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Abstract. Inspired by the literature on side-channel attacks against
cryptographic implementations, we describe a framework for the analy-
sis of location privacy. It allows us to revisit (continuous) re-identification
attacks with a combination of information theoretic and security metrics.
Our results highlight conceptual differences between re-identification at-
tacks exploiting leakages that are internal or external to a pseudonymised
database. They put forward the amount of data to collect in order to
estimate a predictive model as an important – yet less discussed – di-
mension of privacy assessments. They finally leverage recent results on
the security evaluations/certification of cryptographic implementations
to connect information theoretic and security metrics, and to formally
bound the risk of re-identification with external leakages.

1 Introduction

Location privacy has become an important concern with the advent of pervasive
computing: we refer to [2] for one of the first studies motivating this active line of
research. In this paper, we are interested in the quantification of location privacy
in a setting where an adversary can access a database with location information
about different users, together with their pseudonyms. We focus in particular on
the risks of re-identification attacks, where an adversary tries to exploit leakages
(i.e., the location data of some individuals supposedly in the pseudonymized
database) to re-identify users. Such re-identification attacks are continuous (i.e.,
it is possible for the adversary to accumulate leakages for the same user). In this
context, our starting observation is that leakages can be internal (i.e., part of
the data collected in the database) or external (i.e., fresh observations).

Our first contribution is a consolidating one. We revisit re-identification at-
tacks with a combination of information theoretic and security metrics, as usually
considered in the evaluation of leaking cryptographic implementations against
side-channel attacks [20]. We put forward that re-identification attacks with in-
ternal leakages can be captured with information theoretic metrics similar to
Diaz et al.’s anonymity degree [7], and that re-identification attacks with ex-
ternal leakages can be captured with security metrics (similar to Maouche et
al.’s re-identification rate [15]). We consolidate these results by connecting both
types of metrics thanks to established results in the worst-case evaluation of
cryptographic implementations [8], which prove that the success rate of a worst-
case side-channel attack is (under some assumptions) proportional to the mutual
information between its target key and the leakages it exploits.



We then show that this consolidating effort can lead to both new observations
/ refined intuitions and technical advances in the analysis of location privacy.

A first novel observation is that the database size has opposite effects on at-
tacks using internal and external leakages: attacks with internal (resp., external)
leakages become more challenging (resp., easier) when the database grows.

A second novel observation is that most existing location privacy metrics
tailored for the evaluation of external leakages quantify (to some extent) the
success of an attack given a statistical model for the collected data. We argue that
the convergence of the model is also interesting to analyze since it determines
the amount of data needed to infer something about a user’s behavior.

Based on these observations, we conclude that evaluating the risks of re-
identifications with external leakages is in general more challenging since they
increase when collecting more data (or merging databases). In this respect, our
third and most important contribution is to show that such risks can be formally
bounded. For this purpose, we leverage a recent result in the leakage certification
of cryptographic implementations [3], which shows that our information theoretic
metrics evaluated with internal leakages are (in expectation) an upper bound of
these metrics evaluated with external observations. As a result, we can bound
the risk of re-identification attacks with external leakages independent of the
database size (with the bound becoming tight as this size increases).

In the extended version of this work, we show that localization attacks where
an adversary tries to predict the position of a user (as in [19]) can be captured
in a similar framework, and critically depends on the time dimension of the
observations which determines the adversary’s efforts to intercept a user.

2 Definitions and framework

In this section, we specify the location data that we aim to analyze and the
estimation tools used to characterize statistical distributions.

Data specification. The location data we consider is based on spatial coordi-
nates: longitude x and latitude y (possibly with a time component t). In general,
we will consider two types of observations. First, “independent observations”
where every triple (x, y, t) is analyzed independently.1 These could for example
correspond to the location data of a mobile phone application (where consecu-
tive observations are distant in space and time), as pictured in Figure 1 (left).
We will next refer to this data as “positions” and denote them as p = (x, y, t).
Second, correlated observations for which the joint analysis is expected to lead to
improved characterization. It could for example correspond to the GPS data of a
jogger (where consecutive observations are close in space and time), as pictured
in Figure 1 (right). We will denote them as “routes” in the following.

1 The word “independent” does not refer to the fact that these observations are truly
independent, but only to the fact that such observations are exploited assuming it.



La
tit

ud
e

Longitude x

y

10 km

La
tit

ud
e

Longitude x

y

100 m

Fig. 1. Left: positions for two users. Right: route for a single user.

