
Authenticated Encryption with Nonce Misuse
and Physical Leakage: Definitions, Separation

Results & First Construction

(Extended Abstract)

Chun Guo∗?, Olivier Pereira∗, Thomas Peters∗, François-Xavier Standaert∗

∗ ICTEAM/ELEN/Crypto Group, UCLouvain, Louvain-la-Neuve, Belgium
chun.guo.sc@gmail.com,olivier.pereira@uclouvain.be,thomas.peters@

uclouvain.be,francois-xavier.standaert@uclouvain.be

Abstract. We propose definitions of authenticated encryption (AE)
schemes that offer security guarantees even in the presence of nonce
misuse and side-channel information leakage. This is part of an impor-
tant ongoing effort to make AE more robust, while preserving appeal-
ing efficiency properties. Our definitions consider an adversary enhanced
with the leakage of all the computations of an AE scheme, together with
the possibility to misuse nonces, be it during all queries (in the spirit of
misuse-resistance), or only during training queries (in the spirit of misuse-
resilience recently introduced by Ashur et al.). These new definitions of-
fer various insights on the effect of leakage in the security landscape. In
particular, we show that, in contrast with the black-box setting, leak-
ing variants of INT-CTXT and IND-CPA security do not imply a leaking
variant IND-CCA security, and that leaking variants of INT-PTXT and
IND-CCA do not imply a leaking variant of INT-CTXT. They also bring a
useful scale to reason about and analyze the implementation properties
of emerging modes of operation with different levels of leakage-resistance,
such as proposed in the ongoing NIST lightweight cryptography compe-
tition. We finally propose the first instance of mode of operation that
satisfies our most demanding definitions.

1 Introduction

Authenticated encryption (AE) has become the de facto standard primitive for
the protection of secure communications, by offering a robust and efficient al-
ternative to the combination of encryption and MACs, a combination that is
challenging enough to have been the source of security issues in numerous high-
profile systems [2,18,29]. This effort towards robustness has been intensely pur-
sued and, as a result, a number of strengthened requirements for AE schemes
have been proposed in the literature.

A first focus has been on reducing functional requirements, in order to pro-
tect users from their failure to provide appropriate inputs to the system. The
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typical requirement of using random IVs has been lowered to the requirement
of providing unique nonces. Further efforts have then been made to reduce the
impact of a repeated nonce, by requiring that such a repetition only makes it
possible to recognize the repetition of a message, which is the strict minimal con-
sequence. These considerations led Rogaway and Shrimpton to define the central
notion of misuse-resistant nonce-based AE [32], which goes even one step further,
by requiring ciphertexts to be indistinguishable from random strings. Satisfying
this notion of misuse-resistance is extremely appealing, as it goes as far as pos-
sible in protecting users from their own mistakes or from devices offering poor
sources of randomness. However, it comes with a significant memory penalty
(two successive passes are needed to perform encryption) and, as we will argue,
may also be infeasible to achieve in the presence of many natural types of leak-
age (e.g., based on the power consumption or electromagnetic radiation of an
implementation). More recently, Ashur et al. [4] proposed the relaxed security
notion of misuse-resilience, which requires that nonce misuse does not have an
impact on the security of messages encrypted with a fresh nonce. This notion
can be satisfied by much more efficient schemes, and we will show that it is also
compatible with the side-channel attack scenarios mentioned above.

A second line of efforts aims at protecting from weaknesses that implementers
could introduce in an AE scheme, by creating observable behaviors that are not
part of its specifications. One type of implementation weakness comes from the
decryption of invalid ciphertexts [13,3,24,27,4]. While security models usually
assume that the decryption of an invalid ciphertext returns an error signal, the
reality is often different, and some implementations return different messages
depending on the step at which decryption fails, or would even go as far as re-
leasing the partially decrypted message to the adversary, either explicitly, or by
treating it as public garbage. Another source of weakness coming from imple-
mentation is the possibility of side-channel attacks [10,5,11]. Here, the attacker
does not (only) exploit explicit software messages, but extracts information from
side-effects such as the computation time, the power consumption, or the elec-
tromagnetic radiation of the device performing cryptographic operations. In this
context, the previous focus on decryption failures must be broadened, as side-
channel leakage happens at encryption and decryption times, and happen at
decryption time whether a ciphertext is valid or not.

What can be achieved in the presence of leakage of course depends on the
type, the permanence and the amount of leakage granted to the adversary. As
far as the type is concerned, we separate scalar leakage (like timing) that allows
so-called univariate attacks and vector leakage (like the aforementioned power
consumption or electromagnetic radiation) that allows so-called multivariate at-
tacks. As far as the permanence is concerned, we separate between full leakage
(that allows leakage during all interactions with the device) and partial leakage
that excludes the leakage of some interactions. This leads us to define a first tax-
onomy of leakage as Vector & Full (VF), Scalar & Full (SF), Vector and Partial
(VP), Scalar & Partial (SP). In the rest of this paper, we are concerned with the
strongest category of VF leakage.
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As for the amount of information leaked, it is in general hard to quantify
and highly depends on the implementation and measurement devices that are at
hand. In this respect, our starting observation is that the leakage of all secrets
makes confidentiality-preserving cryptography impossible, but the full protection
against leakage at the implementation level brings us back to a situation in which
we put a lot of pressure on implementers, who we must completely trust to limit
the leakage. Furthermore, even in that case, this will come at high cost in terms of
extra computation time, energy, or circuit area, since strong protections against
side-channel attacks (especially in the case of VF leakage) typically increase the
“code size × cycle count” metric by 2 or 3 orders of magnitude compared to a
non-protected implementation [7,19].

This state-of-the-art motivated the design of authentication, encryption and
AE schemes allowing “leveled implementation” (or implementation in the lev-
eled leakage setting). By leveled implementation, we mean that different levels of
security are required for different parts of the computations: some computations
must be well protected, while a weaker protection would be sufficient for oth-
ers. As put forward in [30,10,11], this setting usually allows lower cost or more
efficient implementation with symmetric building blocks.

The design of such schemes being guided by the security definitions to target,
it can be viewed as a tradeoff between the pressure on implementers to limit the
leakage and the pressure on the modes to deal with the remaining leakage. Our
contributions therefore aim at defining security targets and modes of operation
with an effective balance between leakage reduction at the implementation level
and leakage-resistance at the cryptographic mode level, in order to reach AE
with high physical security and a minimum implementation cost.

Contributions. Our main contributions target deterministic (nonce-based) au-
thenticated encryption with associated data (AEAD) [31]. We:

(i) Define confidentiality and integrity notions in the presence of nonce misuse
and leakage. Our security notions capture leakage in encryption and de-
cryption and allow the computation of the “challenge ciphertexts” to leak.
Several variants are explored and compared.

(ii) Identify the strongest form of security that an AEAD can offer to protect
messages in the presence of nonce misuse and VF leakage, which we call
AEML-VF security, as a combination of black-box misuse-resistance, cipher-
text integrity with VF leakage and misuse-resistance and CCA security with
VF leakage, and misuse-resilience. We also argue why CCA security with VF
leakage and misuse-resistance cannot be achieved.

