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Abstract—We aim to simplify the worst-case horizontal attack
on scalar multiplication published at CHES 2017 [1] by making
use of deep learning techniques, and to automate the critical
steps of this previous work, namely the information identi-
fication, information extraction and information combination
steps. For this purpose, we gradually increase the number of
automated steps, targeting a very challenging assembly-level
regular Montgomery ladder scalar multiplication implementation
on a BeagleBone Black (BBB) Board running at 1 GHz. Our
results demonstrate that the latter two steps can be simplified
using deep learning techniques and lead to similar results as
previous work. By contrast, the first step still requires some
additional engineering. By showing that points of interest (POIs)
selection can play an important (sometimes necessary) role
for attacking asymmetric cryptography algorithms using deep
learning techniques, we bring a more contrasted view on the
advantage and limitations of such techniques. To the best of our
knowledge, this is the first public report of deep learning based
attack on ECC implementations. Besides, we propose the use of
Fully Convolutional Networks as an alternative (deep) learning
tool for side-channel analysis.

Index Terms—ECC, Scalar Multiplication, Deep learning, Side-
channel attack, Fully Convolutional Networks

I. INTRODUCTION

Scalar multiplication is the cornerstone of Elliptic Curve
Cryptography (ECC), thus its implementation security is crit-
ical for concrete deployment. As surveyed in a recent work
by Poussier et al. [1], in the past decades, two categories of
attacks targeting the scalar multiplication have been presented
in the literature: Divide and Conquer (DC) ones and Extend
and Prune (EP) ones. The DC approach is trying to recover the
scalar bits independently, so each scalar bit is associated with
a probability of score. The EP approach is trying to recursively
recover the scalar bits, so that the attacker has to recover all
the i− 1 first bits to recover the i-th bit.

In this work, we are concerned with a very powerful type of
EP attacks, denoted as Horizontal Differential Power Attack
(HDPA) [2], [3]. As discussed in [1], these attacks are in
the same time very interesting for security evaluations (since
they are able to extract a lot of information from leakage
traces) and cumbersome to mount. In order to systematize their

analysis, the authors proposed a principled approach based on
three steps – information identification, information extraction
and information combination. Concretely, they performed the
information identification with a correlation attack, and the
next two steps with linear regression [4], which implies
significant engineering efforts (in terms of time complexity,
amount of data to collect and memory complexity). It also
requires a good knowledge of the implementation and side-
channel analysis techniques.

On the other hand, in the last few years, the development
of machine learning/deep learning in the side-channel con-
text [5]–[18] is booming as a powerful alternative to conven-
tional profiling techniques. In this work, we are motivated to
use deep learning techniques to simplify the complicated steps
of the previous work [1]. For this purpose, we investigate the
challenging case of a regular Montgomery ladder scalar multi-
plication implementation based on a BeagleBone Black (BBB)
Board running at 1 GHz. We show that a good part of the
single-trace attack by Poussier et al. can be automated, which
is relevant to security evaluation labs since it provides them
with an easier way to conduct worst-case security evaluations
of ECC cryptosystems. Yet, our results also show that some
alignment and preprocessing (i.e., information identification)
remains necessary for the deep leaning attacks to succeed
against such challenging targets. This conclusion is similar to
the RSA case studied in a recent CHES’19 paper [6] by Car-
bone et al. using the signal-to-noise ratio (SNR) for points of
interest (POIs) selection. Generally speaking, for asymmetric
cryptography implementations, the number of sample points
of target operations is normally pretty large, so POI selection
is very important for the deep learning attack performance.
To the best of our knowledge, this is the first public report of
deep learning based attack on ECC implementations.

The rest of the paper is organized as followed. Section II
introduces the necessary background on ECC scalar multipli-
cation and the Fully Convolutional Networks (FCN) that we
used. Section III shows the target implementation, the required
preprocessing of the EM traces and deep learning experimental



results. Finally, we conclude and offer some directions for
future research in Section IV. For the completeness and under-
stating of our work, we still describe the target implementation
details which are similar to [1].

II. BACKGROUND

A. Notations

We use the same notations as in previous work [1]. In this
work, capital letters and small caps are respectively used to
denote random variables and their realizations. Functions (e.g.
F) are denoted with sans serif font and calligraphic fonts for
sets (e.g. A). We use small bold caps for vectors (e.g. v).

