
Time-Modulated Hardware Trojans:
Clock-Based and Interface-Based Examples

Momin Charles
UCLouvain

ICTEAM/ELEN/Crypto Group
Louvain-la-Neuve, Belgium
charles.momin@uclouvain.be

Bronchain Olivier
UCLouvain

ICTEAM/ELEN/Crypto Group
Louvain-la-Neuve, Belgium

olivier.bronchain@uclouvain.be

Standaert François-Xavier
UCLouvain

ICTEAM/ELEN/Crypto Group
Louvain-la-Neuve, Belgium

francois-xavier.standaert@uclouvain.be

Abstract—Hardware Trojans are an important threat to the
security of integrated circuits. They assume a malicious manu-
facturer able to infect implementations with hard-to-detect circuit
modifications that can compromise their security. Hardware
Trojans are sometimes classified as digital (if they are triggered
and send their payload as regular outputs on a communication
interface) or physical (if they are triggered and send their
payload via a physical side-channel such as an EM signal).
Typical examples of digital hardware Trojans are cheat codes,
which are triggered under some rare input conditions, and time
bombs, which are triggered when a counter internal to the
implementation reaches some value. In this paper, we investigate
a class of physical hardware Trojans that can trigger malicious
circuitry thanks to a standard communication interface (as a
digital hardware Trojan), by exploiting a timing side-channel. We
denote these physical hardware Trojans as Time-Modulated, since
they exploit the rhythm at which computations are performed,
and provide two exemplary instances of such Trojans. The first
one is clock-based: it exploits a recent idea of hardware Trojan
using a side-channel by Ender et al. at ASIACRYPT 2017,
and can inject an exploitable fault that applies to any AES
implementation. The second one is interface-based: it exploits
the delays between multiple message blocks as proposed by
Shield et al. at AISC 2015. We extend this work to describe
denial-of-service and key recovery attacks against a Trojan-
resilient implementation designed following a recent proposal by
Dziembowski et al. at CCS 2016. Despite the latter did only
claim security against arbitrary digital hardware Trojans, our
results show that limited additional (physical) capabilities allow
an adversary to circumvent these formal security guarantees.

I. INTRODUCTION

The manufacturing of modern Integrated Circuits (ICs) is
a complex and expensive process which has become increas-
ingly globalized over the last 20 years. In this context, parties
involved in the IC design and fabrication can be untrusted,
which can possibly lead to malicious modifications of the
circuit. These modifications, usually denoted as Hardware
Trojans (HTs), can lead to devastating attacks against cryp-
tographic and security-related implementations, as surveyed
in [1]–[3] and illustrated by various examples [4], [5].

According to the taxonomy considered in [3], HTs can be
classified based on their trigger mechanisms. On the one hand,
they can lead an infected design to behave maliciously once
it reaches a particular digital internal state. In such cases,
they are known as being digitally-triggered. Typical instances

are cheat codes and time bombs. The first ones refer to HTs
triggered once the chip receives a specific value or sequence
at its inputs [6]–[11]. The second ones refer to HTs triggered
after a specific number of executions, such as exposed in [11].
On the other hand, analog signals (e.g., EM) can be used to
implement trigger mechanisms [12]. Besides, HTs may not
require to be triggered. Instead, they can operate continuously
and are denoted “always-on" [13]–[15] in such cases.

HTs can also be classified according to their malicious
behavior, usually called payload. As for the triggering mech-
anisms, the payload can be classified as digital or analog.
Digital ones can for instance modify the content of memories
or affect internal states [6]–[8]. Analog ones affect circuit
parameters such as the delay, power or noise margin [9], [16].

In [1], the authors additionally use the physical character-
istics of the HTs to classify them as functional or paramet-
ric. Functional ones require logic modifications by adding
or removing logic gates [6]–[8], [17]. Parametric ones are
implemented thanks to modifications of the physical properties
of the existing logic or wiring [9], [16].

In this paper, we investigate a class of HTs that we denote as
Time-Modulated (TM) Hardware Trojans. They are triggered
by an analog signal (i.e., a timing side-channel) which is
available over digital communication interfaces. This allows a
straightforward malicious modification strategy while escaping
any countermeasure that would only prevent digitally-triggered
HTs. We illustrated this claim by describing two instances of
TMHTs, using two different types of time modulation: one
based on the clock signal, the other based on the I/O interface.
We build on two previous works for this purpose.

Our first instance is based on a proposal published at ASI-
ACRYPT 2017 [16] in which timing violations were used to
bias random number generators and therefore break underlying
assumption of the hardware protections used (i.e., masking).
In this work, we show that the same mechanism can be used
to introduce computational errors in implementations of the
Advanced Encryption Standard (AES). The faults can then be
exploited to recover the full encryption key with an efficient
Differential Fault Analysis [18]. While such an exploit can
theoretically be detected by an informed evaluator, it illustrates
the wide range of mechanisms that are simple to deploy by



Plaintext

AddRoundKey

Round

SubBytes

ShiftRows

AddRoundKey

Ciphertext

SubBytes

ShiftRows

MixColumns

AddRoundKey

x9

Initial round Final round Main round

Fig. 1. AES Encryption Process

HT adversaries and therefore multiply the amount of defaults
that should be systematically tested by hardware designers).