Inspired by the misuse-resistance vs. misuse-resilience terminology, we denote as
leakage-resistant the modes that aim to cope with full leakage, and as leakage-
resilient the modes that aim to cope with partial leakage. The resulting set of
definitions is relatively large, but we believe that it offers a valuable resource.

– An increased number of AE schemes claim to offer some form of leakage-
resistance: among the candidates to the NIST lightweight cryptographic al-
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gorithm competition, we may mention Ascon, ISAP, Spook and others.1 Our
structured set of definitions should help comparing the claimed guarantees,
which we would view as an interesting future work.

– Applications may raise different risks in terms of side-channel attacks, result-
ing in the adoption of different security requirements. For instance, we may
have an encrypting device exposed to side-channel attacks, while decryption
would only happen in a very well protected environment, which may suggest
the adoption of a security definition that excludes decryption leakages. And
aiming at weaker requirement could very well lead to the adoption of more
efficient schemes.

– Exploring relations between definitions may sometimes offer implications
that would support simpler security proofs. We compare all our definition
variants, and demonstrate that none of our security notions are equivalent.

Security definition. Our definition of AEML-VF security (written more sim-
ply as AEML security when VF is understood) is a combination of three re-
quirements: (i) The AE scheme must be misuse-resistant (MR) in the black-box
setting (without leakage), in the usual sense of Rogaway and Shrimpton [32].
(ii) The AE scheme must offer CIML2 security, which is a natural extension of
ciphertext integrity and nonce misuse resistance in the presence of (full) leakages,
as introduced by Berti et al. [10,11]. (iii) The AE scheme must offer CCAmL2
security, which is an extension of CCA security with misuse-resilience in the pres-
ence of (full) leakage that we propose here. Misuse-resilience and full leakage are
reflected by the small m and large L in these notations.

The first requirement is there to ensure that, for someone who does not have
access to leakage, an AEML scheme is also a traditional MR AE scheme.

In the presence of leakage, we unfortunately cannot just easily extend the
Rogaway-Shrimpton definition of MR AE in any natural way that would uni-
formly combine confidentiality and integrity. Indeed, their definition requires
that ciphertexts look random as soon as they are produced from a fresh (nonce,
message) pair. But defining the leakage function corresponding to the generation
of such random-looking ciphertexts is difficult, since the very definition of this
function is implementation-dependent. In order to avoid this caveat, we therefore
turn back to the original definitional approach for AE security, as a combina-
tion of confidentiality and ciphertext integrity, which we gradually extend to the
leakage world in the presence of nonce misuse. Such a combination turns out to
be especially relevant in the leakage setting where ensuring confidentiality and
integrity may benefit from different types of physical assumptions.

The extension of INT-CTXT (the hardness to forge a fresh ciphertext that
would pass decryption) to the setting of misuse and leakage has been recently
proposed as the CIML2 notion [11]. (The same notion excluding decryption leak-
age is denoted as CIML1 [10]). This extension can be viewed as natural as it
provides the adversary with full nonce misuse capabilities (as in the black box

1 https://csrc.nist.gov/projects/lightweight-cryptography/
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setting) and leakage from all the computations performed in encryption and de-
cryption. Furthermore and as will be detailed next, it can be obtained under
quite mild leakage assumptions, making it a particularly desirable property to
reach in practice.

It would be tempting to complete this picture with an extension of CPA
security to the misuse and leakage setting, e.g., based on the notions defined/used
in [33,10]. However, this leads to guarantees that are weaker than what we can
hope to achieve. While INT-CTXT + IND-CPA implies (the desired) IND-CCA
security in the black box setting [8], we show that this is not true anymore
when leakage enters the picture: the implication towards an extension of CCA
security with leakage does not hold, mainly because it does not capture the risks
associated to decryption leakage.

With this difficulty in mind, we introduce the notion of CCAmL2 security as
an extension of CCA security that also offers nonce misuse-resilience [4] in the
presence of full leakage: as long as the nonce used in the test query is fresh,
confidentiality must hold. Besides the aforementioned separation, we also show
that leaking variants of INT-PTXT (the hardness to forge a ciphertext that
would decrypt to a fresh message) and CCAmL2 do not imply CIML2 security:
the alternate definition of AE as INT-PTXT and IND-CCA security [25] does not
suffice in the leaking setting either. By the above, we propose to use CCAmL2 in
combination with CIML2 (and MR) to define AEML-VF security.

Finally, the reason of our focus on nonce misuse-resilience for CCAmL2 se-
curity, rather than on the stronger requirement of nonce misuse-resistance, is
due to the nature of VF leakage. Concretely, if an implementation of an AE
scheme processes a message block-by-block, as it is standard, the leakage hap-
pening during the processing of the first blocks will only depend on these blocks,
and not on all blocks. So, if an adversary asks for an encryption of two mes-
sages that have identical first blocks (but differ otherwise), using a single nonce,
the leakage of the computation associated to these first blocks will be highly
similar, something that can be easily observed and trivially contradicts misuse-
resistance. Nonce misuse-resilience is then the natural form of protection against
misuse that can be aimed for in the VF setting. Note that this argument may not
hold for scalar leakage (i.e., in the SF or SP settings): if there is a single scalar
leaked for a full message encryption process, then that scalar may depend on the
full message, not just on its first blocks. It also does not hold in the VP setting
since, in that case, the security game does not provide the adversary with the
challenge leakage that can help her to distinguish.

New mode of operation. Based on the above definitions, we propose a new
mode of operation for which the driving motivation, and our choice of leakage
models, is to push towards the most effective balance between the pressure on
implementers and the pressure on designers of modes (i.e., trading more compli-
cated leakage-resistant modes for simpler implementations).

Traditional (non leakage-resistant) encryption modes, when intended to be
used in a VF leakage setting, require implementers to offer an implementation
that can at least withstand so-called Differential Power Analysis attacks (DPAs).
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Informally, DPAs are the most commonly exploited side-channel attacks and take
advantage of the leakage about a secret (e.g., key) obtained from computations
based on different inputs (e.g., [26,15,14] and follow ups). A DPA reduces the
computational secrecy of the state manipulated by a device at a rate that is
exponential in the number of leakage traces, by combining the information of
these different inputs (e.g., plaintexts).

Leakage-resistant modes have the potential to considerably lower the costs of
physical protection (in terms of time/energy/code size needed to perform an en-
cryption) by removing, to a large extent, DPAs from the attack surface (mostly
via consistently refreshing internal secrets, so that it’s impossible to collect mul-
tiple traces), leaving the adversary with the more challenging task of exploit-
ing leakage with Simple Power Analysis attacks (SPAs). SPAs are side-channel
attacks taking advantage of the leakage of a single input, possibly measured
multiple times to reduce the measurement noise, and therefore correspond to a
minimum threat that targets the unavoidable manipulation of the messages to
encrypt/decrypt. SPA protection is considerably cheaper than DPA protection
(see [16]), and it is expected that the overhead coming from the use of a more
demanding encryption mode (e.g., requiring more block cipher calls per message
block) can be compensated by the cheaper physical protections against SPA.