B. ECC Scalar Multiplication

We denote a finite field with a characteristic bigger than 3 as
Fp. The set of points (x, y) ∈ F2

p (so-called affine coordinates)
that satisfy the Weierstrass equation y2 = x3 + ax + b,
(a, b) ∈ F2

p with discriminant ∆ = −16(4a3 + 27b2) 6= 0
is defined as E(Fp). A point at infinity O together with
E(Fp) build an Abelian additive group. We denote [k]P as
scalar multiplication, a k-times repeated point additions over
E(Fp), in which, k ∈ N is called a scalar and P is a curve
point. k ∈ [1,#P−1] and #P corresponds to the order of the
subgroup generated by the point P .

For most of ECC cryptosystems, the scalar k is sensitive
data because it is either directly used as a private key (e.g.
ECDH key exchange) or used as an ephemeral key (e.g.
ECDSA) related to the private key. Because of its regularity,
Montgomery ladder scalar multiplication [19] as described in
Algorithm 1 is representative of state-of-the-art implemen-
tations secure against SPA-like single trace attacks. As in
previous work [1], we also target this representative imple-
mentation in this work. The results can be naturally applied to
implementations using scalar randomization countermeasures
against DPA attacks.

Algorithm 1 Montgomery ladder scalar multiplication (left-
to-right).
Require: P a point on elliptic curve E , an n-bit scalar k =

(kn−1, ..., k0)
Ensure: Q = [k]P

R0 ← O; R1 ← P;
for i = n− 1 to 0 do

R¬ki ← R¬ki + Rki

Rki
← [2]Rki

end for
return R0

In this work, we also convert the affine coordinates to
Jacobian coordinates to avoid expensive filed inversion op-
erations of point addition and point doubling as illustrated
in Algorithm 2 and 3 in Appendix A. The cost of each point
addition and each point doubling is 16MUL + 1ADD + 6SUB and
10MUL + 9ADD + 4SUB, respectively.

C. Fully Convolutional Networks

Fully convolutional networks (FCN) have been first intro-
duced for semantic segmentation on images [20] and have
been achieved great success in that field. In addition, recently
Facebook deployed their FCN-based speech recognition sys-
tem [21]. FCN is a kind of CNN without fully connected
layers, it recovers the pixel-level classification information
from abstract features. We refer the readers to the original
paper [20] for more details. The core difference between
traditional Convolutional Neural Networks (CNN, such as
AlexNet, VGGNet) and FCN is that traditional CNNs are
suitable for image-level tasks but FCN is extended to be more
suitable for pixel-level tasks. We consider sample points of
side-channel traces as pixels and there is no previous work
using FCN in side-channel context, so we want to introduce
FCN into side-channel attacks. They have then been widely
used for different applications, due to their compelling quality
and efficiency. Classification is of course one of its application
scenarios.

The design idea of FCN is simple: as depicted in Fig. 1, it is
a stack of several basic blocks. Each basic block is composed
of three layers: a convolutional layer γ followed by a batch
normalization layer β [22] and a ReLU activation layer σ [23].
After stacking five basic blocks, a global average pooling layer
δ is adopted (instead of a fully connected layer), in order to
largely reduce the number of weights to be trained. Finally
a softmax layer s is adopted to generate the class label of
the input side-channel trace. We adopt the same strategy as in
ResNet [24] to exclude any pooling operation for each basic
block, in order to prevent overfitting. Batch normalization
is applied to speed up the convergence and help improve
generalization.

Fig. 1. Structure of FCN.

In summary, the FCN model can be written as:

FCN = s ◦ δ ◦ [σ ◦ β ◦ γ]n1 , (1)

where n1 denotes the number of basic blocks (we set it to 5
for all our experiments). We further use 32, 128, 128, 256 and
256 filters for these five basic blocks. The kernel size of the
first and last convolutional layer is 8 and 3, respectively. The
other three convolutional layers are using the same kernel size
of 5. Regarding our choice of hyperparameters, we followed
the best practice of other deep learning application fields to do
a small grid-search, that is, varying the number of basic blocks
from 3 to 7, and then varying the optimizer among ”Adadelta”,
”Adam”, ”Nadam”, ”RMSProp” and ”SGD”. For the number
of filters we reuse the typical values used in most of computer



vision applications, and for the kernel size we also use small
values since they showed better performance in other deep
learning fields. We must mention that it is not a ideal way to
decide the network structure and other hyperparameters, one
of our future work direction is to use latest Neural Architecture
Search (NAS) [25], [26] techniques to automatically designing
effective neural network architecture for our data set.