Our second instance exploits the triggering mechanism
of [17] to circumvent the security guarantees provided by
the Trojan-resilient architecture from [19]. While this last
work ensures that the exploitation of any digital HT can
only succeed with a small probability, our results show that
very limited (admittedly physical) capabilities allow a concrete
adversary to beat these security bounds with a limited amount
of additional logic.

II. CLOCK-BASED TIME-MODULATED HTS

In this section, a clock-based TMHT introducing faults
within AES hardware implementation is presented. These
last ones are intended to allow performing a DFA in order
to recover the full encryption key. When trying to perform
classical DFAs, the model and the location of the fault have a
large impact on the required corrupted executions amount and
post-processing complexity. By combining delay insertion and
increased clock frequency as in [16], our TMHT can induce
errors of a well defined model at a very accurate location and
therefore leads to low cost/complexity attacks.

A. Background

Here, the AES specifications are shortly reminded. Then, the
concept of DFA is presented. Finally, the timing constraints in
standard IC designs are also reminded.

1) The Advanced Encryption Standard: The AES is a block
cipher proposed in [20] and adopted by the NIST in 2001. It
can operate on blocks of 128 bits with secret key of 128, 192 or
256 bits (this work will focus on the 128-bit version). As seen
in Fig. 1, the encryption process involves 10 successive rounds,
each performing 4 different operations over the successive
encryption states represented by a 4 × 4 matrix of bytes.

+

k

cSboxp =?

+

k

c′Sboxp =?

A

+

kg

cSbox−1pg

+

kg

c′Sbox−1p′g

∆(pg ⊕ p′g) = 1

Fig. 2. 1-bit Fault Attack Example

These operations are defined at the byte level, with each
byte representing an element of the finite field GF(28). As
many modern block ciphers, the AES is built following the
confusion-diffusion paradigm. In particular: (1) The BYTESUB
operation is a non-linear byte substitution of each byte of
the state. (2) The SHIFTROW operation is a cyclic shift of
each row of the state, depending on the row position. (3) The
MIXCOLUMN operation is a multiplication modulo x4 + 1
over GF(28) between each column of the state (considered as
a polynomial over GF(28)) and a fixed polynomial. (4) The
ADDROUNDKEY operation is an addition in GF(28) (i.e., a
XOR operation) used to involve the key dependency.

2) Efficient DFA Against AES: First introduced in [21] in
the context of asymmetric cryptosystems, faults attacks have
been shown to be a security threat to many encryption or
authentication algorithms. In [22], Biham and Shamir then
specialized these attacks to almost any secret key encryption
cryptosystems. To illustrate the DFA principle they proposed,
one may consider a basic encryption scheme (represented in
Fig. 2) composed of a layer of Sboxes and a key addition.
This scheme takes as input a plaintext p, a key k and outputs
the corresponding ciphertext c, where p,k,c ∈ [0, 1]b. This
corresponds to the last operations of the last AES round.
In these conditions, an adversary A tries to guess k only
based on the value of c. Since A has no information about
p, that leaves him 2b key candidates. It is then considered
that he is able to introduce an error in the flip-bit model
(i.e. is able to flip a random bit). For a second encryption
with k, he therefore induces a fault in p to produce the faulty
plaintext p′ before it is encrypted as the faulty ciphertext c′.
After that, he makes a guess on the key value (depicted kg)
and decrypts both c and c′ to obtain pg and p′g . Since he
knows that p and p′ only differ from one bit, the key kg is
a potential candidate if and only if pg and p′g differ from
one bit, leaving him exactly b candidates. This attack reduces
the size of the key space from 2b to only b possibilities. The
adversary can then conclude the attack by exploiting additional
correct/faulty ciphertexts pairs (which reduces the amount of
possible key candidates exponentially) and if necessary by
testing the remaining candidates exhaustively. Considering that
AES Sbox is 8-bit long, using two faulty ciphertexts is on
average enough to be left with only the correct key when
attacking the bits related to one Sbox.

In [18], Piret and Quisquater proposed an improved DFA



Fig. 3. Error Propagation Path in AES

against the AES, by improving the type and the amount of
errors required to perform the attack. They showed that A
can recover the 128-bit key of the AES based on only two
correct/faulty ciphertext pairs. Each of them is obtained by
introducing a single fault in the random byte error model
(i.e., by replacing a byte by a random 8-bit long value).
The attack exploits a random byte error appearing in the
state before the MIXCOLUMN operation of the 9th round
(depicted MC9) in the AES. This leads to 4 random byte
errors in the ciphertext value. By leveraging the linearity
of the MIXCOLUMN operation, A is able to filter the key
candidates (i.e., to reduce the key space) for the corresponding
faulty bytes. As depicted in Fig. 3, a random byte error
appearing before MC8 then induces a random faulty byte
in each column of the state in the 9th round and thus to
16 random byte errors in the ciphertext. By using 2 pairs of
faulty/correct ciphertexts and by performing the filtering for
both MC8 and MC9, A is on average left with the correct
key candidate only. This method requires a time complexity
≈ 4 × (4 × O(28)) = O(212) in order to recover the full
128-bit key.