With the above spirit, we define a mode of operation FEMALE (for Feedback-
based Encryption with Misuse, Authentication and LEakage) that is based on a
block cipher and a hash function and offers AEML-VF security. As encouraged
by our composite definitions, the security proofs of FEMALE are obtained under
physical assumptions that differ depending on whether we target confidentiality
or integrity guarantees. In this respect, it is important to note that our defi-
nition of AEML security allows expressing gradual security degradations in the
sense (present in our modes) that a weakly protected component that would
leak too much to satisfy the assumptions that we need for CCAmL2 security
may still offer CIML2 security. In other words, CIML2 and CCAmL2 should be
seen as gradual improvements that modes of operation can bring to better cope
with leakage, with a risk of non-negligible adversarial advantages (especially for
CCAmL2) that are at the same time inherent to physical security issues, but also
significantly reduced compared to modes of operations ignoring physical leakage
in their design.

In the extended version of this work, we additionally propose a more efficient
(one-pass) mode of operation, that ensures CIML2 and CCAmL2 without black
box MR, a combination that we denoted as AEmL [20].

Related works. Recently, Barwell et al. [5] introduced notions of misuse-
resistant and leakage-resilient AE, and proposed modes of operation satisfy-
ing their definitions. We will refer to this work as BMOS, by the initial of
its authors. The BMOS definition captures leakage-resilient AE security as fol-
lows (we just focus on encryption queries for simplicity): they first follow the
Rogaway-Shrimpton strategy by challenging the adversary to distinguish be-
tween non-leaking real or random encryption oracles, then augment the power
of the adversary by giving him access to a leaking encryption oracle that cannot
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be queried with inputs identical to those of the non-leaking oracles. As a result,
it is impossible to win their game by exploiting a leakage that would reveal in-
formation about the messages that the AE scheme is supposed to hide: leakage
is excluded from the “challenge” queries. In our terminology, BMOS focuses on
the VP (Vector & Partial) leakage model, which we reflect with a small l in our
notations.

As a result of the weaker VP leakage model, BMOS can realistically require
misuse-resistance to hold for confidentiality, and not only misuse-resilience (i.e.,
CCAMl1, CCAMl2), which is in line with our previous discussions. As such, the
BMOS work can be viewed as dual to ours: we consider full leakage (i.e., leakage-
resistance), and as a consequence have to exclude full misuse-resistance; they
consider partial leakage (i.e., leakage-resilience), which makes misuse-resistance
possible. On the positive side, the BMOS authors show that their definition is
compatible with strong composition results. Yet, the VP model may be insuf-
ficient in many practical cases: an implementation that leaks plaintexts in full
during encryption may still satisfy the BMOS security definition. By contrast,
such an implementation would be considered insecure in the VF model.

Our CCAmL2 definition builds on the notion of misuse-resilience introduced
by Ashur, Dunkelman and Luykx [4]. The actual definitions and their moti-
vations are quite different, though. Ashur et al. introduce misuse-resilience to
offer a finer grained evaluation of several standard AE schemes that are not
misuse-resistant. They do not consider side-channel leakage. In contrast, this
type of leakage is the central concern of our definitions, and is our motivation
for departing from traditional misuse-resistance in the VF leakage model.

Eventually, we mention the line of works about “after-the-fact” leakage which
is complementary to ours [23] and allows the adversary to obtain leakage infor-
mation after the challenge ciphertext. While the latter is meaningful in certain
scenarios (e.g., in the context of a cold boot attack [22], the adversary could first
see the encrypted disk – hence getting access to the ciphertext – and then try to
design a method of measuring the memory for the purpose of decrypting this ci-
phertext), it still excludes information leakage during the challenge phase, as will
be available in the context of a side-channel attack based on power consumption
leakage, which is our main concern here.

2 Preliminaries

Throughout the paper n denotes the security parameter.

2.1 Notations

Adversary. We denote by a (q1, . . . , qω, t)-bounded adversary a probabilistic
algorithm that has access to ω oracles, can make at most qi queries to its i-th
oracle, and can perform computations bounded by running time t. For algo-
rithms that have no oracle to access, we simply call them t-bounded. In this
paper, we use subscripts to make a clear distinction between the number of
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queries to different oracles: the number of queries to the (authenticated) encryp-
tion oracle, decryption oracle, and leakage oracle L are denoted by qe, qd, and
ql respectively. For example, a (qe, qd, ql, t)-bounded adversary runs in time t,
makes qe and qd queries to the encryption and decryption oracles of the Au-
thenticated Encryption with Associated Data (AEAD) scheme respectively, and
makes ql additional queries to the leakage oracle L. In all cases, the access to
leakage happens through oracle queries. This captures the fact that the leakage
function is typically unknown, and that it is only queried by running a physical
computation process (rather than being emulated).

Leaking algorithm. For an algorithm Algo, a leaking version is denoted LAlgo.
It runs both Algo and a leakage function Lalgo which captures the additional
information given by an implementation of Algo during its execution. LAlgo
returns the outputs of both Algo and Lalgo which all take the same input.

2.2 Definitions of primitives

We will focus on authenticated encryption with the following formalism.

Definition 1 (Nonce-Based AEAD [31]). A nonce-based authenticated en-
cryption scheme with associated data is a tuple AEAD = (Gen,Enc,Dec) such
that, for any security parameter n, and keys in K generated from Gen(1n):

– Enc : K×N ×AD×M→ C deterministically maps a key selected from K, a
nonce value from N , some associated data selected from AD, and a message
from M to a ciphertext in C.

– Dec : K × N × AD × C → M∪ {⊥} deterministically maps a key from K,
a nonce from N , associated data from AD, and a ciphertext from C, to a
message in M or to a special symbol ⊥ if integrity verification fails.

The sets K,N ,AD,M, C are completely specified by n. Given a key k ← Gen(1n),
Enck(N,A,M) := Enc(k,N,A,M) and Deck(N,A,M) := Dec(k,N,A,M) are
deterministic functions whose implementations may be probabilistic. Further-
more, the input length of Enc publicly determines its output length.

The correctness is defined in the natural way (see [31]). Since we only focus
on (correct) nonce-based authenticated encryption with associated data in this
paper, we will simply refer to it as authenticated encryption.

We recall the definition of Misuse-Resistance (MR) formalized in [32].

Definition 2 (MR). A nonce-based authenticated encryption scheme with asso-
ciated data AEAD = (Gen,Enc,Dec) is (qe, qd, t, ε) misuse resistant for a security
parameter n if, for all (qe, qd, t)-bounded adversaries A,∣∣∣Pr

[
k $← Gen(1n) : AEnck,Deck(1n)⇒ 1

]
− Pr

[
A$,⊥(1n)⇒ 1

]∣∣∣ ≤ ε,

where $(N,A,M) outputs and associates a fresh random ciphertext C ← C of ap-
propriate length to fresh inputs, and the associated C otherwise, and ⊥(N,A,C)
outputs ⊥ except if C was associated to (N,A,M) for some message M , in which
case it returns M .
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3 AE with full vectorial leakage

In order to define AEML security, our proposed security notion for authenticated
encryption in the full vectorial leakage setting in the presence of nonce misuse, we
start by extending the existing black-box security notions to the leakage setting.
Surprisingly, the combination of our strongest extensions of confidentiality and
integrity is separated from any other combinations unlike the situation without
misuse and leakages. This motivates our definition to be at least as secure as
this strongest combination.

