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Abstract. We revisit the design of filter permutators as a general approach to
build stream ciphers that can be efficiently evaluated in a fully homomorphic
manner. We first introduce improved filter permutators that allow better security
analyses, instances and implementations than the previously proposed FLIP
family of ciphers. We also put forward the similarities between these improved
constructions and a popular PRG design by Goldreich. We then propose a
methodology to evaluate the performance of such symmetric cipher designs in
a FHE setting, which primarily focuses on the noise level of the symmetric
ciphertexts (hence on the amount of operations on these ciphertexts that can be
homomorphically evaluated). Evaluations through HElib show that instances of
improved filter permutators using direct sums of monomials as filter outperform
all existing ciphers in the literature based on this criteria. We also discuss the
(limited) overheads of these instances in terms of latency and throughput.
keywords: Filter Permutator, Homomorphic Encryption, Boolean Functions.

1 Introduction.

State-of-the-art. Block cipher designs with reduced multiplicative complexity (e.g.
number of AND gates per ciphertext bit or AND depth) have recently attracted
significant attention in symmetric cryptography research. Such ciphers are motivated
by new constraints raised by emerging security applications. For example, limited
multiplicative complexity allows preventing side-channel attacks via masking more effi-
ciently [24,27,40], can improve the throughput and latency of Multi-Party Computation
(MPC) protocols [2, 26], and mitigates the noise increase and the ciphertext expansion
in Fully Homomorphic Encryption (FHE) schemes [2, 3, 10, 19, 36]. Concretely,
thanks to innovative (and sometimes aggressive) design choices, recent ciphers (e.g.
LowMC [2, 3]) can encrypt with as little of four ANDs per bit, or with a multiplicative
depth of four (e.g. FLIP [36]). In a recent work by Dobraunig et al., the authors even go
as far as minimizing both metrics jointly for a single cipher (called Rasta [19]). In this
paper, we are concerned with the question whether the reduction of the multiplicative
depth can be pushed even further (yet, with “reasonable” key sizes).

More specifically, we are interested in the exploitation of Symmetric Encryption for
FHE applications (SE-FHE), which we will sometimes call “hybrid FHE framework”,
and in stream ciphers based on Filter Permutators (FPs) introduced at Eurocrypt 2016
by Méaux et al. [36]. While the simple structure of FPs is particularly appealing for
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FHE, early instances of the FLIP cipher1 have been cryptanalyzed by Duval et al.
thanks to guess-and-determine attacks [20]. These attacks led the authors of FLIP to
tweak the designs published at Eurocrypt with conservative choices (hence reducing
their performances). They also highlighted a lack of theoretical understanding of the
exact properties needed for the Boolean functions used in FPs, due to the fact that
these designs exploit Boolean functions with non-uniformly distributed inputs. As later
observed by Carlet et al. such a structure leads to new research problems related to
the analysis of Boolean functions [12,34,37,38]. Besides, recent results confirmed that
the design principles of FPs are at least theoretically sound (thanks to an analysis in
the random oracle model) [13], hence leaving ample room for improved constructions
and analyzes of stream ciphers taking advantage of the FP principles in order to enable
efficient SE-FHE.2

Contributions. Building on this state-of-the-art, our first contribution is to propose a
new family of stream ciphers, namely Improved Filter Permutators (IFPs) that takes
advantage of recent advances on FPs and the cipher FLIP. It mostly tweaks FPs in two
directions. First, IFPs exploit an extended key register, so that the key size N is larger
than the input of the Boolean function used as a filter. This allows the input of the filter
to be increasingly close to uniformly distributed as N increases (which is not the case
for FPs). Second, IFPs use a whitening stage. That is, before being sent to the filter the
permuted key bits are XORed with a random public value. This allows simplifying the
analysis of guess-and-determine attacks (and to mitigate them), while having no impact
on the noise increase and a very mild impact on the latency and throughput of a SE-
FHE implementation. The register extension also makes the IFP designs more similar
to a PRG construction proposed by Goldreich [25]. So despite most known results on
Goldreich’s PRG are asymptotic [5,6,18,39], they also give confidence that the general
principles of IFPs are sound and motivate the quest for efficient instances.

We provide a detailed security analysis of IFPs (considering all published attacks we
are aware of) and use it to propose new cipher instances exploiting Boolean filters made
of Direct Sums of Monomials (DSMs). We denote these new instances as FiLIPDSM

and observe that they allow reduced multiplication complexity compared to existing
instances of FLIP. The security analysis largely depends on cryptographic criteria of
Boolean functions, and more particularly on the properties of sub-functions derived
from the filtering function. Therefore we develop the tools required for this analysis,
and we exhibit the parameters of any DSM function relatively to these relevant criteria.

We then use these new instances as a basis to compare IFPs with other published
ciphers aimed at efficient FHE evaluation. In this respect, we first observe that the usual
approach for assessing such performances is to compare latency and throughput [2, 10,
19, 36]. The best performances are then typically achieved for FHE parameters such
that the ciphertexts will “just enable decryption”, or a few levels of multiplications
more. Directly optimizing the latency and throughput of the obtained homomorphic
ciphertexts forces to fix the ciphertext size and error. On the one hand, this methodology

1 More precisely, instances presented at the “Journées C2”, a French workshop for PhD students
held in La Londe Les Maures, in October 2015.