More formally, we first define a set of n users:

U = {u1, u2, . . . , un}.

Assuming that some location data has been collected for each of the users, we
denote the jth route of user i as:

rij = {p1
ij ,p

2
ij , . . . ,p

k
ij , . . . ,p

Nij
p

ij },

with N ij
p the number of positions in the route, and denote the number of routes

collected for a user i asN i
r. Note that independent observations can be considered

as single-position routes. In the latter case, the number of routes collected per
user equals the number of positions collected per user, next denoted as N i

p.

The collection of location data is then formalized as follows. We first assume
that the routes are sampled from an unknown statistical distribution that reflects
the true users’ behavior. This true distribution can be continuous, in which
case we denote its Probability Density Function (PDF) as f(r|u), or discrete, in
which case we denote its Probability Mass Function (PMF) as g(r|u). Next, the
sampling process giving rise to a set of N i

r routes for user i is written as:

Si
Ni

r←− f(r|ui) or Si
Ni

r←− g(r|ui),

for the continuous and discrete cases, respectively.

Eventually, even if routes can be sampled from a continuous distribution,
their storage is generally discrete. Besides, it is usually convenient for exploita-
tion purposes (or necessary for privacy purposes) to further truncate the data.
We reflect this process with a discretization function. Ignoring the time com-
ponent for simplicity, it decomposes the location space into ∆ (=δ1 × δ2) cells,
illustrated in Figure 2 (left) and denoted as D1 : R → {0, 1}∆, with R the set of
all possible routes. In the basic setup of this section, it is computed by assigning
a one to each cell where at least one observation of the route falls.
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Fig. 2. Left: discretization of a route with D1 & ∆ = 16. Right: D1-discretized route d.

Based on this discretization function, we represent a discretized route as in
Figure 2 (right), which we define as d = D1(r). For conciseness, we only consider
the case where the true (unknown) user distribution is continuous and then
discretized. Directly discrete user distributions can be formalized identically.

Types of estimations. Given a set of N i
r discretized routes Di obtained for

a user i denoted as: Di
Ni

r←− D1(f(r|ui)), the evaluation of our metrics will be
based on the estimation of a model for the true (unknown) distribution. We will
consider two types of modeling phases. The first one, next denoted as the direct
(DI) estimation process, uses all the samples in the set Di and is written as:

f̃(d|ui)
di←− Di or g̃(d|ui)

di←− Di,

for continuous and discrete models. In the following, we will always refer to
“DI-estimated” models with the tilde notation. Note that independent of the
nature of the true distribution (i.e., continuous or discrete), it is always possible
to model it as continuous and discrete. In the second type of modeling, next
denoted as the (k-fold) cross–validated (CV) estimation process, the set Di is

first split into k non-overlapping sets D(j)
i with 1 ≤ j ≤ k. We then define k

model building sets B(j)i = Di \D(j)
i and the corresponding test sets T (j)

i = D(j)
i

so that we write the model estimation for all (j)’s as:{
f̂
(1:k)

(d|ui), T (1:k)
i

}
cv←− Di,

or: {
ĝ(1:k)(d|ui), T (1:k)

i

} cv←− Di,

where the hat notation is for “CV-estimated” models. As usual in statistics, the
difference between these estimations is that direct estimation may suffer from
overfitting (i.e., the characterization of features that are specific to the collected
data Di rather than the distribution f(r|ui)), which cross-validation aims to
limit. In this work, we will need both types of estimation in order to capture
both internal and external leakages (details are given in Section 3).



Estimation tools. For both types of estimation, we then need to define how the
models are built. In the basic setup of this section, we will exploit two (discrete)
estimation tools: an exhaustive one and a simplifying one.

The exhaustive model, denoted as g̃ex(d|ui) for the discrete and direct estimation
case (the variant with cross–validation is referred to with the hat notation): it
corresponds to a histogram with 2∆ bins corresponding to all the routes. Note
that despite the support of this model grows exponentially in ∆, its memory
complexity (and the time needed to evaluate it) is bounded by the amount of
collected data (i.e., we only need to store routes with non-zero probabilities).

The 1st-order independent model, denoted as g̃1(d|ui) for the discrete and di-
rect estimation case (the variant with cross–validation is denoted with the hat
notation): it corresponds to the independent estimation of g̃1(d(c)|ui) for the ∆
cells, with d(c) a cell of the discretized route d. More precisely, for each cell c,
this model is computed as follows:

g̃1(d(c)|ui) =
1

N i
r

∑
d′∈Di

d′(c).