3.1 Variants of black-box notions with misuse and leakages

We first adapt the IND-CPA and the IND-CCA confidentiality notions of nonce-
based authenticated encryption in the setting of nonce misuse and leakages. We
focus then on the extension of the INT-PTXT and INT-CTXT integrity notions.

Confidentiality Contrary to existing confidentiality notions in a leaking setting
(e.g., [5]), our definition includes leakages during encryption and decryption
even on the challenge ciphertext(s). We first focus on security against chosen-
ciphertext attacks with misuse-resilience and leakages, denoted CCAmL2. Then,
we derive the weaker notion of security against chosen-plaintext attacks with
misuse-resilience and leakages, denoted CPAmL2.

Chosen-ciphertext security with misuse and leakages. To capture CCAmL2 secu-
rity, as motivated in the introduction, we define the game PrivKCCAmL2,b

A,AEAD,L detailed
in Figure 1. This game takes as parameters an adversary A, a nonce-based
authenticated encryption AEAD and a (possibly probabilistic) leakage function
pair L = (Lenc, Ldec) resulting from the implementation of the scheme. During

PrivKCCAmL2,b
A,AEAD,L, the adversary A selects and submits a tuple (Nch, Ach,M

0,M1),

where the nonce Nch must be fresh and the messages M0,M1 must have identical
block length. It then receives an encryption of (Nch, Ach,M

b) and the associ-
ated leakage, and must guess the bit b. All along this game A is also granted
unbounded and adaptive access to three types of oracles: LEnc, a leaking encryp-
tion oracle; LDec, a leaking decryption oracle; and Ldecch, a challenge decryption
leakage oracle that provides the leakage of the decryption process, but not the
resulting plaintext.

Overall, this definition follows the general pattern of CCA security. In terms
of misuse-resilience, it only forbids the adversary to reuse a nonce Nch in its chal-
lenge query. This captures real situations where, for instance, a counter providing
the nonce has been unintentionally reset or shifted. As long as the counter re-
covers increments and provides fresh nonce values, the security of the challenges
should remain unaltered even if the previous encryptions leaked. In terms of
leakage, both the encryption and the decryption oracles leak (hence the “2” of
CCAmL2 for the two leaking oracles), including during the challenge query. We
go one step further with the Ldecch oracle, which offers the leakages corresponding
to the decryption of the challenge ciphertext (but not the corresponding plain-
text, as it would offer a trivial win). This addition captures the fact that the
adversary may be allowed to observe the decryption of this challenge ciphertext

9



PrivKCCAmL2,b
A,AEAD,L(1n) is the output of the following experiment:

Initialization: generates a secret key k ← Gen(1n) and sets E ← ∅
Pre-challenge queries: AL gets adaptive access to LEnc(·, ·, ·) and LDec(·, ·, ·)

(1) LEnc(N,A,M) computes C ← Enck(N,A,M) and leake ← Lenc(k,N,A,M)
updates E ← E ∪ {N} and finally returns (C, leake)

(2) LDec(N,A,C) computes M ← Deck(N,A,C) and leakd ← Ldec(k,N,A,C)
and returns (M, leakd) — we stress that M = ⊥ may occur

Challenge query: on a single occasion AL submits a tuple (Nch, Ach,M
0,M1)

If M0 and M1 have different (block) length or Nch ∈ E return ⊥
Else compute Cb ← Enck(Nch, Ach,M

b) and leakbe ← Lenc(k,Nch, Ach,M
b)

and return (Cb, leakbe)

Post-challenge queries: AL can keep accessing LEnc and LDec with some restrictions
but it can also get an unlimited access to Ldecch

(3) LEnc(N,A,M) returns ⊥ if N = Nch otherwise computes C ← Enck(N,A,M)
and leake ← Lenc(k,N,A,M) and finally returns (C, leake)

(4) LDec(N,A,C) returns ⊥ if (N,A,C) = (Nch, Ach, C
b) otherwise computes

M ← Deck(N,A,C) and leakd ← Ldec(k,N,A,C) and returns (M, leakd)
(5) Ldecch outputs the leakage trace leakbd ← Ldec(k,Nch, Ach, C

b) of the challenge

Finalization: AL outputs a guess bit b′ which is defined as the output of the game

Fig. 1: The PrivKCCAmL2,b
A,AEAD,L(1n) game.

through side-channels, which might be valuable in applications such as secure
bootloading or firmware update with a device controlled by A [28] (see [11] for
more discussion). We let the adversary query the Ldecch oracle multiple times, as
leakages can be non-deterministic (e.g., contain noise), and A may benefit from
observing the leakages from multiple decryptions of the same plaintext. However,
a single leakage is provided for the encryption of the challenge message, as we
require the encrypting party to be nonce-respecting for that query: as a result,
the challenge encryption process can happen only once.

We focus on a single challenge definition but the multi-challenge setting is
treated in the extended version of our work, where we establish their equivalence.

Definition 3 (CCAmL2). A nonce-based authenticated encryption with associ-
ated data AEAD = (Gen,Enc,Dec) with leakage function pair L = (Lenc, Ldec)
is (qe, qd, qc, ql, t, ε)-CCAmL2 secure for a security parameter n if, for every
(qe, qd, qc, ql, t)-bounded adversary AL,2 we have:∣∣∣Pr

[
PrivKCCAmL2,0

A,AEAD,L(1n)⇒ 1
]
− Pr

[
PrivKCCAmL2,1

A,AEAD,L(1n)⇒ 1
]∣∣∣ ≤ ε,

where the adversary AL makes at most qe leaking encryption queries, qd leak-
ing decryption queries, qc challenge decryption leakage queries and ql leakage
evaluation queries on arbitrarily chosen keys.

2 The notation of AL indicates that the adversary may query L on chosen inputs
including chosen keys selected and known by A.
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We will sometimes refer to CCAmL2∗ as a weakened version of CCAmL2 where
we drop the challenge decryption leakage oracle Ldecch from the game of Figure 1.

Chosen-plaintext security with misuse and leakages. Derived from CCAmL2,
CPAmL2 is defined by a game PrivKCPAmL2,b

A,AEAD,L which is exactly as PrivKCCAmL2,b
AL,AEAD

ex-
cept that we remove A’s access to the leaking decryption oracle LDec in Figure 1
(Items 2,4). Yet, A is still able to get challenge decryption leakages leakbd—this
corresponds to settings in which a passive adversary tries to break confidentiality
while being able to observe leakages of encryption and decryption operations.
In section 4.1, we will also introduce the CPAmL1 security notion, which can
be seen as the CPAmL2 variant without Ldecch, corresponding to situations in
which an adversary cannot observe any decryption operation, which could hap-
pen in settings where keys are dependent of the communication direction, and
the adversary only has physical access to one end of the communication.

Definition 4 (CPAmL2). A nonce-based authenticated encryption with associ-
ated data AEAD = (Gen,Enc,Dec) with leakage function pair L = (Lenc, Ldec) is
(qe, qc, ql, t, ε)-CPAmL2 secure for a security parameter n if, for every (qe, qc, ql, t)-
bounded adversary A, we have:∣∣∣Pr

[
PrivKCPAmL2,0

A,AEAD,L(1n)⇒ 1
]
− Pr

[
PrivKCPAmL2,1

A,AEAD,L(1n)⇒ 1
]∣∣∣ ≤ ε,

where the adversary AL makes at most qe leaking encryption queries, qc challenge
decryption leakage queries and ql leakage evaluation queries on chosen keys.

