number of necessary refresh gadgets for our
scheme to compose as an interesting open problem.

As discussed in [10, Section 5.2], to handle the situation
that adversary learns up to d̃ bits in each execution of the
masked cipher (and thus he probes many values in a multiple-
run setting), the masking refreshing should be carried out d̃
times on the secret key whenever the encryption / decryption
starts over again.

F. Theoretical comparison to some previous related masking
schemes

In order to give a summary of the theoretical contributions
of our construction, we compare our masking scheme to some
typical schemes in table II. We use d to denote the number of
shares in the table. And the leakage rate denotes the value of
security order divided by the complexity. For the comparison,
we mainly consider the following related works:
• Ishai et al. proposed the first provable secure masking

scheme (aka., private circuits) in the probing model,
which is widely known as the ISW scheme [3]. The
complexity of the ISW scheme is O(d2), and its leakage
rate is O(1/n). Besides the theoretical complexity, the
ISW scheme is quite efficient because of its simplicity,
ease of implementation and comparably low performance
overhead.

• Andrychowicz et al. proposed a scheme with a leakage
rate O(1/ log(d)), and its complexity is O(log(d)d2)
[31].

• Goudarzi1 et al. proposed an improved scheme with a
leakage rate O(1/ log(d)) and complexity O(log(d)d)
based on the number theoretic transform [32].

• Balasch et al. proposed a scheme with has the same
complexity and theoretical security as ISW scheme but
was illustrated to be more secure in practice [10].

V. SECURITY ANALYSIS IN PRACTICAL SCENARII

As observed in [33], [34], the leakage of different inter-
mediate bits might be correlated, which can result in non-
linearity of the leakage function. In general, leakages will
become more complex and hard to interpret with technology
scaling. Despite its inevitability, small (time or space) distance
is one of the most important reasons for the significance
of the coupling effect. Thus, it is possible to decrease the
non-linearity of the leakage function through some dedicated
designed implementation of the masked operations.

For software implementations, to mitigate the coupling
effect, we can insert some dummy bits in between the interme-
diate bits. As shown in Figure 6, given that the intermediate
bits are (x(1), . . . , x(m)), each of which is separated by c
dummy bits. Doing this, we can enlarge the distance (in space)
between each bit and thus mitigate the coupling effect. Based
on this strategy, Algorithm 10 presents a modified encoding
that outputs shares with less non-linear leakages. The expand
function g : Fm2 → Fcm2 maps the i-th bit of the input to
the

(
(i − 1)c + 1

)
-th bit of the output, for i ∈ [1,m], and

set other bits of the output as constants. Then we apply the
expand function on each shares: x̄i = g(xi), for i = [1, d]. For
hardware implementations, a designer can reduce the coupling
effect by a reasonable arrangement of the netlist, in order to
enlarge the distance of the gates or wires whose corresponding
variables are encoded together.

x(1)

x(1)

x(2)

x(m)

x(m)

x(2)

...

...

Fig. 6. A separate-by-space storage of intermediate bits in order to reduce
the non-linearity of a leakage function

Furthermore, we show how the security order is affected
by the non-linearity of the leakage function. We consider the
polynomial representation of the leakage function. As stated
in [35] and [36], any leakage function F(·) on input z ∈ Fm2
can be represented in the following algebraic normal form:

F(Zi) = α0 +
∑
u∈Fm

2

αuZ
u
i + ε ,

10

TABLE II
THE SECURITY ORDERS OF THE SHARES FOR DIFFERENT MATRICES

masking schemes complexity leakage model leakage rate more secure in practice provable order amplification

the scheme of [3] O(n2) probing model O(1/n) no no
the scheme of [31] O(n2 log(n)) probing model O(1/ log(n)) no no
the scheme of [32] O(n log(n)) random probing model O(1/log(n)) no no
the scheme of [10] O(n2) probing model O(1/log(n)) yes no

our scheme O(n2) probing model, bit-probing model O(1/n) yes yes

Algorithm 10 NewEnc: encoding with less non-linear leak-
ages
Require: m-bit secret variable x, invertible matrices A
Ensure: NewEnc(x) = x̄ = (x̄1, . . . , x̄d) as the masked

variables with smaller non-linearity leakage
1: for i := 2;i ≤ d; i++ do
2: generate an m-bit random value xi
3: x̄i := g(A−1i × xi)
4: end for
5: x1 := A−11 × (x⊕