In the case of the exhaustive model, the probability of a user ui given a discretized
route d is directly obtained thanks to Bayes’ formula, assuming a uniform dis-
tribution for the users. For example, in the DI estimation case it yields:

P̃rex[ui|d] =
g̃ex(d|ui)∑n
j=1 g̃ex(d|uj)

·

In the 1st-order independent case, it is derived similarly by first computing the
1st-order likelihood as follows:

q̃1(d|ui) =
∏
c∈d

g̃1
(
d(c)|ui

)
·
∏
c/∈d

(
1− g̃1

(
d(c)|ui

))
,

where c ∈ d denotes the cells that are part of the route d and c /∈ d the ones
that are not. The probability P̃r1[ui|d] is derived thanks to Bayes as:

P̃r1[ui|d] =
q̃1(d|ui)∑n
j=1 q̃1(d|uj)

·

In this case, the probability of a route is estimated by assuming the independence
of the observations in each cell, which is obtained by multiplying the probabili-
ties of all the cells in the route. Summarizing, we so far defined models estimated
directly and with cross–validation, that correspond to an exhaustive characteri-
zation of the routes, or are based on a 1st-order independence assumption. Other
options could be considered. For example, Gambs et al. used a modeling based
on Markov chains which could also be analyzed with the following tools [13].

In the extended version of this work, we detail how this 1st-order indepen-
dent model can be generalized to an oth-order independent model which can
capture higher-order correlations in the distribution by first “extending” the



data towards higher-orders and then using estimation tools similar to the ones
described in this section. In this respect, we note that an oth-order independent
model is not equivalent to the exhaustive model since the knowledge of a sta-
tistical distribution is not equivalent to the knowledge of its moments. So while
increasing o can be used to characterize higher-order dependencies of the user’s
behavior, it cannot lead to an optimal model.

3 Threat models and metrics

Our threat model is depicted in Figure 3 and formalized as follows.

First, as in Section 2, we have a number of users (i.e., Alice, Bob, Carol,
David, . . . on the figure). For each of them, a number of routes have been
collected and stored in a database under different pseudonyms. Pseudonyms
are user IDs reorganized according to a secret permutation. Other data may
be collected (e.g., performance data for sport applications, preferences for cul-
tural applications, . . . ). Second, we mostly (yet, as will be clear next, not only)
consider an open data scenario where the collected data is anonymized thanks to
pseudonyms, and then made public, e.g., to facilitate the investigations of social
scientists. Third, we assume that the adversary can have access to two types of
leakages. The first one is an “internal leakage”. That is, the adversary learns that
some route(s) in the database correspond(s) to a user. This typically happens by
spying on a user while data is collected. The second one is an “external leakage”.
That is, the adversary learns that some fresh route(s) correspond(s) to a user.
This typically happens by spying on a user after data has been collected.

Concretely, there are two important quantities that impact privacy in this
threat model. First, the size of the anonymized database, which we will denote
with a number of routes collected per user N i

r (as in Section 2). Second, the
number of leakages obtained per user, that we will next denote as M i

r. In general,
we expect that the number of leakages collected is significantly smaller than the
size of the anonymized database.

Based on this setup, the goal of the adversary is to re-identify the users
thanks to their leakages, which may for example allow him to gain access to other
sensitive data. This can be achieved both with internal and external leakages.
Yet, the meaning of successful re-identification with these two types of leakages
is quite different. In the latter case (i.e., with external leakages), it implies that
the collected data is representative of the true users’ distributions. That is,
external leakages can only be linked to the collected data of their originating
user if this data can be used to predict fresh routes to some extent. By contrast
re-identification with internal leakages does not imply anything regarding the
representativity of the collected data. That is, since the leakages come from the
database, they are guaranteed to be linkable to their originating user (possibly
with other users if they are found in the observations of multiple users).

In statistical terms, these two types of leakages therefore directly correspond
to our two types of estimations. Internal leakages can be captured with the
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direct estimation process (with overfitting). External leakages can be captured
with the cross-validated one (which prevents overfitting and therefore can be
used to assess how predictive the model is against fresh routes).

Eventually, and as illustrated on the figure, given a set of leakages for a user,
the adversary outputs an ordered list of most likely pseudonyms. We then say
that the attack is a level-1 (resp., level-2, . . . ) success if the first element of this
list is the correct pseudonym (resp., the correct pseudonym is among the first
two elements of the list, . . . ). Unless mentioned otherwise, we assume level-1
successes in the next experimental sections.