Integrity We next adopt the natural and strong extensions of INT-CTXT and
INT-PTXT to nonce-misuse resistance and (full) leakages in encryption and de-
cryption. The INT-CTXT extension, called Ciphertext Integrity with Misuse and
Leakages, noted CIML2, comes from [11] and is an earlier proposal CIML1 [10]
extended with with decryption leakage. Based on this definition, we propose here
the corresponding extension of INT-PTXT security, which we call PIML2.

Definition 5 (CIML2, PIML2). An authenticated encryption AEAD = (Gen,Enc,
Dec) with leakage function pair L = (Lenc, Ldec) provides (qe, qd, ql, t, ε)-ciphertext
(resp. plaintext) integrity with nonce misuse and leakages for security parameter
n if, for all (qe, qd, ql, t)-bounded adversaries AL, we have:

Pr
[
PrivKCIML2

A,AEAD,L(1n)⇒ 1
]
≤ ε,

(resp. Pr
[
PrivKPIML2

A,AEAD,L(1n)⇒ 1
]
≤ ε),

where the security game PrivKCIML2
A,AEAD,L (resp. PrivKPIML2

A,AEAD,L) is defined in the left

part of Table 1 (resp. right part) when AL makes at most qe leaking encryption
queries, qd leaking decryption queries and ql leakage evaluation queries.
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PrivKCIML2
A,AEAD,L(1n) experiment PrivKPIML2

A,AEAD,L(1n) experiment

Initialization:
1. k ← Gen(1n), S ← ∅

Finalization:
1. (N,A,C)← ALEnck,LDeck,L(1n)
2. If (N,A,C) ∈ S, return 0
3. If Deck(N,A,C) = ⊥, return 0
4. Return 1

Leaking encryption: LEnck(N,A,M)
1. C ← Enck(N,A,M)
2. S ← S ∪ {(N,A,C)}
3. Return (C, Lenc(k,N,A,M))

Leaking decryption: LDeck(N,A,C)
1. Return (Deck(N,A,C), Ldec(k,N,A,C))

Initialization:
1. k $← Gen(1n), S ← ∅

Finalization:
1. (N,A,C)← ALEnck,LDeck,L(1n)
2. M ← Deck(N,A,C)
3. If M = ⊥ or (A,M) ∈ S, return 0
4. Return 1

Leaking encryption: LEnck(N,A,M)
1. C ← Enck(N,A,M)
2. S ← S ∪ {(A,M)}
3. Return (C, Lenc(k,N,A,M))

Leaking decryption: LDeck(N,A,C)
1. Return (Deck(N,A,C), Ldec(k,N,A,C))

Table 1. The CIML2 and PIML2 security games. Both games ask the adversary to
forge a fresh (N,A,C) triple, based on inputs received from leaking encryption and
decryption oracles. The CIML2 is won as soon as (N,A,C) is valid, while PIML2 also
requires that its decryption leads to a fresh pair of message and associated data.

3.2 Overall requirement on AE

We eventually require that a secure AE intended to support nonce misuse and
full leakage satisfies the strongest achievable guarantee presented in the paper:
an AEML scheme is expected to offer CCAmL2 and CIML2 security, together
with being a MR AEAD scheme without leakages. This definition departs from
the traditional ones in the black-box setting, which is based on the combination
of CPA and INT-CTXT security [8] or CCA and INT-PTXT security [25]. We
will actually show that there are important separations between these notions:
CCAmL2 + PIML2 + MR 6⇒ CIML2, and CPAmL2 + CIML2 + MR 6⇒ CCAmL2.
Furthermore, even if CCAmL2 (resp., CIML2) implies both IND-CCA and CPAmL2
(resp., INT-CTXT and PIML2), the combination of CCAmL2 and CIML2 security
does not imply MR, which is therefore a separate requirement.

Definition 6 (AEML-VF). An AE scheme with security against nonce misuse
and full vectorial leakages (denoted as AEML-VF) is an AE scheme AEAD =
(Gen,Enc,Dec) with a leakage function pair L = (Lenc, Ldec) satisfying the follow-
ing assertions: (i) AEAD is misuse resistant; (ii) AEAD is CIML2 secure with
leakage function L; (iii) AEAD is CCAmL2 secure with leakage function L.

As indicated above, AEML-VF security will typically be abbreviated as AEML
in our paper, since the VF attack setting is understood.

3.3 Separation results

We now explain why the strong security notions of MR, CCAmL2 and CIML2
are needed to define AEML, while one could be tempted to make a definition as
a combination of weaker notions, which may be easier to prove. Unfortunately,
there is no such equivalence and we show that AEML is strictly stronger than
any other combinations, assuming that AEML-secure AEAD exists.
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CIML2

CCAmL2 CIML2 ∧ CPAmL2

PIML2 ∧ CCAmL2

∧MR

∧MR

Fig. 2: Relations among notions. Arrows (resp., barred arrows) denote implica-
tions (resp., separations). Dotted arrows are trivially implied by other relations.

We summarize even more relations in Figure 2. In contrast to the black-box
setting, these relations show that one cannot choose between different ways to
achieve AEML since, for instance, CCAmL2 ∧ PIML2 6� CPAmL2 ∧ CIML2.

MR ∧ CPAmL2 ∧ CIML2 ; CCAmL2∗. It is not surprising that MR does not
imply CCAmL2 since the leakage function L is absent from the black-box notion.
Contrarily, L appears both in CPAmL2 and CIML2. This claim thus says that
leakages in decryption may not alter integrity but may alter confidentiality. To
reflect this intrinsic separation of the leakage setting, we show that the impli-
cation does not even hold for CCAmL2∗ where the challenge decryption leakage
oracle Ldecch is unavailable. While the latter leakages are motivated in the context
of side-channel attacks [11], is is also quite specific to such attacks. So ignoring
it in the separation makes our result stronger and more general.

Theorem 1. Assuming that there exists an AE scheme which satisfies MR,
CPAmL2, and CIML2 in the unbounded leakage setting, then there exists an AE
with the same security properties but which fails to achieve CCAmL2, even with-
out challenge decryption leakages (i.e., CCAmL2∗).

The proof utilizes information leaked by invalid decryption queries, which
was also exploited in the “protocol leakage” setting [6]. The implication does
not hold either when starting from the multiple challenge variant of CPAmL2.

Proof. Let AEAD = (Gen,Enc,Dec) with leakage function L = (Lenc, Ldec) be MR,
CPAmL2 with respect to L and CIML2 with respect to L∗ as such authenticated
encryption exists by assumption. Then we build AEAD′ = (Gen′,Enc,Dec) with
leakage L′ = (L′enc, L

′
dec) such that, for a fixed message M† ∈M:

Gen′(1n): returns k ← Gen(1n) and k′ ← Gen(1n);
L′enc((k, k

′), N,A,M): outputs (leake, C
′, leake′) where leake = Lenc(k,N,A,M)

(comes from the computation of C ← Enck(N,A,M)), the ciphertext C ′ =
Enck′(N,A,M) and consequently leake′ = Lenc(k

′, N,A,M);
L′dec((k, k

′), N,A,C): outputs leakd = Ldec(k,N,A,C) if M 6= ⊥ (which comes

from the computation of M ← Deck(N,A,C)) and outputs (leakd, C
†, leak†e′)

otherwise, where leakd = Ldec(k,N,A,C), C† ← Enck′(N,A,M†) and conse-

quently also leak†e′ = Lenc(k
′, N,A,M†).
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From a black-box standpoint, k′ does not even exist so AEAD′ is still MR. There-
fore, let us focus on the security notions involving leakages.