⊕d
i=2 xi)

6: x̄1 := g(x1)

where coefficients αu ∈ R, Zi = Zi,k∗ , Zu denotes∏m
j=1 Z(j)u(j), Z(j) (resp., u(j)) is the j-th bit of Z (resp.,

u), and ε denotes probabilistic noise. In order to analyze
the leakage with different non-linear terms, we set the value
of each coefficient αu of order d as λd, where λ is in
range of 0 to 1 whose value positively relates to the non-
linearity of the leakage. That is, the leakage function is
F(Zi) = 1 +

∑
u∈Fm

2
λHW(u)Zui + ε, where HW(u) denotes

the Hamming weight of u.
In Figure 7, we present the mutual information of leakage

functions for different λs. We can see that, as expected, the
leakage (in terms of the mutual information) of the code-based
masking is much less than that of the Boolean masking in all
settings (i.e., in any noise level and λ). Furthermore, in view
of the limited noise level, Figure 7 shows that the lowest the λ
has (i.e., less non-linearity), the higher security order (reflected
by the slope of the curves) is.

We remark that for cryptographic implementations in the
real world, the leakage functions typically have small degrees
or are dominated by linear terms. As a piece of supporting
evidence, Poussier et al. give a linear regression-based analysis
on the leakage function for 32-bit ARM Cortex-M4 micro-
controllers [20, Section 6.2]. Linear regression [37] allows
estimating how the manipulated data leaks at the bit level,
and thus it is a suitable tool to estimate the linearity of the
leakages. The results in [20] show that the linear terms of the
leakage function in practice are significantly more dominant
than the higher-order ones.

VI. PUSHING THE LIMITS OF THE LOW ENTROPY MASKING

In this sub-section, we show that the design of low entropy
maskings [38] can also benefit from the bit-probing model.
In low entropy maskings, an m-bit secret variable x is en-
coded into two shares: Enc(x) = (x1, x2), and (as the main

-2 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0 .0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Log
10

(Noise variance)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Lo
g

10
(M

I)

nonlinear leakage λ = 0.1
nonlinear leakage λ = 0.2
nonlinear leakage λ = 0.5
nonlinear leakage λ = 1
linear leakage
Boolean masking

Fig. 7. Mutual information in function of the noise variance for different
non-linear leakage functions (parameterized by λ).

difference from full masking schemes) the space of one share
(either x1 or x2) is significantly smaller than 2m. In this case,
it is obvious that neither x1 nor x2 are independent of the
secret variable x. But under linear leakage, it is still possible
to achieve high order security. For (a very simple) example,
let the encoding be: x = x1 ⊕ x2 and x2 ∈ {0m, 1m}, where
0m (resp., 1m) is the value that all of its bits are 0s (resp.,
1s), then it can be seen that any 1 bit in the shares can be
perfectly simulated without any knowledge of x. Thus, we
can still achieve 1st order security in the bit-probing model.
In this section, we conduct a study on the construction of
better encodings for the low entropy masking with higher order
security under linear leakages.

In our construction, for n < m, the share x2 is uniformly
sampled from Fn2 , and we have x = x1 ⊕ (B × x2), where
B is an m × n binary matrix. We can see that the security
order (in linear leakage) is determined mainly by the choice
of matrix B. To achieve the security in higher order, we give
the following proposition:

Proposition 1: For n < m, we define the encoding of an
m-bits variable x as x = x1⊕B×x2, where x2 is uniformly
sampled from Fn2 and B is an m × n Boolean matrix. Then,
the security order of this encoding in the bit-probing model
is h − 1, where h is the minimum number of the linearly
independent rows in the (m+ n)× n matrix C = (B;En).