Re-identification metrics. One important feature of our threat model is that
it corresponds to a continuous attack. That is, it is possible for the adversary to
obtain multiple leakages corresponding to the same target user and to combine
these leakages. As already mentioned, the attack will therefore depend on two
main quantities: the amount of collected data N i

r and the number of leakages
M i

r. Therefore, a first natural metric would be to compute the success rate of
the re-identification attack over randomly generated leakages. For each user ui,
this corresponds to a probability of level-l success SRi

l(N
i
r,M

i
r). Note that it is

natural to consider the probability of success over randomly generated leakages
in our setting since (i) the leakage generation process is typically not under
adversarial control, and (ii) what we want to measure is the number of leakages
leading to a high success rate. One can also consider the average success rate
(over all the users), which we denote as SRl(Nr,Mr).

A limitation of the previous metric is that it is intensive to estimate, since it
requires building 3-dimensional “evaluation plots” with the amount of collected
data N i

r as X axis, the number of leakages M i
r as Y axis and the success rate as Z

axis. As a result, and inspired by results in side-channel analysis, we will consider
easier-to-estimate information theoretic metrics based on the mutual information
between the target random variable U corresponding to the users and a random
variable D corresponding to (discretized) routes. As shown in [8], in case the
observations can be viewed as “noisy leakages”, computing this metric in function
of the amount of collected data is an excellent predictor of the attack data
complexity (i.e., the number of leakages needed to reach a given success rate).
It allows simplifying the evaluations to 2-dimensional plots, with the amount of
collected data as X axis & the information theoretic metric as Y axis.

In this respect, the final difficulty to compute the metrics relates to the fact
that in practice, neither the evaluator of a database nor the adversary trying to
exploit it know the true users’s distributions from which the data originates (i.e.,
the PDFs f(r|ui) or the PMFs g(r|ui) defined in Section 2). The only thing that
can be analyzed and exploited is the sampled data Di. As already mentioned,
this is where the two types of (internal and external ones) leakages considered
and the two types of estimations described in Section 2 come into play and allow
defining metrics that can capture these two contexts.

Internal leakages evaluation. In this setting, we use the direct estimation
process of Section 2 to obtain discrete models g̃(d|ui) and the probabilities



P̃r[ui|d] and compute the Hypothetical Information (HI):

H̃I(U ;D) = H[U ] +
∑
ui∈U

Pr[ui] ·
∑
d∈D

g̃(d|ui) · log2 P̃r[ui|d],

where we use the short notation Pr[X = x] := Pr[x] and we assume uniform
users

(
i.e., H[U ] = log2(n)

)
. As discussed in [9], the HI corresponds to the

amount of information that would be extracted from the observations of (hy-
pothetical) users behaving exactly according to the models g̃(d|ui). The higher
the HI, the more different are the model distributions of the users and the easier
the re-identification attack will be. Intuitively, the word hypothetical is used to
make explicit that we do not know the true users’ distributions. Concretely, it
corresponds to the context of internal leakages since in this case, the collected
data exactly defines the PDFs and PMFs that the adversary exploits. Note that
when considering internal leakages, the adversary has no incentive to exploit a
simplified model (since this model is guaranteed to be correct by definition).
Hence, in the following, we will only consider the HI with exhaustive model.

External leakages evaluation. In this setting, the situation significantly dif-
fers since in order to be successful, the adversary has to build from the collected
data a model that can be used to predict fresh routes. In order to capture this
goal, we will therefore use the cross–validation estimation process of Section 2.
Indeed, it typically reflects situations where a part of the observations are used
to build a model that is then tested with another part of the observations (which
actually corresponds to the leakages in an actual attack).