CPAmL2. In the PrivKCPAmL2,b
A′,AEAD′,L′(1

n) game, the adversaryA′ does not have ac-

cess to L′dec except from the challenge decryption leakage through L′decch. But since
the challenge ciphertext is valid, L′decch = Ldecch which returns Ldec(k,Nch, Ach, C

b).

Consequently, an adversary A in PrivKCPAmL2,b
A,AEAD,L can easily simulate the view of

A′, simply by picking k′ ← Gen(1n), transmitting all the queries to its own
oracles, and adding the encryption leakage (C ′, leake′) if necessary.

CIML2. In the PrivKCIML2
A′,AEAD′,(L′)∗(1

n) game, the adversary A′ still needs to
forge a fresh ciphertext of AEAD with key k while the additional unbounded leak-
age given by (L′)∗ only depends k′. Then, building a reduction to PrivKCIML2

A,AEAD,L∗(1
n)

is straightforward.
¬CCAmL2∗. We build a distinguisher A′ against AEAD′. In the security game

PrivKCCAmL2,b
A′,AEAD′,L′(1

n), the adversary queries leaking decryption of (Nch, Ach, C) for
any chosen Nch, Ach and C. If the ciphertext is valid, it receives some M 6= ⊥
and it sets (M0, C0) = (M,C). If not, it receives (⊥, (leake, C†, leak†e′)) from
LDeck,k′(Nch, Ach, C) and sets (M0, C0) = (M†, C†). In the challenge phase, A′
sends (Nch, Ach,M

0,M1) for any distinct M1 than M0. Since the pair (Nch, Ach)
has never been queried for (leaking) encryption, A′ does not receive ⊥. In the
answer LEnck(Nch, Ach,M

b), A′ gets Cb. If Cb equals the known C0, A′ outputs
0, otherwise it outputs 1. Obviously the distinction holds with probability 1.

Now, it is easy to see that AEAD′ with leakage L′ fulfills all the desired
requirements of the theorem based on the existence of AEAD. ut

MR ∧ CCAmL2 ∧ PIML2 ; CIML2. As for the previous assertion, being MR
does not say anything about leakages, so not being CIML2 is obviously compat-
ible. The most interesting part comes from CCAmL2 and PIML2 which include
leakages. This claim exploits the fact that leakages on repeated queries may
degrade ciphertext integrity but neither confidentiality nor plaintext integrity.

Theorem 2. Assuming that there exists an AE scheme which satisfies MR,
CCAmL2, and PIML2 in the unbounded leakage model, then there exists an AE
which satisfies the same security properties but which fails to achieve CIML2
(even if not in the unbounded leakage model).

The proof is available in the full version. It proceeds by building a ¬CIML2
scheme AEAD′ from an MR ∧ CCAmL2 ∧ PIML2 scheme AEAD. An interesting
feature is that this counterexample AEAD′ preserves the tidiness of AEAD, that
is, the property that Enck(N,A,Deck(N,A,C)) = C when Deck(N,A,C) 6= ⊥.
This deviates from Bellare and Namprempre’s well-known approach for estab-
lishing INT-PTXT ; INT-CTXT, which did utilize non-tidy counterexamples [8].
It is possible in our case due to the presence of leakages.

4 Completing the definitions’ zoo

To give a complete picture of the different security flavors of AE with misuse-
resistance or resilience and full vectorial leakages, we list all the security defi-
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nitions that can be derived from our confidentiality and integrity notions. We
then study their relations which may be useful in order to guide future designs
with relaxed requirements (e.g., in order to reach better performances). It shows
that, apart from the obvious implications between the different flavors of con-
fidentiality (resp., integrity), all the notions are separated from each other. In
this section we concentrate on the single challenge notions. The extension to the
multi-challenge setting is discussed in the extended version of our work.

4.1 Security definition list (single challenge setting)

The CCAmL2 security game PrivKCCAmL2,b
A,AEAD,L is defined in Section 3.1, Figure 1.

By dropping some accesses to the distinct oracles of this game, we naturally
derive other confidentiality notions. For instance CPAmL2 is defined by removing
items (2) and (4) from the security game. By doing similar modifications, we can
define different integrity notions from the CIML2 security game PrivKCIML2

A,AEAD,L

defined in Section 2.2, Table 1. We next formalize these variants.

Prefix-suffix definitions. In all the notions derived from CCAmL2 and CIML2
we only focus on those capturing full leakages (partial leakage is covered by
BMOS). Therefore all the definitions below keep the large L in their notation.
This leads us to consider 16 different notions denoted as “pre-suf” with pre-
fix pre ∈ {CCA,CPA,CI,PI} and suffix suf ∈ {ML2,ML1,mL2,mL1, L2, L1}: a
large “M” corresponds to misuse resistance, a small “m” corresponds to misuse-
resilience and no “M/m” means that the security game is nonce-respecting (which
only restricts leaking encryption queries).

Zoo of confidentiality notions. For pre ∈ {CCA,CPA} we obtain the following 8
notions, by starting from CCAmL2 and by removing one security layer at a time:

CCAmL2 → CCAmL1,CCAL2,CPAmL2 → CPAmL1,CPAL2,CCAL1→ CPAL1.

Definition 7. A nonce-based authenticated encryption with associated data AEAD =
(Gen,Enc,Dec) with leakages L = (Lenc, Ldec) is (qpre-suf , ql, t, ε)-pre-suf secure for
a security parameter n if, for every (qpre-suf , ql, t)-bounded adversary AL, we have
pre ∈ {CCA,CPA} and:∣∣∣Pr

[
PrivKpre-suf,0

A,AEAD,L(1n)⇒ 1
]
− Pr

[
PrivKpre-suf,1

A,AEAD,L(1n)⇒ 1
]∣∣∣ ≤ ε,

where the adversary AL makes at most qpre-suf queries defined in PrivKpre-suf,b
A,AEAD,L

below, and ql leakage evaluation queries on arbitrarily chosen keys.

(i) PrivKCCAmL2,b
A,AEAD,L: qCCAmL2 = (qe, qd, qc) with the CCAmL2 game in Figure 1.

(ii) PrivKCCAmL1,b
A,AEAD,L: qCCAmL1 = (qe, qd) and the CCAmL1 security game “removes

2” from the CCAmL2 game, meaning that Ldec is removed from all the oracles.
In other words items (2),(4) become black-box and (5) disappears.

(iii) PrivKCCAL2,b
A,AEAD,L: qCCAL2 = (qe, qd, qc) and the CCAL2 security game “removes

M” from the CCAmL2 game which becomes nonce-respecting.
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(iv) PrivKCPAmL2,b
A,AEAD,L: qCPAmL2 = (qe, qc) and no decryption oracle access is given in

Figure 1: items (2) and (4) are removed but not item (5), hence the 2.