Proof of Proposition 1. We aim to prove that every (h−1)-
tuple of bits in the shares (x1, x2) can be perfectly simulated
without any knowledge of the secret variable x. Let the

11

leaking bits from x1 and x2 be {x1(i)}i∈I1 and {x2(j)}j∈I2
respectively, where I1 and I2 are the subsets of [1,m]. Let
the numbers of leaking bits from x1 and x2 be d1 and d2
respectively. We prove the existence of a simulator that can
perfectly simulate the leakage of h − 1 bits. The simulator
answers all adversary queries by uniform bits. In order to prove
this simulator works, our analysis goes as follows:

1) If d1 = 0, every (h − 1)-tupe bits can be perfectly
simulated without any knowledge of the secret variable
x, since x2 is uniformly sampled and independent of x.

2) If not, the leaking bits come from both x1 and x2, and
thus they can be represented as {x1(i) = x(i) ⊕ B(i, :
) × x2}i∈I1 and {x2(j) = En(j, :) × x2}j∈I2 . We can
see that any linear combination of at most h−1 leaking
bits are still masked by at least one bit in x2. Therefore
any h − 1 bits can be perfectly simulated without any
knowledge of the secret variable x.

VII. PERFORMANCE EVALUATIONS

A. On improving the performance of the matrix multiplications

As matrix multiplications dominate the performance of
masked multiplication, we discuss their performance and some
possible improvements. Based on them, we furthermore dis-
cuss how to implement the matrix multiplication in hardware
efficiently.

1) On the software implementation of matrix multiplica-
tions: Our discussions consider two types of matrix multi-
plication: the one presented in Algorithm 5 with the matrix
with a size of m×m2 bits and the version with refreshing in
Algorithm 7, which involves smaller matrices (i.e., m m×m
matrices). The latter one can be implemented in software by
using precomputed tables, i.e., for the multiplication between
a fixed bit matrix A and an m-bit vector x, we can simply
build a table for matrix A that maps the value of x to the
value of A× x.

Algorithm 5 is dominated by multiplication between a
binary vector in tensor space and a fixed (pre-computed)
m × m2 matrix. Wang et al. [11] introduce three different
implementations of this matrix multiplication, which provide
the trade-off between time / memory complexity and the
size of instruction set of the processor: the time / memory
complexities of the matrix multiplication can largely benefit
from the ‘popcnt’ instruction, meanwhile we can still achieve
good time complexities at the cost of some (reasonable)
memory complexity without ‘popcnt’ instruction.

Another direction is that the improvement of the matrix mul-
tiplication relates to the shortest Linear Straight-Line Program
(SLP) problem over GF(2). The SLP problem aims to find
a program with the smallest number of lines that computes
the multiplication between a fixed matrix and a vector, where
every program line is of a certain form. Although Boyar et al.
showed that this problem is NP-hard [39], there are still some
heuristic methods can be used to solve some small instances
[40].

2) Adjustment of the matrix multiplication for hardware
implementation.: Algorithm 7 is essentially sequentially sum-
ming up internal values vi, and thus it appears that Algorithm

7 can only be implemented serially. But it is possible to
slightly modify it in order to achieve parallelism for the
hardware implementation. Suppose that m is divisible by k
and

∑k
i=1 ri = r, in the following we present a modification

of Algorithm 7 which can be computed in m
k circles. As shown

in Figure 8, in the first circle, the internal values v′1, . . . , v
′
k are

calculated, where v′i = M(i)×(u(i)⊕M−1(i) ×ri) for i ∈ [1, k].
Then, in the second circle, the internal values v′1+k, . . . , v

′
2k

are calculated as v′i+k = M(i)× (u(i+k)⊕ (M−1(i+k)× v
′
i⊕ ri))

for i ∈ [1, k]. Similarly, in j-th circle (j ≤ m
k), the in-

ternal values v′1+jk, . . . , v
′
(j+1)k are calculated as v′i+jk =

M(i+jk) × (ui ⊕ (M−1(i+jk) × v′i+(j−1)k)) for i ∈ [1, k], In
the last circle, the sum of v′m−k+1, . . . , v

′
m is calculated and

outputted. Similar to the case of software implementation,
we can also apply the masked shares multiplication trick to
the hardware implementation above. It is worth noting that,
like the software implementation, the security order of this
hardware implementation is also d.