3) Timing Constraints: In IC design, one aims to meet
the correct specifications at a targeted clock frequency. This
implies timing constraints that, if not fulfilled, may lead to
signals’ inconsistencies when the clock frequency exceeds
some threshold. These constraints imply monitoring two main
paths in synchronous designs:

• The launch path taken by the data going from the data
launching register A to the data capturing register B at
the clock edge.

• The capture path taken by the control clock signal from
its source to the data capturing register B.

The signals’ propagation over the launch path must be faster
than the time between two positive edges of the clock. This
time interval is defined as the association of the clock period
Tc and the parasitic propagation delay of the clock signal
over the capture path. The propagation over the launch path
is composed of three main delays. The first one is the delay
needed after the clock edge to guarantee that the output Q of

A is stable. It is denoted as tpcq which stands for Propagation
from Clock to Q. The second one is the propagation delay of
the combinatorial logic. It is represented by tpd which stands
for Propagation Delay. The third one is the time during which
the data at the input D of B needs to remain stable. This
allows registers to charge internal capacitive loads in order to
have a stable signal at the clock edge. This delay is called the
setup time and is denoted as tsetup. If the propagation over the
capture path is considered as being ideal (i.e., with no delay)
the constraint becomes:

Tc ≥ tpcq + tpd + tsetup, (1)

or alternatively by defining the slack time tslack:

tslack = Tc − tpcq − tpd − tsetup ≥ 0 (2)

If the setup timing constraint is not fulfilled, the value captured
by the data capturing register B is said to be metastable. The
value captured by the register in such a case stays in the
metastable state during a short random period of time before
setting to a random logical value.

B. Threat Model

In the following, the considered adversary A is the same
as [16], who is manufacturing a hardware implementation of
the AES. He is only able to proceed to parametric modifica-
tions at or after the place-and-route. Therefore, he cannot add
or remove logic gates. Once the IC is deployed and loaded
with a secret key, he has a physical access to the chip and is
able to modify the clock signal of it.

C. Trojan Implementation

When the setup timing constraint expressed in (2) is unmet,
the data stability is not assured. This can be used by A in
order to induce faults which correspond to the path delay fault
model from [23]. In [9], the authors introduced the Path Delay
HT (PDHT) class based on this model. By adding delays over
some rarely sensitized paths, they are able to induce a fault
by using a cheat code. They propose a method to insert the
necessary delays using parametric modifications at the sub-
transistor level. This results in the legitimate functionality,
excepted for the targeted path that contains faults. Our TMHT
follows the methodology proposed in [16], where the authors
implement a PDHT which is triggered by increasing the clock
frequency above the maximum operation frequency. Thanks
to delay addition, the targeted paths become faulty before
others. In the previous proposal, this kind of HT is used to
induce non-uniform randomness in a masked implementation
of the PRESENT block cipher which then becomes weak(er)
against side-channel attacks. The following shows it can be
used in order to induce faults in any (e.g., unprotected) AES
architecture, which are then exploited via a DFA to recover
the 128-bit AES key.



1) Basic Principle: In order to recover the key, A aims
to induce a fault in the state processed in the 8th round of
the AES. For this purpose, he adds delay over a path in the
7th round and may expect to obtain a fault when the clock
frequency fclk reaches a given threshold. At this stage, A has
to obtain two faulty/correct ciphertext pairs to perform a DFA.

2) Delay Insertion: The adversary is restricted to layout
modifications. As proof of concept, the proposed TMHT is
implemented on a FPGA with which parametric modifications
are impossible to perform. Instead, the delay is introduced
using routing modifications over the path of the 28th bit of
the state in the 7th round of the AES architecture. This is
done by manually rerouting the signal through switch boxes
using the FPGA editor tool from Xilinx. As the induced fault
should allow to perform a DFA, it must be precisely localized.
Attention must thus be paid by A when he adds delay over
the targeted path in order to obtain that the latter is the only
one resulting in a fault.

By attacking one bit, it is expected to observe an error with
a probability of 50%. Since A has a physical access to the
design, he can proceed to multiple encryptions in order to
collect the 2 required faulty ciphertexts.