(v) PrivKCPAmL1,b
A,AEAD,L: qCPAmL1 = (qe) and the CPAmL1 game only keeps items (1)

and (3) from the CCAmL2 game, (like the CPAmL2 game without Ldecch).
(vi) PrivKCPAL2,b

A,AEAD,L: qCPAL2 = (qe, qc), the CPAL2 game is a nonce-respecting ver-
sion of the CPAmL2 and Ldecch is still available in item (5).

(vii) PrivKCCAL1,b
A,AEAD,L: qCCAL1 = (qe, qd) and the CCAL1 is a nonce-respecting version

of CCAmL1 (with black-box dec. and nonce-respecting leaking enc.).

(viii) PrivKCPAL1,b
A,AEAD,L: qCPAL1 = (qe) with only nonce-respecting leaking encryption.

Zoo of integrity notions. For pre ∈ {CI,PI} we obtain the following 8 notions, by
starting from CIML2 and by removing one security layer at a time:

CIML2 → CIML1,CIL2,PIML2 → PIML1,PIL2,CIL1→ PIL1.

Definition 8. A nonce-based authenticated encryption with associated data AEAD =
(Gen,Enc,Dec) with leakages L = (Lenc, Ldec) is (qe, dd, ql, t, ε)-pre-suf secure for
a security parameter n if, for every (qe, qd, ql, t)-bounded adversary AL, we have
pre ∈ {CI,PI} and:

Pr
[
PrivKpre-suf

A,AEAD,L(1n)⇒ 1
]
≤ ε,

where the adversary AL makes at most qe encryption queries and qd decryp-
tion queries defined in PrivKpre-suf

A,AEAD,L below, and ql leakage evaluation queries on
arbitrarily chosen keys.

(i) PrivKCIML2
A,AEAD,L: the CIML2 game, see Table 1.

(ii) PrivKCIML1
A,AEAD,L: the CIML1 game removes Ldec (i.e., decryption is black-box).

(iii) PrivKCIL2
A,AEAD,L: the CIL2 game is a nonce-respecting version of CIML2.

(iv) PrivKPIML2
A,AEAD,L: in the PIML2 game the winning condition changed (Table 1).

(v) PrivKPIML1
A,AEAD,L: the PIML1 game removes Ldec from PIML2.

(vi) PrivKPIL2
A,AEAD,L: the PIL2 game is a nonce respecting version of PIML2.

(vii) PrivKCIL1
A,AEAD,L: the CIL1 game is a nonce-respecting version of CIML2 free of Ldec.

(viii) PrivKPIL1
A,AEAD,L: the PIL1 game is a nonce-respecting version of PIML2 free of Ldec.

Connection with previous works. Among the above sixteen notions, three
of them are equivalent to already defined ones: CPAL1 appeared in [30] under
the name of LMCPA, CIML1 was introduced in [10] (under the name CIML) and
CIML2 was introduced in [11].

4.2 Relations within the zoo (single challenge setting)

We picture all the 16 notions with their natural implications in Figure 3.

Theorem 3 (Long diagonals). There exist authenticated encryptions schemes
showing that:

CCAmL1 6� CPAL2 CCAL2 6� CPAmL1 CPAmL2 6� CCAL1

CIML1 6� PIL2 CIL2 6� PIML1 PIML2 6� CIL1
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CPAmL2CCAmL2

CPAmL1CCAmL1

CPAL2CCAL2

CPAL1CCAL1

PIML2CIML2

PIML1CIML1

PIL2CIL2

PIL1CIL1

Fig. 3: Single-challenge security notions with various combinations of C/P (Ci-
phertext/Plaintext), m/M (misuse), 1/2 (# of leaking oracles). Left: confiden-
tiality notions, right: integrity notions. Arrows indicate implications.

As a corollary, all the arrows of Figure 3 are strict. The proof only requires
to show 4 of the 6 assertions.

Proof. We are to prove 12 non-implications:

(i) CCAmL1 ; CPAL2,
(ii) CPAL2 ; CCAmL1,
(iii) CCAL2 ; CPAmL1,
(iv) CPAmL1 ; CCAL2,
(v) CPAmL2 ; CCAL1,

(vi) CCAL1 ; CPAmL2,

(vii) CIML1 ; PIL2,
(viii) PIL2 ; CIML1,
(ix) CIL2 ; PIML1,
(x) PIML1 ; CIL2,

(xi) PIML2 ; CIL1,
(xii) CIL1 ; PIML2.

We first show that a security notion X1 without decryption leakages cannot
imply the corresponding notion X2 with decryption leakages. This would establish
six separations (i), (iv), (vi), (vii), (x), and (xii). For this, assume that AEAD is
a X1 secure scheme with master-key K. We define a new scheme AEAD∗, which
is the same as AEAD except that its leakages for decryption queries explicitly
include the master-key K. In this way, AEAD∗ is clearly not X2 secure (as the
key is leaked). But it remains X1 secure, since this enhancement of decryption
leakage cannot be observed in the X1 security game.

We then show that a security notion X without supporting nonce-misuse
resistance/resilience cannot imply the corresponding notion XM with misuse-
resilience. This would establish four separations (ii), (iii), (viii), and (ix). For
this, assume that AEAD = (Gen,Enc,Dec) with leakage L = (Lenc, Ldec) is a X
secure scheme. We define a new scheme AEAD∗ = (Gen′,Enc,Dec) with leakage
L = (L′enc, L

′
dec) as follows:

Gen′(1n): generates two keys k ← Gen(1n) and k′ ← Gen(1n), and selects a
public pair (N†, A†).

L′enc((k, k
′), N,A,M): outputs leake = Lenc(k,N,A,M) as well as the additional

value B but in only two cases:
– if N = N† and A = A†, B = k ⊕ k′;
– if N = N† and A 6= A†, B = k′;
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Clearly, when multiple encryption queries with the same nonce N† is made, then
both k⊕ k′ and k′ could be leaked, and the key of the underlying scheme AEAD
could be recovered. Therefore, AEAD∗ is not misuse-resistant in any security
setting. This is not the case in the nonce-respecting setting, and it thus remains
X secure.

It remains to prove CPAmL2 ; CCAL1 and PIML2 ; CIL1. For this we follow
the standard idea of showing CPA;CCA and INT-PTXT ; INT-CTXT. In de-
tail, consider CPAmL2 ; CCAL1 first, and assume that AEAD = (Gen,Enc,Dec)
is CPAmL2 secure. We define a new scheme AEAD∗ = (Gen,Enc,Dec′) as follows:

Dec′k(N,A,C): outputs Deck(N,A,C)‖k, i.e. the main key k is appended to the
decrypted plaintext.

This very artificial scheme “gives up” by appending its key to the decrypted
message upon any decryption query. Therefore, it cannot be CCA secure under
any reasonable definition. Thus CPAmL2 ; CCAL1.

For PIML2 ; CIL1, assume that AEAD = (Gen,Enc,Dec) is PIML2 secure.
We define a new scheme AEAD∗ = (Gen,Enc′,Dec′) as follows:

Enc′k(N,A,M): outputs Enck(N,A,M)‖0‖0, i.e., two bits are appended to the ci-
phertext.