Importantly, successful attacks in this setting require that the true distribu-
tions are stationary to some extent (i.e., that f(d|ui) or g(d|ui) do not vary too
much over time), so we need a metric that captures this requirement. For this
purpose, we compute the Perceived Information (PI) as described next. First,
we use the cross–validated estimation process in order to generate the models
and test samples as in Section 2:{

ĝ(1:k)(d|ui), T (1:k)
i

}
cv←− Di,

where any model ĝ(j)(d|ui) can be used to define probabilities P̂r
(j)

[ui|d]. We
next evaluate the models by using the test samples and deriving the estimates:

P̂I
(j)

(U ;D) = H[U ] +
∑
ui∈U

Pr[ui]

·
∑

d′∈T (j)
i

1

|T (j)
i |
· log2 P̂r

(j)
[ui|d′]. (1)

The latter equation actually corresponds to an estimation by sampling, where
we assign a probability 1

|T (j)
i |

to each test sample which (by definition) directly

originates from the true user distribution. The k outputs of this process (for a



k–fold cross–validation) are finally averaged in order to obtain a more precise
estimate P̂I(U ;D). As discussed in [10], the PI corresponds to the amount of
information that is extracted from the observations of actual users, by using
models that are potentially biased by estimation and assumption errors. The PI
is related to the success rate of an adversary using the same models. Intuitively,
a positive PI means that the collected data reflects the differences between the
true users’ distributions to some extent. Incidentally, it also means that the
user’s distributions have been somewhat stationary during the data collection.
The more positive the PI, the more successful are re-identification attacks with
external leakages. By contrast, a negative PI means that the collected data is
not sufficiently reflective of the true user’s distribution (i.e., the models built
from the collected data are not sufficiently predictive, due to insufficient data,
wrong assumptions or strong model drift). Eventually, the PI converges towards
Shannon’s standard definition of Mutual Information (MI) if the models ĝ(d|ui)
are perfect (i.e., if they are equal to the true g(d|ui)).

Note that when considering external leakages, the adversary has incentives
to exploit simplified models (such as a 1st-order independent model). Indeed,
the PI is a tradeoff between estimation and assumption errors, i.e., between
the speed of convergence and the asymptotic informativeness of a model. This
tradeoff will be discussed in the experimental sections.

Remark. As the amount of collected data increases, it reflects more and more
the true users’ distributions. Hence, if both the HI and the PI metrics are es-
timated with the same model family and based on data discretized with the
same function (and ∆), they both converge towards the same value. In case an
exhaustive model is used, they additionally converge towards the true mutual
information MI(U ;D). Based on this intuition, it was demonstrated in [3] that
the HI is (in expectation) an upper bound of the MI and PI.

Besides, we note that the HI and PI metrics are averages over the users. Yet,
it can happen that the success rate of the re-identification attacks highly vary in
function of the users. The latter is easily analyzed by computing those metrics
for fixed users, i.e., by evaluating H̃I(U = u;D) or P̂I(U = u;D).

Links to other metrics. We now discuss the links between the HI and PI
metrics and related metrics introduced in the privacy literature.

k-anonymity and related metrics. The re-identification threat model with
internal leakages (where the collected data is available to the adversary) shares
similarities with the problem of privacy-preserving data publishing for which
various metrics have been introduced, some of them surveyed in [12]. In this
setting, the k-anonymity is among the simplest (and most popular) solutions [17].
Informally, k-anonymity guarantees that a leakage does not allow to (strictly)
distinguish (i.e., with probability one) a user from at least k− 1 other users. As
discussed in [14], this may not be enough to prevent all types of linking attacks.
A typical example is the case where all the users that remain indistinguishable
have the same “sensitive data” that the linking attack aims to recover (i.e.,
referred to as “other data” in Figure 3). In other words, a lack of diversity in



the sensitive data may allow the adversary to deduce private information for a
database that ensures k-anonymity. The main limitation of the k-anonymity and
refinements such as the l-diversity in our context is that they only consider the
strict indistinguishability of the users, and ignore the possibility that the list of
users for which a leakage is possible may have different conditional probabilities.
The latter possibility is particularly relevant in a continuous attack setting (since
these probabilities may be combined in maximum likelihood attacks).

Other information theoretic metrics. In order to mitigate the previous
limitation, a usual solution is to consider information theoretic metrics, for ex-
ample such as the anonymity degree introduced by Diaz et al. [7] or variations
thereof [18]. The anonymity degree can be viewed as similar to the HI metric,
since it is also computed from a model built thanks to a direct estimation process.
The only differences are that (i) the anonymity degree considers the normalized
conditional entropy rather than the mutual information for the HI (hence its
link with the success rate is less direct), and (ii) as already mentioned, the HI
metric makes explicit that it is based on a hypothetical model.