3) Implementation Results: The setup used for the practical
implementation of the TMHT is an AES core implemented in
a Virtex6 FPGA on a ML605 Evaluation Board. The clock
is generated with a controllable external signal generator and
fed to the AES core through a SMA connector. The synthesis
results of the unaltered AES core shows that the delay over the
targeted path is ≈ 1.8ns. Moreover, the latter is not involved in
the critical path, over which the propagation delay is ≈ 7.25ns,
resulting in a slack time of 42.75ns for a targeted clock
frequency of 20MHz. The impact of the HT insertion is shown
in Fig. 4 and results in a significant increase of the propagation
delay over the targeted path. More into the details, an increase
of 38.13ns is obtained. It results that the target becomes the
critical path with a total propagation delay of 39.96ns. The
corresponding slack time is 10.04ns which is significantly
smaller than the slack time of the second critical path which is
equals 42.75ns. Considering this new configuration, one may
expect to observe faults for fclk > 25MHz.

In practice, the trigger frequency was measured at
56.25MHz, which is higher than the predictions. We assume
that this variation comes from the timing models of Xilinx.
These may include error margins which can distort the delays
approximations. As shown in Fig. 5, the error probability
converges to a uniform distribution for fclk ≥ 58MHz, which
is in line with theoretical expectations.

By exploiting two pairs of faulty/correct ciphertexts, the
full encryption key is recovered in less than 1 second on
a desktop computer. This makes the attack very efficient
once the TMHT has been introduced compared to usual DFA
setups. Indeed, the faulty ciphertexts are obtained trivially
by increasing the clock frequency during all the encryptions
processes. In contrasts, classical DFA setups (e.g., with laser
fault injection) usually require long reverse engineering phase

Fig. 4. Routing Modification (from FPGA editor)

0 1
Amount of faulty bits

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r p
ro

ba
bi

lit
y

0.9682

0.0318

56.25MHz Clock

0 1
Amount of faulty bits

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r p
ro

ba
bi

lit
y

0.6842

0.3158

57.75MHz Clock

0 1
Amount of faulty bits

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r p

ro
ba

bi
lit

y

0.5066 0.4934

58MHz Clock

Fig. 5. Observed Error Probability

to introduced the desired faults. This has the advantage of
drastically reducing the time required for the adversary to
access the target device. Extension to ASIC requires other
mechanisms to properly embed this kind of TMHT and is left
as an interesting open problem.

III. INTERFACE-BASED TIME-MODULATED HTS

In this section, a second TMHT is proposed. It differs from
the one described in Section II both by the interface used for
the trigger mechanism and by its insertion method. First, it is
triggered through the I/O of the chip, while the previous is
triggered thanks to a modulation of the clock signal. Second,
it is functional (i.e., requires logic insertion) while the clock-
based one is implemented using parametric modifications.
In the following, the implementation of the Trojans-resilient
circuits of Dziembowski et al. is recalled and a description of
a TMHT against the latter is proposed.



A. Background

Here are summed up the theoretical foundations of the
HT resilient architecture proposed in [19], as well as the
description of a practical prototype [24].

1) CCS compiler: In [19], the authors propose a generic
compiler TR that maps any deterministic specification Γ of a
circuit to an architecture resilient to any digital HT built by
a PPT adversary A. As depicted in Fig. 6, the architecture
is composed by untrusted devices, produced by a single or
multiple colluding manufacturers, and by a unique trusted
device that is supposed to be small. The untrusted devices are
first tested up to t times. Afterwards, these are used n times by
a user during a so-called online phase. While these online runs
are performed, the probability that the overall construction
deviates from the correct specifications (i.e., the robustness)
is bounded. More in details, the architecture is split in three
components:
• The Sub-circuits denoted as Dj implement λ indepen-

dent executions of a passively secure three-party compu-
tation protocol. On input x, a sub-circuit computes Γ(x)
based on shares of x where each of these shares do not
reveal individually any information about x.

• The Mini-circuits denoted as Dj
i are independent un-

trusted circuits such that (Dj
0, D

j
1, D

j
2) correspond to the

sub-circuit Dj .
• The Master next denoted as M is the only trusted part

of the entire design. It is responsible for sharing the
input x, routing information between the mini-circuits
and performing a majority vote among the λ sub-circuits.
In order to easily assure that M can be trusted, it carries
out only simple operations and its size is independent of
the specifications Γ.

Once the mini-circuits are built, a testing phase is per-
formed. The latter consists in the verification of the in-
put/output behavior of the untrusted mini-circuits. Each of
these are checked a random number of time t′ ← 0, . . . , t
where t is maximum number of tests. Thanks to these, the
probability that a tested mini-circuit interacting with random
inputs differs from its specifications during the n next execu-
tions (for n ≤ t) is bounded by:

Pr[Dj
i (x) 6= Γji (x)] ≤ n

t
. (3)

In order to avoid any direct interaction between the mini-
circuits and A, the data they deal with are randomized. More
into the details, each of these receives a share of the ad-
versary’s inputs x. Considering the sharing mechanism, these
cannot recover x and HTs based on cheat codes are avoided.
Additionally, thanks to the random number of tests performed
on each sub-circuits, the untrusted circuits cannot synchronize
in order to differ simultaneously from their specifications on
the nth run. The trigger mechanisms based on time bombs are
thus also prevented.