…… ⊕

⊕

⊕ ⊕

……

...

...)(

×

×

 ⊕ ×

1

(1) 1 (1)M r u

(1)M (1)u

1r

kr ()kM ()ku

(1)M ()mM
kr

1r

(1)u

()mu

1

() ()k k kM r u

…
…

× ×

1

(1) (1) 1 (1) 1(') 'k k k kM M v u v

(1)kM (1)ku
(2)kM (2)ku

1

(2) (2) (2) 2(') 'k k k k kM M v u v

First circle:

Second circle:

⊕

output

…
…

1

(1) (1) 1 (1) 1() 'M M r u v

Register Register

1

() () ()() 'k k k k kM M r u v

1'v 'kv

1'kv 2' kv

1

(1) 1 (1)'k kM v u

Register

1

(2) (2)'k k kM v u

Register……

…
…

× ×
(1)kM (1)ku

(2)kM (2)ku

m/k-th circle:

1'm kv 'mv

1

(m 1) m 2k 1 (m 1)'k kM v u

Register

1

() (m)'m m kM v u

Register……

1

(1) (1) 2 1 (1) 1(') 'm k m k m k m k m kM M v u v

1

() () ()(') 'm m m k m mM M v u v

M
u

⊕ 2 1'm kv

⊕ 'kv

⊕ 'm kv

⊕ 1'v

Fig. 8. Hardware adjusted matrix multiplications with refreshing.

B. Evaluation results

In order to compare the efficiency of our proposed masking
scheme with Boolean masking, we apply them to protect
the AES (without key expansion). We choose the efficient

12

version of multiplication, i.e., the Algorithm 9, in which
the refreshing on one of the inputs can be omitted because
every multiplication in the AES Sbox is placed after a linear
operation, which already contains a refreshing. We imple-
ment the code-based masking for d = 2, 3, 4 and m = 8
. The Boolean masking (the scheme of [4] with the SNI
refreshing [41] and the masked shares multiplication trick) is
also implemented. We implement the scheme in C language
and run them on an Atmega 2560 processor. We use lookup
tables wherever possible to decrease the time complexity. In
terms of efficiency, there is significant room for improvement
if implemented in assembly language. But we only analyze
the relative performance slow-down compared to the Boolean
masking.

We summarize the performances of our AES implementa-
tions in Table III. Besides, Table IV shows the performances
of the masked Sbox using Boolean masking and code-based
masking. The main performance loss of the code-based mask-
ing comes from the computation of Sbox, which includes sev-
eral multiplications. In the Boolean masking, the performance
of multiplication in GF(28) can benefit from lookup tables.
That is, for any x1 and x2 in GF(28)\{0}, there exists e1 and
e2 in GF(28) such that x1 = 3e1 , x2 = 3e2 and their product
equals 3e1+e2 , where lookup tables between xi and ei can
be built to accelerate the computation. This method is known
as the exp-log multiplication in [42], and the authors of [42]
also introduced other tabulated methods, such as Karatsuba
multiplication and half-table multiplication. We choose the
exp-log multiplication as the baseline for comparison because
it has a good trade-off between table size and time complexity.
Unfortunately, all the known acceleration methods in [42] do
not work for the code-based masking, and the implementation
of the latter one can only rely on Algorithm 7 (by tabulating
the matrix multiplication of the smaller matrix M(i)). This is
the main reason for the performance loss.