D. Accuracy, Loss, First-Order Success Rate

Accuracy and Loss are twin metrics that are widely used
in the machine learning community to monitor and evaluate
neural network models. Training accuracy is the successful
classification rate over the training data and training loss is the
error rate over the training data. After each epoch, the trained
model is applied to the validation data to calculate validation
accuracy and validation loss. These two values indicate how
good the trained model is at predicting outputs for inputs it
has never seen before. Validation accuracy increases initially
and saturates as the model starts to overfit.

For comparison with the previous work [1], we also use the
same first-order Success Rate (1-O SR) metric, which is just
the probability to recover the target n-bit scalar computed over
repeated experiments.

III. EXPERIMENTAL RESULTS ON BEAGLEBONE BLACK
IMPLEMENTATION RUNNING AT 1GHZ

A. Target Implementation and Measurements

The finite field and elliptic curve arithmetic are imple-
mented in assembly on our target BeagleBone Black Board.
For comparison with the previous work, we also choose the
NIST P-256 curve [27] as previous work and our attacks are
independent of the curve being used, the regularity of the
scalar multiplication implementation is the only requirement.
We must note that, although our attacks are independent of
the chosen curve, but the number of field multiplications for
information identification step will be different. In our case,
we have 26 field multiplications per iteration for information
identification step. The regular Montgomery ladder scalar
multiplication as described in Section II-B is implemented in
ARM assembly using Jacobian coordinates. The point addition
and doubling formulas are illustrated in Algorithm 2 and 3.
An entire scalar multiplication takes approximately 17.000.000
clock cycles since our focus is constant time implementation
without optimizations.

Regular scalar multiplication implementations (Mont-
gomery ladder in this case) are composed of a fixed and
predictable sequence of operations. All operations in the
sequence that affect the internal state depending on the scalar
bit value contain sensitive information. It is a hierarchical
sequence. The top level is a loop of scalar bits handling.
A fixed number of point additions and point doublings for
each scalar bit are the second level. The third level is a fixed
number of field operations per each point addition (resp. point
doubling). At the bottom, a sequence of fixed number of
register operations (such as register multiplications, additions
and subtractions) forms a field operation. So the sequence of

register operations for an n-bit scalar can be divided into n
parts depending on the scalar bit index. We assume that each
part consists of N register operations. In total, an entire regular
binary scalar multiplication has n sequences of N sensitive
operations. The N intermediate computation results occurring
during the manipulation of the i-th scalar bit are denoted as
ri = (rji ), j ∈ [0, N−1]. We denote by li = (lji ), j ∈ [0, N−1]
side-channel leakages caused by each of these computations.

Field additions and subtractions are straightforwardly im-
plemented using carry additions and subtractions. Field mul-
tiplications are conducted using the Long Integer Multiplica-
tion (LIM) followed by a modular reduction. LIM is easily
implemented using the 32-bit unsigned multiplications umull
and umaal (with accumulate) assembly instructions yielding a
64-bit result as depicted in Algorithm 4 in Appendix A. The
modular reduction is implemented according to [27].

A modular reduction for both addition and multiplication
is always executed for constant time against timing-type of
attacks purpose. Both the results before and after reduction
are saved in memory. A Boolean is computed whose value
is true or false depending on the need or not of a reduction.
This Boolean value will decide the result’s pointer linked to the
actual value to be returned. This Boolean value will be always
true for multiplications since we need the modular reduction.

Our target BeagleBone Black board is a 32-bit AM335x
1GHz ARM Cortex-A8 linux-based single board computer.1

This is a very challenging device in terms of side-channel
analysis (see for example [28], [29]) as mentioned in previous
work [1]. A full version of Ubuntu 14.04 is running on the
board. A lot of noise and interruptions are introduced by the
running Linux operating system and modern CPU design.

A Langer HV100-27 magnetic near field probe and a Lecroy
WaveRunner 620Zi oscilloscope at a sampling rate of 10
GS/s are used to measure the EM emission. We set the CPU
frequency to the highest 1 GHz and the CPU frequency gover-
nor to ‘Performance’ during the measurements. We recorded
the processing of the first 4 bits of the scalar. Each trace
contains 2,000,000 sample points. We used the ‘nohup’ trick
as mentioned in [1] to avoid the long interruptions randomly
appearing in the traces introduced by the running Linux
system. Still, a lot of smaller interruptions are present in the
EM traces.