The protection scheme exploits test amplification. Thanks
to the redundancy of λ sub-circuits, the output of the HT

M

D1
0

D1
1

D1
2

D2
0 D2

1

D2
2

D3
0

D3
1

D3
2

Dλ0

Dλ1

Dλ2

Di0

Di1Di2

A
x

Fig. 6. HT Resilient Framework Architecture. Green denotes the trusted
component while red the untrusted ones.

resilient design outputs incorrect values if at least λ/2 of
the sub-circuits deviate from their specifications. In [19],
Dziembowski et al. proved that the robustness bound of the
complete architecture is given by

Pr[Rob = 1] ≤
(n
t

)λ/2
(4)

This solution relies on a three-party computation protocol
secure against passive adversary since the parties are ensured
to follow their specifications for n online executions. This
is a clear improvement compared to other countermeasures
based on multi-party computation protocol that require actively
secure computations and non-colluding manufacturers [25].
Indeed, ensuring security against active adversaries implies
a higher communication cost, which is a critical factor for
implementation cost.

2) Block cipher implementation: In [24], the authors de-
scribed an implementation of the protection scheme of Dziem-
bowski et al. dedicated to a block-cipher case-study. They
proposed to use the passive three-party computation protocol
from [26] which allows to reach a 55Mbps encryption through-
put for the AES with one order of magnitude smaller trusted
area than an unprotected implementation.

More into the details, an online run (i.e., an encryption)
considering this architecture starts on the reception of a
plaintext p. The latter is shared by the master M and sent to
the the mini-circuits Dj

i . Each of these then holds one share
of p and has thus no information on its value. In a similar
way, mini-circuits also hold shares of the secret key k. Then,
the λ sub-circuits run the block cipher specifications Γ by
following the three-party computation protocol and obtain the
shares of the ciphertext Γk(p) = c. The encryption ends with



the transfer of the ciphertext shares to the master M . The later
reconstructs c based on these and performs the majority vote
amongst the reconstructed values of each sub-circuits. In such
a case, the outputted value is the expected ciphertext c with a
probability given in (4).

B. Threat Model

In the following, a PPT adversary A compliant with
the specifications of the previously described HT protection
scheme is considered. As allowed in [19], the adversary
controls a single foundry which is responsible for building
all the untrusted mini-circuits of any system based on the
described architecture. So he can insert any digital logic inside
these circuits with no restriction.

After the testing phase, A has only a remote access to the
architecture, and can request n outputs corresponding to inputs
of his choice.

C. Trojan Implementation

Here is described a TMHT architecture against the pre-
viously described HT-resilient protection scheme. As proof
of concept, the HT-resilient AES implementation in [24] is
considered and a key extraction mechanism based on the
TMHT is presented. The later could however be used with
multiple different aims since the real challenge when con-
sidering the generic compiler of [19] is to efficiently trigger
an inserted HT. Once done, various malicious behaviors can
be implemented in any protected system. Due to its analog
triggering mechanism, the proposed TMHT is not formally
considered in the threat model of [27] (on which [19] is based),
where the authors focus on cheat codes and time-bombs. We
show however that a TMHT should be considered as a threat,
since the trigger mechanism can be implemented with a limited
amount of resources while being exponentially difficult to
detect functionally. Additionally, the insertion mechanism and
the interface used by potential attacks are the same as the one
considered in [27] and [19].

1) Principle: The robustness bounds claimed in (4) hold n
parts for HTs exploiting digital inputs thanks to secret sharing.
Hereunder, the proposed TMHT relies on sensing an analog
signal (i.e., a time interval) with malicious digital logic inside
the sub-circuits. In short, the adversary can directly commu-
nicate with the Dj’s by using a modulation of the interface
usage: the time interval ti between successive executions of the
three-party computation protocol is chosen by the adversary
and can be measured by the Dj’s to retrieve information from
A.

To do so, the adversary selects a random secret value
s ← {0, 1}b and a public value T . These two values are
secretly hidden within all the mini-circuits. In s, each bit corre-
sponds to a timing difference between two encryptions. More
precisely, a low bit corresponds to an expected ti ≥ T and high
bit to ti < T . By inserting the secret logic able to compare ti to
T , the adversary builds a half duplex communication channel
between itself and all the mini-circuits. Next, two so-called

modulation levels are therefore considered: slow if ti ≥ T
and fast if ti < T .

Based on this communication channel, A is able to trigger
malicious behaviors in all the mini-circuits, by modulating the
encryption requests according to the sequence s known by the
mini-circuits. Afterwards, all the λ sub-circuits can deviate
from their specifications and so force the majority vote to ex-
filtrate a secret shared key.

In the previous work [17], authors proposed a similar
triggering mechanism in order to perform a denial-of-service
on a communication network thanks to an infected Ethernet
controller chip. In our case, we generalize the threat by
making remote attack against the HT-resilient generic
compiler possible, potentially leading to denial-of-service as
well as key recovery or any kind of misbehavior.