Location privacy metrics. By contrast, neither the k-anonymity nor the
anonymity degree can be used to evaluate re-identification attacks with external
leakages. This was argued in a paper by Shokri et al. [19] (yet, for a different
attack goal than re-identification, namely the localization attacks that we dis-
cuss in the extended version of this work). The authors identified three types
of metrics (namely the uncertainty, accuracy and correctness) and argued that
correctness is the appropriate way to quantify attacks aiming at predicting new
events. Informally, the correctness is correlated to the probability of error of an
adversary trying to predict fresh positions. In our re-identification context, it
therefore captures a similar intuition as the success rate of an attack exploiting
external leakages, the data complexity of which being itself correlated with the
PI metric. The accuracy then measures the convergence of the model estimate
and can be analyzed based on the convergence of the PI metric (thanks to esti-
mation plots or confidence intervals). We will argue next that it is also relevant
to the evaluation of re-identification attacks with external leakages. Eventually,
the uncertainty corresponds to the HI metric and is indeed irrelevant to analyze
attacks using external leakages. Even closer to our framework, the attacks de-
scribed in [15] consider re-identification with external leakages quantified with a
re-identification rate (which is directly equivalent to our success rate).

Unicity. In yet another line of papers, de Montjoye et al. introduced the concept
of unicity, which captures re-identification attacks based on location data [5, 6].
Their analysis uses a direct estimation process and is therefore linked to the
HI. Informally, assuming independent leakages so that each observation reduces
H[U ] by H̃I(U ;D), unicity corresponds to a case where the number of leakages
is such that users have no entropy left.

Differential privacy. Eventually, we mention that preventing re-identification
attacks could be achieved thanks to differential privacy [11], yet in a different
setting. Namely, in differential privacy, one aims to guarantee that a few queries



made to a database do not reveal private information. In our setting, we rather
make this database fully available to the adversary and allow multiple leakages.
As will be clear in the experimental sections, obtaining privacy in this setting
is extremely challenging (if possible at all). Our quantitative tools can therefore
be viewed as a motivation for differential privacy (or similar frameworks aiming
at restricting the adversary’s power in a relevant manner). See for example the
discussion about geo-indistinguishability in [1, 16].

4 Experimental validation and discussion

The following experiments are based on 4 different data sets (all of them dis-
cretized thanks to the D1 process). Our first data set is a simulated one where
the space is discretized into ∆ = 128 cells and we generated 1000 routes for 5
users according to chosen distributions. The experiments additionally consider a
more discretized process with only ∆ = 16 cells. This setting is only used in order
to put forward the general intuitions of the metrics (since it allows generating
sufficient number of observations from stable distributions so that all metrics
perfectly converge). Our second data set comes from Brightkite, an application
enabling to share visited places with friends. It provides global coordinates that
we reduce in two steps [4]. First we only consider the San Francisco Area. Sec-
ond, we discretize the space into ∆ = 16 cells. It then remained 302 users with
at least 50 single-position routes.2 Our third data set is based on jogging records
obtained with smart watches. We followed 7 users with at least 100 routes, dis-
cretized in respectively 16, 32 and 121 cells.3 Eventually, our last data set comes
from the BikeShare stations (also in the San Francisco area), publicly available
for a contest about data visualization.4 We consider 27 groups of users (since the
database has been anonymized by grouping users according to their ZIP code)
and ∆ = 33 cells which correspond to different BikeShare stations.

We start by evaluating the simulated data set to put forward general intu-
itions that can be extracted from our framework and metrics. We then analyze
the different real-life data sets and discuss their interpretation.

General metric intuitions. The metrics estimated from our simulated data
set are given in Figure 4. The left plot reports information theoretic metrics in
function of the number of collected routes per user N . The right plot reports
the success rate in function of the number of (external) leakages obtained by the
adversary M , for various N values. They lead to the next observations.

Starting with the IT metrics, a first noticeable fact is that the HI decreases
with N while the PI increases with N . This is theoretically expected in both
cases. For the HI, the reduction intuitively depends on the number of collisions
in a data set (just as would be observed with the k-anonymity metric). As a
result, larger numbers of routes per user N imply more risks of collisions for our

2 https://snap.stanford.edu/data/loc-brightkite.html (4/2008 - 10/2010).
3 This data set is not publicly available (1/2010 - 2/2016).
4 https://www.fordgobike.com/system-data (8/2013 - 8/2016).
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Fig. 4. Simulated data. Left: IT metrics. Right: success rate of attacks with external
leakages (with the collected routes discretized in ∆ = 128 cells).

data set (where some routes are possible for all users). For the PI, it reflects the
fact that by increasing N , one builds more accurate models, with less estimation
errors, saturating when N is sufficient to perfectly estimate the model.