B. Preprocessing of the traces

To handle those smaller interruptions, the preprocessing of
the EM traces iterates over three steps. The first step is to align
the traces around a field multiplication. Secondly we cut the
traces around the aligned area into slices. Finally, each slice
is concatenated to the set of preprocessed traces. We repeat
these three steps for each field multiplication.

We use the same method as in previous work [1], which
exploits correlation in order to synchronize the EM traces

1http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K
cortex a8 r3p2 trm.pdf

https://beagleboard.org/black



focusing on the leakage part of the targeted sensitive data.
This method works in three steps.
• Firstly, a searching interval A that contains the operation

to be synchronized is manually selected among all the
traces.

• Secondly, a smaller reference interval Bq specific to each
trace q is also manually chosen.

• For each trace, we finally find the portion to be synchro-
nized by using the second window Bq to search over
the whole interval A. The right portion is selected as the
one having the maximum correlation with the reference
interval. If the correlation is lower than a given threshold
(chosen by the attacker/evaluator), the trace is assumed
not good enough and discarded.

We use 100,000 preprocessed EM traces for profiling and
2,200 preprocessed traces to attack (similar to [1]). 20% of
the profiling traces are used as validation data to improve
the training of weights. Each preprocessed EM trace contains
518,491 sample points.

C. Neural Network Architecture

Our experiments are implemented using Keras [30] and Ten-
sorflow [31] with Nvidia GTX 1080Ti GPU. We employ the
aforementioned FCN neural network model in Section II-C.
During our experiments, we use dropout of 0.2 for the last
two basic blocks (after the ReLU activation layer) and of 0 for
the rest [32]. All layers are randomly initialized with uniform
initialization [33].

We use batch size of 1 due to the large number of sample
points per trace and Adadelta optimizer with an initial learning
rate of 1.0, adaptively reducing the learning rate with a factor
of 10 if the validation accuracy is not increased within 30
consecutive epochs. The training will be stopped after 150
epochs or if the learning rate is getting lower than 10−3.

D. BBB Results

As mentioned before, we are motivated to simplify the three
critical steps of systematic approach proposed in previous
work [1] using deep learning techniques. We take a two-step
progressive strategy to conduct our experiments. We start with
only simplifying the most sophisticated (information extraction
and information combination) steps of the systematic approach
by Poussier et al. We next try to automate all three steps (i.e.
including the information identification).

1) Results with Information Identification: In this first
experiment, we use the same information identification step
as [1] to identify the POI to feed into the neural networks.
This step consists of three parts: unprofiled correlation, partial
SNR and optimizations.

We only focus on the higher 32-bit result of each umull and
umaal instructions for all the available register operations ri
of each scalar bit.

We apply the unprofiled correlation attack and the partial
SNR approach from [1] to efficiently identify the time po-
sitions of the corresponding registers rji . The POI search is
performed using the preprocessed Npoi = 100, 000 traces l

acquired using random known inputs (P q) and scalars (kq),
q ∈ [0, Npoi − 1]. The Npoi leakages of the t-th time sample
of each trace is denoted as a l[t] vector of size Npoi.

The unprofiled correlation approach boils down to compute
Pearson’s correlation coefficient ρ between each time sam-
ple for the Npoi internal values rji = rji (P q, dkqei) and a
Hamming weight leakage model HW. For our POI search, we
compute ρ(HW(rji ), l[t]), t ∈ [0; 518, 490].

To calculate partial SNR, the 32-bit values of rji are first
truncated to x bits. Then each trace is labeled with its truncated
value and split into 2x sets Si. The partial SNR of each time
sample equals to var(mean(Si))

mean(var(Si)) , in which, var and mean are the
sample variance and mean functions. The time sample showing
the highest SNR ratio is chosen as the time sample of rji .

Applying each of these two methods on the full trace for
all rji ’s is computationally intensive. So using the fact that the
time order of the registers is (r00, ..., r

N−1
0 , r01, ...r

j
i , ...r

N−1
n−1 ),

we first search r00 among the first W time samples. Using
correlation, we decide r00’s position by computing a p-value
with a threshold of 5 [34]. We repeatedly move the window
to the next W time samples until r00 is found. The search of
r10 is similar with setting the initial offset of the window to
r00 . We iterate this process to find all the registers. We use a
window value W of 20,000 for our POI search.