TABLE III
PERFORMANCES OF OUR IMPLEMENTATIONS OF AES.

masking type d clock cycles penalty factor to
the Boolean

masking with the
same order

randomness

Boolean 2 524288 1 6400 bits
Boolean 3 856064 1 19200 bits
Boolean 4 1268736 1 38400 bits

Our Masking 2 1581056 3.02 23040 bits
Our Masking 3 3038208 3.55 44800 bits
Our Masking 4 4959232 3.91 71680 bits

Nevertheless, we emphasize that, in some cases (e.g., when
the noise is low), it is worth sacrificing a certain amount
of performance for a more secure implementation. This is
because an adversary usually can achieve high SNR leakages
from software implementation, which may enable him to make
successful higher-order side-channel attacks [43]. Moreover,
in the case of hardware, Section VII-A2 shows that our new
masking is easy to be implemented in parallel. Thus, we
believe that the better performance of our masking could

TABLE IV
PERFORMANCES OF OUR IMPLEMENTATIONS OF AES SBOX.

masking type d clock cycles penalty factor to
the Boolean

masking with the
same order

randomness

Boolean 2 2523 1 32 bits
Boolean 3 4289 1 96 bits
Boolean 4 6670 1 192 bits

Our Masking 2 8782 3.48 128 bits
Our Masking 3 16653 3.88 256 bits
Our Masking 4 27338 4.10 416 bits

be achieved in hardware implementation, and we leave its
evaluation as a future study.

VIII. CONCLUSION

In this paper, we provide a formal and systematic analysis
of the order amplification in the bounded moment model.
We present a construction of code-based masking scheme
with provable order amplification, which can be implemented
efficiently in both software and hardware. The proof of the
new masking scheme in the bounded moment model can be
achieved based on the bit-probing model [20]. Furthermore,
our analysis shows that even in the presence of non-linear
leakage, the security order amplification still holds for a limit
level of noise. Another very interesting point is the provable
higher order security of low entropy masking under linear
leakages, in which we give some preliminary results and leave
the rest as future work.

ACKNOWLEDGMENT

Yu Yu is supported by the National Natural Science
Foundation of China (Grant Nos. 61872236, 61572192), the
National Cryptography Development Fund MMJJ20170209,
and Anhui Initiative in Quantum Information Technologies
(Grant No.AHY150100). François-Xavier Standaert is a Se-
nior Research Associate of the Belgian Fund for Scientific
Research. This work has been funded in parts by the European
Union through the H2020 project 731591 (REASSURE), the
ERC project 724725 (SWORD) and the CHIST-ERA project
SECODE.

REFERENCES

[1] G. Barthe, S. Belaı̈d, F. Dupressoir, P. Fouque, B. Grégoire, and P. Strub,
“Verified proofs of higher-order masking,” in Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I, 2015, pp. 457–485.

[2] A. Duc, S. Faust, and F. Standaert, “Making masking security proofs
concrete - or how to evaluate the security of any leaking device,” in
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I,
2015, pp. 401–429.

[3] Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing hardware
against probing attacks,” in Advances in Cryptology - CRYPTO 2003,
23rd Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 17-21, 2003, Proceedings, 2003, pp. 463–481.

13

[4] M. Rivain and E. Prouff, “Provably secure higher-order masking of
AES,” in Cryptographic Hardware and Embedded Systems, CHES 2010,
12th International Workshop, Santa Barbara, CA, USA, August 17-20,
2010. Proceedings, 2010, pp. 413–427.

[5] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound
approaches to counteract power-analysis attacks,” in Advances in Cryp-
tology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
1999, pp. 398–412.

[6] E. Prouff, M. Rivain, and R. Bevan, “Statistical analysis of second order
differential power analysis,” IEEE Trans. Computers, vol. 58, no. 6, pp.
799–811, 2009.

[7] B. Gierlichs, L. Batina, B. Preneel, and I. Verbauwhede, “Revisiting
higher-order DPA attacks:,” in Topics in Cryptology - CT-RSA 2010, The
Cryptographers’ Track at the RSA Conference 2010, San Francisco, CA,
USA, March 1-5, 2010. Proceedings, 2010, pp. 221–234.