A second observation (specific to the PI and the evaluation of external leak-
ages) is that the level of discretization brings a tradeoff between the speed of
convergence of the model and the informativeness of the (fully characterized)
model. For example, the model estimated with 16 cells converges faster (and
is more rapidly informative) than the one with 128 cells, but less informative
for N = 999. The latter suggests that the speed of convergence of a model is a
relevant evaluation metric since it determines the amount of observations that a
malicious adversary would require to build a database that is sufficient to infer
something about a user. This could for example be useful in a (non open data)
scenario where routes are maliciously collected.

Eventually, a third observation is that since we only consider exhaustive
models in this simulated setting, the HI and the PI with 128 cells converge
towards the same value (equal to the MI), as expected [3].

An open source tool in R language allowing the generation of HI/PI plots to
confirm these intuitions is available in complement to this work.

As for the success rate plots, we first observe that the number of leakages
M required to reach high success rates is proportional to the value of the PI for
the corresponding N value, as theoretically predicted in [8]. This makes it an
interesting alternative to the success rate since it is typically easier to sample, as
reflected by the less smooth success rate curves when M increases (since there
are less sets of M traces based on which we can estimate the success rate).
Also, the PI plots allow easy comparisons between two models (e.g., the ones
with 16 and 128 cells) in order to determine the number of collected traces such
that one becomes more informative than the other, which happens when their
respective PI curves intersect. Besides, we also note that the number of leakages
M required to reach a high success rate is usually lower than the number of
routes that must be collected to build an informative model. That is, building
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Fig. 5. Left: Brightkite data, IT analysis. Right: outliers correction

a model enabling statistical inference attacks with external leakages is more
difficult than mounting the attack once a well estimated model is known.

Brightkite data set. We use this second data set to illustrate the more chal-
lenging nature of real observations from the privacy viewpoint. The latter can be
confirmed from the IT metrics estimations in Figure 5, and the large gap existing
between the HI computed from the raw data (from which no positive PI could be
extracted) and the HI and PI computed after discretization. It reflects the gen-
eral fact that location privacy rarely comes for free (i.e., without sanitization).
For example, the high HI value for the raw data suggests that re-identification
with internal leakages is trivial (i.e., successful after a couple of raw leakages).
Since this value bounds the PI for a larger database, it means that with the
amount of collected data, we can only bound the risks of re-identification with
external leakages very conservatively with the raw HI value. We also notice that
by discretizing the data we can reduce the HI while enabling the estimation of
predictive models, as witnessed by the PI curve that converges to positive values.
The latter values (> 1

10 ) suggest that a handful of external leakages is sufficient
for re-identification. Indeed, a simple bound for the re-identification complexity
is given by c

PI [8].5 Stronger discretizations (e.g., with 16 cells) show a faster
convergence of the PI at the cost of a reduction of its asymptotic value (i.e., a
speed of convergence vs. informativeness tradeoff).

Another observation of interest is that in the case of real data, it frequently
happens that the modeling phase is made more difficult due to outliers (i.e.,
user’s observations that only happen rarely, possibly once). Those can lead to
prohibitively low probabilities (e.g., zero probabilities that make the estimation
of the PI impossible). We deal with these outliers by “correcting” the observa-
tions for which the probability is lower than 1

N and setting them to this minimum
value, while also counting the fraction of corrected probabilities. This fraction
fo is always given for the final value of our PI estimates in the figures (e.g.,
fo = 0.063 in the left part of Figure 5). As illustrated the right part of the
figure, it generally decreases with the size of the profiling set.
5 With c a small constant depending on H[U] and the target success rate (e.g., c = H[U]

is a usual heuristic that corresponds to a success rate of approximately 80%).
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Fig. 10. Jogging data. Left: IT analysis. Right: IT analysis per user.

Jogging data set. We use this third data set and the results in (the left
part of) Figure 10 to illustrate a case where a simplified modeling exploiting
an independence assumption does not allow a better model convergence. The
figure clearly shows that the PI extracted by using an exhaustive model (with
sufficiently discretized routes) is significantly higher than the PI extracted by
using a 1st-order independent model. It corresponds to the intuition that in the
case of jogging data (e.g., the ones in right part of Figure 1), the consecutive
observations of a route are highly correlated and therefore an independence
assumption during the modeling is unlikely to bring any significant gain.