2) Trigger insertion: The trigger mechanism described next
is inserted in each mini-circuits. It is split in 3 parts:
• Encryption request detection: The TMHT has to detect

each new encryption request. For this purpose, active
control signals such as an input validity signal (denoted
as vin) can be used.

• Modulation level detection: In addition, it has to detect
the modulation level. For this purpose, a counter is used
to keep traces of the clock cycles amount that occurred
between two requests (as shown in Fig. 7). The modu-
lation level (depicted as ml) is computed by comparing
the counter value to a hard-coded threshold. To avoid
substantial comparison logic, the chosen threshold value
Th is a power of two: in allows to manage the comparison
process by checking the value of a single bit. Moreover,
a feedback loop is used to manage counter overflows.

• Modulation sequence detection: Based on the two first
mechanisms, it finally needs to detect a sequence of
modulation levels. For this purpose, s is hard-coded in a
shift register (as seen in Fig. 8). Each time a new plaintext
arrival is detected, the value ml is compared with the
MSB of the shift register. Depending on the similarities
between both, s is shifted or reset to its initial value. If
the register value reaches the value 0, the trigger signal
Ftrig is set and the HT delivers its malicious payload.

Even if the adversary considered in [19] has no logic
restriction, the TMHT should be implemented with a minimal
number of gates in the mini-circuits. This low number of
inserted logic elements makes the detection of malicious
behavior increasingly difficult with the size of the infected
circuit, as discussed in Section IV.

3) Implementation results: The setup used for the prac-
tical implementation of the TMHT is the HT-resilient AES
from [24] implemented in a Virtex6 FPGA on a ML605
Evaluation Board. A clock signal of 66MHz is provided by an
oscillator embedded on the board and is fed to the AES core.
For an arbitrarily chosen value T , the corresponding value
Th is the nearest power of two that can be reached taking into
account the clock frequency. For the case considered T = 0.5s



vin

1
Register

clk

Register
vin

ml

clk

[25:0]

[25]

Fig. 7. Modulation Level Detection Mechanism

Register
1

0
1

0

Shift

s

s

ml

0

[79]

[79:0]

vin

[79:0]

[79:0]

Ftrig

Fig. 8. Modulation Sequence Detection Mechanism

and Th = 225, which corresponds to a practical value for T of
0.508s. The synthesis report of a mini-circuit shows that the
trigger mechanism is inserted with 131 additional slice units,
representing 3.8% of the honest architecture. The cost in term
of gates would remain identical for bigger architecture, which
would make the proportion of malicious design area negligible
when the circuit size increases, while keeping the malicious
trigger functionality.

Since all mini-circuits are infected, the trigger signal Ftrig
is raised synchronously in each of these. Mounting an attack
then consists in choosing in what way they will act after being
triggered. In the following, two malicious behaviors breaking
the robustness guarantees are proposed.

First, we show that the proposed TMHT allows to output an

TABLE I
HT IMPLEMENTATION IMPACT

Honest Design Malicious Design HT Cost
Slice Register 803 879 9.4%
Slice LUTs 2609 2664 2.1%

Global 3412 3543 3.8%

incorrect value instead of the expected output Γ(p) = c. More
precisely, we highlight the possibility of performing a key
extraction attack against the AES Trojan-resilient implemen-
tation from [24]. To do so, once Ftrig is set, the mini-circuits
continue to work properly for the entire encryption and so
compute the correct value for the ciphertext shares. However,
instead of outputting these shares, they output the shares of
the key. By doing so, the trusted master M will reconstruct
the secret key value k instead of the correct ciphertext c. In
addition, the majority among all the sub-circuits will operate in
the same way and M will thus output the value k as ciphertext.

Secondly, one of the claims in [19] is that this hardware
HT-resilient solution is the only solution providing protection
against a denial-of-service attack. However, by exploiting this
new communication channel (which admittedly deviates from
the assumptions of Dziemboswki et al.), the mini-circuits can
deviate from their specifications by not responding. In this
case, the majority vote does not have any input leading to a
denial of service.

IV. CONCLUDING REMARKS

The previous sections showed that TMHTs can be easily
instantiated by exploiting manipulations of the clock or of the
communication interface. In this section, we conclude these
investigations by discussing the stealthiness of these proposals
in front of an evaluator, their consequences regarding the
need of countermeasures, and some open challenges raised by
our results. For this purpose, we consider that the evaluator
tries to detect the malicious functionality before the device
is deployed. To do so, he can either rely on input/output
verification or using empirical inspection [28]–[31].