As in [1], we finally attack the first 4 bits of the scalar.
The number of POIs is 3,492 so we feed those POI sample
points into the neural network. We label each trace using the
value of the first 4 bits of its scalar. The training accuracy/loss
and validation accuracy/loss (as described in Section II-D) of
the FCN model are given in the left graph of Fig. 2 when
using 80,000 training traces and 20,000 validation traces out
of 100,000 profiling traces. The training takes about 23 hours,
it could be halved because the validation accuracy is getting
stable after 70 epochs as can be seen from the accuracy graph.

After the training, we use the trained model to recover the 4
scalar bits of all 2,200 attack traces. We calculate the 1-O SR
and use the same threshold mechanism as in [1] to discard the
wrong attack results. That is, by setting a probability threshold
under which some attack traces will be discarded. A higher
threshold provides more confidence to have a successful partial
nonce recovery, but it comes with the cost of increasing the
number of discarded attack traces.

Concretely, we summarize in Table I the evolution of
success rate in function of the probability threshold over the
2,200 attack traces. The scalar 1-O SR is 0.6692 when the
threshold is set to 0.5. Yet we need 140 ECDSA nonces to
recover the secret key with 4 bits of partial information using
lattice attacks [1]. Since no error on the partial information is
tolerated in a lattice attack context, the success rate of the key
recovery is calculated as 0.6692140 ≈ 3.7 ·10−25. So we have
to discard wrong attack results.

As can be seen, the first-order success rate is increasing
with higher probability thresholds. We achieve a success rate
of 1 using a threshold of 0.99. In that case, we discard 2,055
of the attack results and still remain 145 of them, which is
remarkably similar to the results of Poussier et al.



(a) 80,000 training traces.

(b) 40,000 training traces.

Fig. 2. FCN Model Accuracy and Loss with POI selection.

TABLE I
EVOLUTION OF THE ECDSA SCALAR AND KEY RECOVERY SUCCESS RATE

IN FUNCTION OF THE THRESHOLD

Threshold Scalar Key # discarded # remaining
value 1-O SR 1-O SR result result
0.5 0.6691519105 3.7 · 10−25 764 1,436

0.75 0.7562225476 1.0 · 10−17 1,167 1,033
0.9 0.8251572327 2.1 · 10−12 1,564 656

0.95 0.8950495049 1.8 · 10−7 1,748 452
0.96 0.9090909091 1.6 · 10−6 1,800 400
0.97 0.9247910863 1.7 · 10−5 1,868 332
0.98 0.9503546099 0.0008 1,957 243
0.985 0.9629629630 0.0051 2,012 188
0.99 1 1 2,055 145

We further investigated the impact of reducing the number
of training (resp. validation) traces to 40,000 (resp. 10,000).
The bottom graph of Fig. 2 illustrates the training and val-
idation accuracy/loss. The validation accuracy is worse than
using 80,000 training traces. A similar observation holds for
the scalar 1-O SR and key 1-O SR. Both suggest that the
model is still improving for the amount of collected traces.

2) Results without Information Identification: We finally
investigated the full automation of the three steps in Poussier
et al.’s systematic approach.

For this purpose, we skipped the POI search and directly
feed all the 518,491 sample points per trace into the neural
networks. Due to the huge number of sample points per
trace, the training is very time consuming. We use the same
neural network architecture as in Section III-C to conduct
the experiments, but in this case we only use 100 epochs
because each epoch takes about 2.5 hours. Fig. 3 displays
the training accuracy/loss and validation accuracy/loss. The
training accuracy and validation accuracy are pretty low, the
validation accuracy is stabilized at only 18%, which means
very few scalar bit classes can be correctly identified, leading
to unsuccessful attacks. The big drop of validation accuracy
(spike of validation loss resp.) is caused by the dropout
mechanism that we used during the training, and at that stage
the weights of neurons have not converged yet. Later there is
no big drop when the training is getting stabilized.