[8] F. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed,
M. Kasper, and S. Mangard, “The world is not enough: Another look
on second-order DPA,” in Advances in Cryptology - ASIACRYPT 2010
- 16th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 5-9, 2010.
Proceedings, 2010, pp. 112–129.

[9] T. S. Messerges, “Using second-order power analysis to attack DPA
resistant software,” in Cryptographic Hardware and Embedded Systems
- CHES 2000, Second International Workshop, Worcester, MA, USA,
August 17-18, 2000, Proceedings, 2000, pp. 238–251.

[10] J. Balasch, S. Faust, and B. Gierlichs, “Inner product masking revisited,”
in Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I,
2015, pp. 486–510.

[11] W. Wang, F. Standaert, Y. Yu, S. Pu, J. Liu, Z. Guo, and D. Gu, “Inner
product masking for bitslice ciphers and security order amplification for
linear leakages,” in Smart Card Research and Advanced Applications -
15th International Conference, CARDIS 2016, Cannes, France, Novem-
ber 7-9, 2016, Revised Selected Papers, 2016, pp. 174–191.

[12] J. Balasch, S. Faust, B. Gierlichs, C. Paglialonga, and F. Standaert,
“Consolidating inner product masking,” in Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I, 2017, pp. 724–754.

[13] L. Goubin and A. Martinelli, “Protecting AES with shamir’s secret
sharing scheme,” in Cryptographic Hardware and Embedded Systems
- CHES 2011 - 13th International Workshop, Nara, Japan, September
28 - October 1, 2011. Proceedings, 2011, pp. 79–94.

[14] E. Prouff and T. Roche, “Higher-order glitches free implementation
of the AES using secure multi-party computation protocols,” in Cryp-
tographic Hardware and Embedded Systems - CHES 2011 - 13th
International Workshop, Nara, Japan, September 28 - October 1, 2011.
Proceedings, 2011, pp. 63–78.

[15] H. Chabanne, H. Maghrebi, and E. Prouff, “Linear repairing codes and
side-channel attacks,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol.
2018, no. 1, pp. 118–141, 2018.

[16] H. Maghrebi, S. Guilley, and J. Danger, “Leakage squeezing counter-
measure against high-order attacks,” in Information Security Theory
and Practice. Security and Privacy of Mobile Devices in Wireless
Communication - 5th IFIP WG 11.2 International Workshop, WISTP
2011, Heraklion, Crete, Greece, June 1-3, 2011. Proceedings, 2011, pp.
208–223.

[17] C. Carlet, J. Danger, S. Guilley, and H. Maghrebi, “Leakage squeez-
ing: Optimal implementation and security evaluation,” J. Mathematical
Cryptology, vol. 8, no. 3, pp. 249–295, 2014.

[18] C. Carlet, J. Danger, S. Guilley, H. Maghrebi, and E. Prouff, “Achieving
side-channel high-order correlation immunity with leakage squeezing,”
J. Cryptographic Engineering, vol. 4, no. 2, pp. 107–121, 2014.

[19] G. Fumaroli, A. Martinelli, E. Prouff, and M. Rivain, “Affine masking
against higher-order side channel analysis,” in Selected Areas in Cryp-
tography - 17th International Workshop, SAC 2010, Waterloo, Ontario,
Canada, August 12-13, 2010, Revised Selected Papers, 2010, pp. 262–
280.

[20] R. Poussier, Q. Guo, F. Standaert, C. Carlet, and S. Guilley, “Connecting
and improving direct sum masking and inner product masking,” in
Smart Card Research and Advanced Applications - 16th International
Conference, CARDIS 2017, Lugano, Switzerland, November 13-15,
2017, Revised Selected Papers, 2017, pp. 123–141.

[21] J. L. Massey, “Minimal codewords and secret sharing,” p. 246C249, 04
1993.

[22] G. Castagnos, S. Renner, and G. Zémor, “High-order masking by
using coding theory and its application to AES,” in Cryptography and
Coding - 14th IMA International Conference, IMACC 2013, Oxford, UK,
December 17-19, 2013. Proceedings, 2013, pp. 193–212.