Another observation of interest in this context is that the routes of the joggers
we analyzed are (on average) very discriminating, both with respect to internal
leakages (with an HI value stuck to H[U ]) and external leakages (with a PI value

close to H[U ]
4 ). We further use this context to put forward the differences that can

occur in the characterization of the models for different users, as illustrated in the
right part of Figure 10. The latter recalls that the HI and PI are average metrics
and are handy to have a quick “privacy overview” of a data set. However, a
rigorous analysis of the leakages’ informativeness has to be performed at the user
level. For example, the aforementioned connection between information theoretic
metrics and the success rate only holds per user [8].

BikeShare data set. We finally use this fourth data set to illustrate a case
where a simplified modeling exploiting an independence assumption is needed
for re-identification with external leakages, and to discuss the addition of the
time component of the observation’s in our reasoning.

Starting with the modeling issue, we first provide some additional intuition
about the BikeShare data set based on Figure 14 (given in Appendix A). It rep-
resents the daily usage of different bike stations by different users with different
ZIP codes (i.e., 100% means the station is used everyday by the user). More
precisely, it corresponds to the daily usage of sets of users living in the same
area, which have been grouped in order to preserve their anonymity. We will
denote these sets as users for simplicity. One can clearly see that depending on
the area a user lives in, his most used BikeShare stations vary significantly.
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Fig. 13. BikeShare data. Left: IT analysis. Right: IT analysis with time component.

We performed the same IT analysis as in the previous sections and report
it in Figure 13. This time, and in contrast with the jogging case study, the 1st-
order independence assumption is needed to build a predictive model allowing
re-identification with external leakages. This result can be explained by consid-
ering the nature of the data represented in Figure 14. Namely, contrary to the
case of the jogging data where the consecutive observations in a route are very
correlated, the use of BikeShare can be interleaved with other public or private
transports, hence creating a good level of independence between the observations
in a route. Based on this conclusion, our following analyzes of the BikeShare data
set will systematically split all the routes into several independent observations.
Note that contrary to the case of jogging data, the definition of a route is more
difficult in the BikeShare context. In Figure 13 we arbitrarily defined it as the
consecutive observations of one day.

This analysis leads to important conclusions from a risk assessment view-
point. Indeed, it highlights that the possibility to mount re-identification attacks
exploiting external leakages against the privacy of some users in a database does
not only depend on the amount of data collected but also on the assumptions
that an adversary can make about them. In this respect, the possibility to bound
this risk thanks to the HI estimated with an exhaustive model is a useful tool
for privacy assessments. As already observed, for many real-world data sets, this
bound is unlikely to be tight due to a lack of data (since for an infinite amount
of data, it is proven to be tight). For example, in the simple case of Figure 13,
we tested a 1st-order independent model which leads to a better PI than the ex-
haustive model, but still falls far away from the HI bound. This gap captures the
risk that some non-obvious assumption about the data set (or simply more data
in case a malicious database owner is hiding a part of the collected data) would
significantly improve the model informativeness and/or convergence: combined
with the previous experimental observation that building a model is usually more
data consuming than exploiting it, it implies that the risks of statistical inference
attacks are in general hard to bound tightly, unless some specific mechanisms
prevent the unrestricted use of the data.



Including the time component. We conclude the paper by showing that the time
component of location observations can be used to further improve the attacks
with external leakages. This fact is illustrated by the information theoretic anal-
ysis in the right part of Figure 13 where the PI is estimated with and without
time component, considering two granularities: AM/PM (in which case the total
number of bins of the independent model is doubled) and daily (in which case
this total number of bins is multiplied by seven).

Two preliminary remarks resulting from the figure are: (i) that the value of
the PI without time component in the left part of Figure 13 is reduced compared
to the one in the right plot. The latter derives from the fact that we now estimate
PI(U ;P ) (since, as mentioned earlier, we split all the routes in independent
observations) rather than PI(U ;D), and routes contain several positions: roughly,
the average number of observations per route can be approximated by the ratio
between the two PI values on these figures; and (ii) that the maximum size of
the profiling set decreases when considering the time component (since we now
need a sufficient amount of observations for all time values).

The figure highlights the significant gain of information that is obtained by
characterizing the time component of the users’ observations, hence revealing
that their biking habits differ depending on the days and time of the days. It
also confirms the aforementioned fact that the HI bound becomes tighter when
a large database with more observations is available.6
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A Additional figure

Fig. 14. Daily usage of BikeShare stations for three users (ZIP codes).