Regarding the failure of the attack, we provide the fol-
lowing tentative explanation. First, as we mentioned before,
FCN model is designed for extracting pixel-level classification
information from the raw data, taking into account that there
are more than half million sample points (pixels) per trace,
the tuning of neuron weights are depending on about 150
times more sample points (pixels) compared to the previous
case of training with POIs. From deep learning point of view,
generally it requires more data and more epochs to make
the training converge, which we can not afford due to our
computation power and will be considered in a future work.
Secondly, the neural network model is directly reused from the
previous experiment, which we did small grid-search based on
the POIs dataset to choose the number of blocks and optimizer
of FCN model. The adaptation of the network architecture



Fig. 3. FCN Model Accuracy and Loss without POI selection.

could be considered given our results. For example, NAS-
type of techniques [25], [26] are interesting candidates for
this purpose.

These results suggest that despite their versatility, deep
learning based attacks benefit from a good selection of points
of interest in case of challenging targets (in particular, it allows
fitting the model with much less traces). The investigation
of more suitable deep learning techniques for this kind of
application is an interesting scope for further research.

IV. CONCLUSION AND FUTURE WORK

Motivated by simplifying a previous systematic approach
of worst-case HDPA attack on secure scalar multiplication
implementations, we use deep learning techniques to automate
the critical steps of such attacks. Our experimental results of
an ARM Cortex-A8 running at 1 GHz (a presumably noisy
target) suggest that the sophisticated information extraction
and information combination steps can be performed in a
quite black box manner using deep learning techniques. On
the other hand, they also suggest the need of dimensionality
reduction / detection of points of interest before launching the
attack (or at least, our results show that such a preliminary
step makes deep learning attacks significantly more efficient),
which is a generic problem to tackle for attacking asymmetric
cryptography implementations using deep learning techniques
considering the large number of sample points per trace.
Simple SNR-based POI selection could be a cheaper and
faster alternative as demonstrated in single-trace attack on
RSA case [6] using deep learning techniques.

For the developers of scalar multiplication implementa-
tions, our results confirm that scalar randomization activated
implementations are generally at risk, considering both the
huge amount of informative samples such implementations
offer and the simplicity deep learning techniques provide. To
mitigate this issue, point randomization is probably the most
suitable solution. Evaluating that kind of implementations is
an interesting track for further investigations. Another potential
direction is to target register manipulations of point addition
and point doubling operations from the elliptic curve arith-
metic level.
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APPENDIX

Algorithm 2 Jacobian Addition.
Require: P = (X1, Y1, Z1),Q = (X2, Y2, Z2),P 6= ±Q
Ensure: P + Q = (X3, Y3, Z3)
A ← Z2

1 ,B ← Z2
2 , C ← X1B, D ← X2A, E ← C −

D,F ← Y1BZ2, G ← Y2AZ1, H ← F − G, I ← E2, J ←
IE,K ← CI
X3 ← H2 + J − 2K
Y3 ← H(K −X3)− FJ
Z3 ← Z1Z2E
return (X3, Y3, Z3)

Algorithm 3 Jacobian Doubling.
Require: P = (X1, Y1, Z1)
Ensure: P + P = (X2, Y2, Z2)
A← X2

1 ,B← Y 2
1 ,C← Z2

1 , D ← 3A+aC2, E ← B2, F ←
4X1B
X2 ← D2 − 2F
Y2 ← D(F −X2)− 8E
Z2 ← 2Y1Z1

return (X2, Y2, Z2)



Algorithm 4 Long Integer Multiplication in ARM Assembly.
Require: x = (x7, ..., x0), y = (y7, ..., y0)
Ensure: m = x× y = (m15, ...,m0)
m← 0
r2 ← load(x7)
r3 ← load(y7)
r0, r1 ← umull(r2, r3)
m15 ← store(r0)
for i = 6 to 0 do

r3 ← load(yi)
rimod2 ← 0
r1−imod2, rimod2 ← umaal(r2, r3)
m8+i ← store(r1−imod2)

end for
m7 ← store(r0)
for i = 6 to 0 do

r2 ← load(xi)
r3 ← load(y7)
r0 ← 0
r1 ← 0
r0, r1 ← umull(r2, r3)
r3 ← load(m8+i)
r0 ← adds(r0, r3)
m8+i ← store(r0)
for j = 6 to 0 do

r3 ← load(yj)
rjmod2 ← 0
r1−jmod2, rjmod2 ← umaal(r2, r3)
r3 ← load(mi+j+1)
r1−jmod2 ← adcs(r1−jmod2, r3)
mi+j+1 ← store(r1−jmod2)

end for
r0 ← adcs(r0, 0)
mi ← store(r0)

end for
return m