[23] G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F. Standaert, and
P. Strub, “Parallel implementations of masking schemes and the bounded
moment leakage model,” in Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part I, 2017, pp. 535–566.

[24] H. Groß, S. Mangard, and T. Korak, “An efficient side-channel
protected AES implementation with arbitrary protection order,” in
Topics in Cryptology - CT-RSA 2017 - The Cryptographers’ Track
at the RSA Conference 2017, San Francisco, CA, USA, February
14-17, 2017, Proceedings, 2017, pp. 95–112. [Online]. Available:
https://doi.org/10.1007/978-3-319-52153-4 6

[25] D. Goudarzi, A. Journault, M. Rivain, and F. Standaert, “Secure mul-
tiplication for bitslice higher-order masking: Optimisation and compar-
ison,” in Constructive Side-Channel Analysis and Secure Design - 9th
International Workshop, COSADE 2018, Singapore, April 23-24, 2018,
Proceedings, 2018, pp. 3–22.

[26] O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede,
“Consolidating masking schemes,” in Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I, 2015, pp. 764–783.

[27] E. Trichina, “Combinational logic design for AES subbyte transforma-
tion on masked data,” IACR Cryptology ePrint Archive, vol. 2003, p.
236, 2003.

[28] G. Cassiers and F. Standaert, “Improved bitslice masking: from
optimized non-interference to probe isolation,” IACR Cryptology
ePrint Archive, vol. 2018, p. 438, 2018. [Online]. Available:
https://eprint.iacr.org/2018/438

[29] J. Coron, E. Prouff, M. Rivain, and T. Roche, “Higher-order side
channel security and mask refreshing,” in Fast Software Encryption
- 20th International Workshop, FSE 2013, Singapore, March 11-13,
2013. Revised Selected Papers, 2013, pp. 410–424. [Online]. Available:
https://doi.org/10.1007/978-3-662-43933-3 21

[30] C. Carlet, E. Prouff, M. Rivain, and T. Roche, “Algebraic decomposition
for probing security,” in Advances in Cryptology - CRYPTO 2015
- 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I, 2015, pp. 742–763. [Online].
Available: https://doi.org/10.1007/978-3-662-47989-6 36

[31] M. Andrychowicz, S. Dziembowski, and S. Faust, “Circuit compilers
with o(1/\log (n)) leakage rate,” in Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part II, 2016, pp. 586–615. [Online].
Available: https://doi.org/10.1007/978-3-662-49896-5 21

[32] D. Goudarzi, A. Joux, and M. Rivain, “How to securely compute with
noisy leakage in quasilinear complexity,” in Advances in Cryptology -
ASIACRYPT 2018 - 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD,
Australia, December 2-6, 2018, Proceedings, Part II, 2018, pp. 547–574.
[Online]. Available: https://doi.org/10.1007/978-3-030-03329-3 19

[33] M. Renauld, F. Standaert, N. Veyrat-Charvillon, D. Kamel, and D. Flan-
dre, “A formal study of power variability issues and side-channel attacks
for nanoscale devices,” in Advances in Cryptology - EUROCRYPT 2011
- 30th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Pro-
ceedings, 2011, pp. 109–128.

[34] T. D. Cnudde, B. Bilgin, B. Gierlichs, V. Nikov, S. Nikova, and
V. Rijmen, “Does coupling affect the security of masked implemen-
tations?” in Constructive Side-Channel Analysis and Secure Design -
8th International Workshop, COSADE 2017, Paris, France, April 13-14,
2017, Revised Selected Papers, 2017, pp. 1–18.

[35] C. Whitnall, E. Oswald, and F. Standaert, “The myth of generic
DPA...and the magic of learning,” in Topics in Cryptology - CT-RSA
2014 - The Cryptographer’s Track at the RSA Conference 2014, San
Francisco, CA, USA, February 25-28, 2014. Proceedings, 2014, pp. 183–
205.

[36] C. Carlet, “Boolean functions for cryptography and error correcting
codes,” Boolean Models and Methods in Mathematics, Computer Sci-
ence, and Engineering, vol. 2, pp. 257–397, 2010.