As far as our clock-based TMHT from Section II is con-
cerned, it does not relies on additional logic gates compared
to an honest implementation. Therefore, empirical inspection
would hardly distinguish between an honest and a malicious
IC, as pointed out in [9], [16]. By contrast, by increasing the
clock frequency, the evaluator can detect the fault and recover
its location. In this respect, we note that since the fault is
under control of the malicious manufacturer, any fault model
could be exploited (and some unusual fault models may look
less suspicious to uninformed evaluators). Yet, it remains that
the faults we exploit have a specific location (i.e., always on
the same bit at the 8th round of the AES) which is suspicious
enough to consider a risk of malicious circuitry. On the one
hand, as mentioned in the introduction, this implies the TMHT
is detectable. On the other hand, this verification implies an
additional test phase that may impact the time for testing ICs
(in particular because this is just one more example among a
plethora of side-effects that can lead to malicious behaviors).
Overall, it suggests the investigation of clock-based TMHTs
with better stealthiness as an interesting open problem.

As far as the interface-based TMHT from Section III is
concerned, it brings a complementary conclusion. In this case,
only empirical inspection can be used (since the exponential



number of trigger sequences to test makes functional verifica-
tion unlikely to succeed). In this respect, our main conclusion
is that this TMHT only requires 3.8% of additional logic
gates compared to an honest implementation. Therefore, such
an empirical inspection may turn out to be challenging in
practice (despite not impossible [30]). So this second instance
of TMHT suggests the improvement of the Trojan-resilient
compiler of Dziembowski et al. in order to consider the risk
of TMHTs as another interesting scope for further research.

ACKNOWLEDGMENTS

François-Xavier Standaert is Senior Research Associate of
the Belgian Fund for Scientific Research (FNRS-F.R.S.). This
work has been funded in part by EU and the Walloon Region
through the ERC Project 724725 (SWORD) and the Wallinov
TRUSTEYE project.

REFERENCES

[1] X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting malicious
inclusions in secure hardware: Challenges and solutions,” in IEEE In-
ternational Workshop on Hardware-Oriented Security and Trust, HOST
2008, Anaheim, CA, USA, June 9, 2008. Proceedings, pp. 15–19, 2008.

[2] F. G. Wolff, C. A. Papachristou, S. Bhunia, and R. S. Chakraborty, “To-
wards trojan-free trusted ics: Problem analysis and detection scheme,” in
Design, Automation and Test in Europe, DATE 2008, Munich, Germany,
March 10-14, 2008, pp. 1362–1365, 2008.

[3] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan:
Threats and emerging solutions,” in IEEE International High Level
Design Validation and Test Workshop, HLDVT 2009, San Francisco,
CA, USA, 4-6 November 2009, pp. 166–171, 2009.

[4] S. Adee, “The hunt for the kill switch,” iEEE SpEctrum, vol. 45, no. 5,
p. 32, 2008.

[5] E. Biham, Y. Carmeli, and A. Shamir, “Bug attacks,” in CRYPTO,
vol. 5157 of Lecture Notes in Computer Science, pp. 221–240, Springer,
2008.

[6] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou,
“Designing and implementing malicious hardware,” in First USENIX
Workshop on Large-Scale Exploits and Emergent Threats, LEET ’08,
San Francisco, CA, USA, April 15, 2008, Proceedings, 2008.

[7] Y. Jin, M. Maniatakos, and Y. Makris, “Exposing vulnerabilities of
untrusted computing platforms,” in 30th International IEEE Conference
on Computer Design, ICCD 2012, Montreal, QC, Canada, September
30 - Oct. 3, 2012, pp. 131–134, 2012.

[8] B. D. Hopkins, J. Shield, and C. J. North, “Redirecting DRAM memory
pages: Examining the threat of system memory hardware trojans,” in
2016 IEEE International Symposium on Hardware Oriented Security
and Trust, HOST 2016, McLean, VA, USA, May 3-5, 2016, pp. 197–
202, 2016.

[9] S. Ghandali, G. T. Becker, D. Holcomb, and C. Paar, “A design
methodology for stealthy parametric trojans and its application to bug
attacks,” in Cryptographic Hardware and Embedded Systems - CHES
2016 - 18th International Conference, Santa Barbara, CA, USA, August
17-19, 2016, Proceedings, pp. 625–647, 2016.

[10] Y. Jin, N. Kupp, and Y. Makris, “Experiences in hardware trojan design
and implementation,” in IEEE International Workshop on Hardware-
Oriented Security and Trust, HOST 2009, San Francisco, CA, USA, July
27, 2009. Proceedings, pp. 50–57, 2009.

[11] M. Jalalitabar, M. Valero, and A. G. Bourgeois, “Demonstrating the
threat of hardware trojans in wireless sensor networks,” in 24th Interna-
tional Conference on Computer Communication and Networks, ICCCN
2015, Las Vegas, NV, USA, August 3-6, 2015, pp. 1–8, 2015.

[12] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan:
Threats and emerging solutions,” in High Level Design Validation and
Test Workshop, 2009. HLDVT 2009. IEEE International, pp. 166–171,
IEEE, 2009.

[13] L. Lin, W. Burleson, and C. Paar, “MOLES: malicious off-chip leak-
age enabled by side-channels,” in 2009 International Conference on
Computer-Aided Design, ICCAD 2009, San Jose, CA, USA, November
2-5, 2009, pp. 117–122, 2009.