Dec′k(N,A,C): parses C = C ′‖b‖b′, and outputs Deck(N,A,C ′) if and only if
b = b′.

Then it’s clear that AEAD∗ is not CIL1 since from any valid ciphertext (N,A,C‖0‖0)
obtained before the adversary could use (N,A,C‖1‖1) as a forgery. Yet, it re-
mains PIML2 secure.

Remark. By revisiting the proof for MR ∧ CCAmL2 ∧ PIML2 ; CIML2 in sub-
section 3.3, it can be seen that the exhibited CIML2 adversary only relies on the
leaking encryption. This means that it also breaks the CIML1 security. Therefore,
we already know that MR ∧ CCAmL2 ∧ PIML2 ; CIML1.

5 First AEML instantiation: FEMALE

We finally present the AEML mode FEMALE that makes only two calls to a
strongly protected block cipher per message to be encrypted and enables leveled
implementations. FEMALE is named after Feedback-based Encryption with Mis-
use, Authentication and LEakage as it starts processing the message blocks using
a (re-keying) ciphertext feedback mode (see the top of Figure 4). The encryption
processes the key only twice and the message blocks only once.

Given a hash function H : {0, 1}∗ 7→ B and a block cipher E onM = {0, 1}×B
as well as two distinct public constants pA and pB ofM, the FEMALE encryption
algorithm has 3 stages:
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Fig. 4: FEMALE encryption algorithm. “Leak free” block ciphers are in gray with “*”.
E∗,b : B 7→ M is such that E∗,b(B) := E∗(b,B). Triangles in block ciphers indicate
key inputs. If M ∈ M∗ is such that M = (m1, . . . ,m`), the output ciphertext is
C = (V, c, T ) ∈ M`+2. (Top) Generates (U, V ) and d = (d1, . . . , d`), a pre-encryption
of M = (m1, . . . ,m`). (Middle) One-time encryption of d into c = (c1, . . . , c`) with
one-time key U and pseudorandom IV V . (Bottom) Authentication from tag T .

(i) Ephemeral key-IV generation: on input (N,A,M) with M ∈ M∗, derives
a pseudorandom ephemeral key U depending only on (N,A) as well as a
pseudorandom IV V depending on the whole triple. During this process all
the blocks mi of M = (m1, . . . ,m`) are “pre-encrypted” as di, resulting in
d = (d1, . . . , d`), where di depends on (N,A,m1, . . . ,mi);

(ii) One-time encryption: on input (V, d) and the ephemeral key U , produces a
one-time encryption c of d with initialized vector V ;

(iii) Authentication: on input (R, V, c), where R = H(0‖N‖A), computes a pseu-
dorandom tag T .

The ciphertext is given by C = (V, c, T ) and it does not include d. To decrypt
the ciphertext (N,A,C), FEMALE first checks (iii) before deriving the one-time
key U from (N,A) as in step (i) in order to decrypt c into d as the reverse
process of step (ii). Eventually, (N,A, d) allows retrieving M at step (i). The full
specification of FEMALE is available in Figure 5.

For the sake of space, the security analysis of FEMALE is deferred to the full
version of this paper [20]. Informally, built upon secure cryptographic functions
and assuming that the circuits of E∗ is “leak-free”, FEMALE offers a (somewhat
standard) birthday security, i.e., it can preserve MR, CIML2, and CCAmL2 up to
2n/2 computations and processing 2n/2 message and associated data blocks.
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Description of FEMALE:

Gen(1n) picks a random key k $←{0, 1}n = K.
Enck(N,A,M) parses M ∈M∗ into as many blocks as needed as M = (m1, . . . ,m`)

for some `. Computes R← H(0‖N‖A). Then:
1. Ephemeral key-IV generation: (skip step (b) if ` = 0)

(a) Computes s0 ← E∗k(0‖R), w ← Es0(pB), s1 ← Es0(pA), and sets d0 ← pB ;
(b) Computes si+1 ← Esi(pA), yi ← Esi(di−1), di ← yi ⊕mi, for i = 1 to `;
(c) Computes U ← Es`+1(pA), W ← Es`+1(d`), V ← Ew(W ).

2. One-time encryption: first computes k1 ← EU (V ) and then, for i = 1 to `− 1,
computes ki+1 ← Eki(pA), zi ← Eki(pB), and ci ← zi ⊕ di.

3. Authentication: sets c = c1‖ . . . ‖c`, computes h← H(1‖R‖V ‖c), and computes
T ← E∗k(1‖h).

Eventually, returns the ciphertext C = (V, c, T ).
Deck(N,A,C) parses C = (V, c, T ), c = c1‖ . . . ‖c`, then proceeds in four phases:

1. Integrity Checking: computes R ← H(0‖N‖A), h ← H(1‖R‖V ‖c), and h∗ ←
trunc((E∗k)−1(T )), where trunc drops the first bit of its input. Then, if h∗ = h,
it enters the next phase, and returns ⊥ otherwise.

2. Ephemeral key extraction: first computes s0 ← E∗k(0‖R) and si+1 ← Esi(pA),
for i = 0 to `, and finally U ← Es`+1(pA).

3. One-time decryption: first computes k1 ← EU (V ) and then, for i = 1 to `− 1,
computes ki+1 ← Eki(pA), zi ← Eki(pB), and di ← zi ⊕ ci; Set d0 ← pB .

4. Message recovery: for i = 1 to `, computes yi ← Esi(di−1) and mi ← yi ⊕ di.
Eventually, returns the message M = (m1, . . . ,m`).

Fig. 5: The FEMALE AEAD scheme.

5.1 Other possible instances

To demonstrate the usefulness of the various definitions, we also list some other
possible instances of modes that satisfy some form of resistance against leakage.
First, it has been known that the state of a duplex construction [12] can be easily
recovered when the initial state can be fixed [1], which may enable universal
forgery. A standard 1-pass duplex AE starts processing the inputs by deriving a
secret duplex state from the nonce N and the AE key, and thus runs a duplex
construction on A and M . For such an AE, the initial state indeed can be
fixed if N can be reused for encryption, or if decryption leakages are available.
This means such a standard 1-pass duplex AE cannot be CIML1 not CIL2. The
inability to offer CIL2 enables a simple forging-and-testing attack against the
CCAL2 security. However, given a side-channel secure state-derivation function
(like our leak-free block cipher), such a 1-pass duplex AE seems to offer CIL1
and CCAL1, since in these settings N cannot be reused and the above attacks
turn impossible. We leave the proof of this conjecture as an open problem.

On the other hand, if a (side-channel secure) keyed finalization function is
added to the 1-pass duplex AE, which is adopted by a CAESAR final winner
Ascon [17], then the above universal forgery disappears. Indeed, Ascon is CIML2
and CCAmL1 under certain assumptions: see our recent work [21]. Furthermore,
if we can use 2 passes, then we can achieve CIML2 and CCAmL2: this is achieved
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by the AEDT design [20], or the recent TEDT [9]. Sponge-based 2-pass AEs like
ISAP [16] or S1P [21] are also expected to offer similar guarantees.
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