[37] W. Schindler, K. Lemke, and C. Paar, “A stochastic model for differential
side channel cryptanalysis,” in Cryptographic Hardware and Embedded
Systems - CHES 2005, 7th International Workshop, Edinburgh, UK,
August 29 - September 1, 2005, Proceedings, 2005, pp. 30–46.

14

[38] V. Grosso, F. Standaert, and E. Prouff, “Low entropy masking schemes,
revisited,” in Smart Card Research and Advanced Applications - 12th
International Conference, CARDIS 2013, Berlin, Germany, November
27-29, 2013. Revised Selected Papers, 2013, pp. 33–43.

[39] J. Boyar, P. Matthews, and R. Peralta, “On the shortest linear straight-
line program for computing linear forms,” in Mathematical Foundations
of Computer Science 2008, 33rd International Symposium, MFCS 2008,
Torun, Poland, August 25-29, 2008, Proceedings, 2008, pp. 168–179.

[40] J. Boyar and R. Peralta, “A new combinational logic minimization
technique with applications to cryptology,” in Experimental Algorithms,
9th International Symposium, SEA 2010, Ischia Island, Naples, Italy,
May 20-22, 2010. Proceedings, 2010, pp. 178–189.

[41] S. Belaı̈d, F. Benhamouda, A. Passelègue, E. Prouff, A. Thillard, and
D. Vergnaud, “Randomness complexity of private circuits for multipli-
cation,” in Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part
II, 2016, pp. 616–648.

[42] D. Goudarzi and M. Rivain, “How fast can higher-order masking be
in software?” in Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part I, 2017, pp. 567–597.

[43] A. Battistello, J. Coron, E. Prouff, and R. Zeitoun, “Horizontal side-
channel attacks and countermeasures on the ISW masking scheme,” in
Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th
International Conference, Santa Barbara, CA, USA, August 17-19, 2016,
Proceedings, 2016, pp. 23–39.

Weijia Wang was born in China in 1988. He re-
ceived his PhD degree from Shanghai Jiao Tong Uni-
versity. He is currently a post-doctoral researchers
at the UCL Institute of Information and Com-
munication Technologies, Electronics and Applied
Mathematics (ICTEAM). His research interests in-
clude side channel analysis, leakage resilient, cryp-
tographic implementations and hardware security.

Yu Yu was born in China in 1981. He received
his BSc from Fudan University in 2003 and his
PhD from Nanyang Technological University in
2006 respectively. He is currently a Professor at
Department of Computer Science and Engineering,
Shanghai Jiao Tong University. His research interests
include theoretical aspects of cryptography such
as leakage-resilient cryptography and post-quantum
cryptography.

François-Xavier Standaert was born in Brussels,
Belgium in 1978. He received the Electrical Engi-
neering degree and PhD degree from the Université
catholique de Louvain, respectively in 2001 and
2004. In 2004-2005, he was a Fulbright visiting
researcher at Columbia University, Department of
Computer Science, Network Security Lab and at the
MIT Medialab, Center for Bits and Atoms. In 2006,
he was a founding member of IntoPix s.a. From
2005 to 2008, he was a post-doctoral researcher of
the UCL Crypto Group and a regular visitor of the

two aforementioned laboratories. Since 2008, he is associate researcher of
the Belgian Fund for Scientic Research (F.R.S.-FNRS) and professor at the
UCL Institute of Information and Communication Technologies, Electronics
and Applied Mathematics (ICTEAM). In 2010, he was program co-chair of
CHES (which is the agship workshop on cryptographic hardware). In 2011,
he was awarded a Starting Independent Research Grant by the European
Research Council. In 2016, he has been awarded a Consolidator Grant by
the European Research Council. His research interests include cryptographic
hardware and embedded systems, low power implementations for constrained
environments (RFIDs, sensor networks, ...), the design and cryptanalysis of
symmetric cryptographic primitives, physical security issues in general and
side-channel analysis in particular.

15