[14] L. Lin, M. Kasper, T. Güneysu, C. Paar, and W. Burleson, “Trojan
side-channels: Lightweight hardware trojans through side-channel en-
gineering,” in Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland, September
6-9, 2009, Proceedings, pp. 382–395, 2009.

[15] A. Baumgarten, M. Steffen, M. Clausman, and J. Zambreno, “A case
study in hardware trojan design and implementation,” Int. J. Inf. Sec.,
vol. 10, no. 1, pp. 1–14, 2011.

[16] M. Ender, S. Ghandali, A. Moradi, and C. Paar, “The first thorough
side-channel hardware trojan,” in Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I, pp. 755–780, 2017.

[17] J. Shield, B. D. Hopkins, M. R. Beaumont, and C. J. North, “Hardware
trojans - A systemic threat,” in 13th Australasian Information Security
Conference, AISC 2015, Sydney, Australia, January 2015, pp. 45–51,
2015.

[18] G. Piret and J. Quisquater, “A differential fault attack technique
against SPN structures, with application to the AES and KHAZAD,”
in Cryptographic Hardware and Embedded Systems - CHES 2003,
5th International Workshop, Cologne, Germany, September 8-10, 2003,
Proceedings, pp. 77–88, 2003.

[19] S. Dziembowski, S. Faust, and F. Standaert, “Private circuits III:
hardware trojan-resilience via testing amplification,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016 (E. R. Weippl, S. Katzen-
beisser, C. Kruegel, A. C. Myers, and S. Halevi, eds.), pp. 142–153,
ACM, 2016.

[20] J. Daemen and V. Rijmen, “The block cipher rijndael,” in Smart Card
Research and Applications, This International Conference, CARDIS
’98, Louvain-la-Neuve, Belgium, September 14-16, 1998, Proceedings,
pp. 277–284, 1998.

[21] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults (extended abstract),” in
Advances in Cryptology - EUROCRYPT ’97, International Conference
on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding, pp. 37–51, 1997.

[22] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Advances in Cryptology - CRYPTO ’97, 17th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 1997, Proceedings, pp. 513–525, 1997.

[23] G. L. Smith, “Model for delay faults based upon paths,” in Proceedings
International Test Conference 1985, Philadelphia, PA, USA, November
1985, pp. 342–351, 1985.

[24] O. Bronchain, L. Dassy, S. Faust, and F. Standaert, “Implementing
trojan-resilient hardware from (mostly) untrusted components designed
by colluding manufacturers,” in ASHES@CCS, pp. 1–10, ACM, 2018.

[25] V. Mavroudis, A. Cerulli, P. Svenda, D. Cvrcek, D. Klinec, and
G. Danezis, “A touch of evil: High-assurance cryptographic hardware
from untrusted components,” in CCS, pp. 1583–1600, ACM, 2017.

[26] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-
throughput semi-honest secure three-party computation with an honest
majority,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-
28, 2016 (E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, eds.), pp. 805–817, ACM, 2016.

[27] A. Waksman and S. Sethumadhavan, “Silencing hardware backdoors,”
in 32nd IEEE Symposium on Security and Privacy, S&P 2011, 22-25
May 2011, Berkeley, California, USA, pp. 49–63, 2011.

[28] O. Soll, T. Korak, M. Muehlberghuber, and M. Hutter, “Em-based
detection of hardware trojans on fpgas,” in 2014 IEEE International
Symposium on Hardware-Oriented Security and Trust, HOST 2014,
Arlington, VA, USA, May 6-7, 2014, pp. 84–87, 2014.

[29] J. Balasch, B. Gierlichs, and I. Verbauwhede, “Electromagnetic circuit
fingerprints for hardware trojan detection,” in 2015 IEEE International
Symposium on Electromagnetic Compatibility (EMC), IEEE, aug 2015.

[30] S. Narasimhan, R. S. Chakraborty, D. Du, S. Paul, F. G. Wolff, C. A.
Papachristou, K. Roy, and S. Bhunia, “Multiple-parameter side-channel
analysis: A non-invasive hardware trojan detection approach,” in HOST,
pp. 13–18, IEEE Computer Society, 2010.

[31] J. Aarestad, D. Acharyya, R. M. Rad, and J. Plusquellic, “Detecting
trojans through leakage current analysis using multiple supply pad iddq
s,” IEEE Trans. Information Forensics and Security, vol. 5, no. 4,
pp. 893–904, 2010.


	Introduction
	Clock-Based Time-Modulated HTs
	Background
	The Advanced Encryption Standard
	Efficient DFA Against AES
	Timing Constraints

	Threat Model
	Trojan Implementation
	Basic Principle
	Delay Insertion
	Implementation Results


	Interface-Based Time-Modulated HTs
	Background
	CCS compiler
	Block cipher implementation

	Threat Model
	Trojan Implementation
	Principle
	Trigger insertion
	Implementation results


	Concluding remarks
	References