2 To some extent, the Rasta cipher actually exploits one of the FPs’ ideas, which is to make a
part of the cipher computations independent of the key.
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gives accurate timings relatively to the targeted function, or close ones. On the other
hand, it makes the evaluations quite application-specific since the estimation of these
metrics is quite dependent of the targeted function. More precisely, this optimization
leads to tailor the homomorphic ciphertext parameters for the SE evaluation. Thus,
the ciphertexts have different sizes, so involving different times to evaluate the same
function, and different quantities of noise which lead to different security levels. We
therefore argue that in order to evaluate various symmetric schemes for application
in a hybrid-FHE framework in an application-dependent manner, a more relevant
comparison metric is based on the noise level of the ciphertexts. This leads to a
more stable metric than latency and throughput (since it avoids the aforementioned
specialization to a given target function). It is also connected to a generally desirable
goal (since one may expect that the ability to perform as much homomorphic operations
as possible is a useful feature for practical applications).

We formalize our comparison methodology, by (i) setting the FHE security
parameters at a level that is comparable to the SE ones (i.e. 80-bit or 128-bit),
(ii) using ciphertexts of comparable size for all the cipher designs to compare (so
basing the comparison on the most expensive cipher in terms of noise), and (iii)
monitoring the noise (e.g. provided by HElib) not only for the ciphertexts but also
after one and two levels of additional multiplications on the ciphertexts. Concrete
estimations carried out using HElib put forward that the noise of Rasta and FiLIP
is orders of magnitudes smaller than the one of LowMC, and that new instances
of FiLIP with reduced multiplicative depth allow performing two more levels of
multiplications on its ciphertexts than the recommended Rasta designs. We further
observe that even non-recommended versions of Rasta (with comparable multiplicative
depth) would not compare favorably to FiLIP due to a (much) larger key size. We
complement our analyzes with an evaluation of best-case latency and throughput (i.e.
when ciphertexts can just be decrypted), as performed previously. We believe that it
remains an informative alternative metric and clarify that it has to be understood as the
best possible performances of a cipher since any concrete application (where symmetric
ciphertexts are manipulated homomorphically) will require ciphertext expansion.

2 Preliminaries.
In addition to classic notation we use the log to denote the logarithm in basis 2, and [n]
to denote the subset of all integers between 1 and n: {1, . . . , n}. For readability we use
the notation + instead of ⊕ to denote the addition in F2.

2.1 Boolean Functions and Criteria.
We introduce here some core notions of Boolean functions in cryptography, restricting
our study to the following definition of Boolean function, more restrictive than a
vectorial Boolean function. We recall the main cryptographic properties of Boolean
functions, mostly taken from [11]: balancedness, resiliency, nonlinearity and (fast)
algebraic immunity. We give notions relatively to bit-fixing (as defined in [6]) due to
there important when guess-and-determine attacks are investigated (see Section 4.3).
Finally we define the direct sums of monomials and recall some of their properties.

A Boolean function f with n variables is a function from Fn2 to F2. The set of all
Boolean functions in n variables is denoted by Bn. We call Algebraic Normal Form
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(ANF) of a Boolean function f its n-variable polynomial representation over F2 (i.e.
belonging to F2[x1, . . . , xn]/(x

2
1 + x1, . . . , x

2
n + xn)):

f(x) =
∑
I⊆[n]

aI

(∏
i∈I

xi

)
=
∑
I⊆[n]

aIx
I ,

where aI ∈ F2. The algebraic degree of f equals the global degree max{I | aI=1} |I|
of its ANF. Any term

∏
i∈I xi is called a monomial and its degree equals |I|. A function

with only one non-zero coefficient aI , |I| > 0, is called a monomial function.
A Boolean function f ∈ Bn is said to be balanced if its output is uniformly

distributed over {0, 1}. f is calledm-resilient if any of its restrictions obtained by fixing
at most m of its coordinates is balanced. We denote by res(f) the maximum resiliency
m of f and set res(f) = −1 if f is unbalanced. The nonlinearity NL of a Boolean
function f is the minimum Hamming distance between f and all the affine functions in
Bn: NL(f) = ming, deg(g)≤1{dH(f, g)}, with dH(f, g) = #{x ∈ Fn2 | f(x) 6= g(x)}
the Hamming distance between f and g; and g(x) = a·x+ε, a ∈ Fn2 , ε ∈ F2 (where · is
some inner product in Fn2 ; any choice of an inner product will give the same definition).
The algebraic immunity of a Boolean function, denoted as AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator of
f (or f + 1). We additively use the notation AN(f) for the minimum algebraic degree
of non null annihilator of f , andDAN(f) for the dimension of the vector space made of
the annihilators of f of degree AI(f) and the zero function. The fast algebraic immunity,
denoted as FAI(f), is defined (e.g. [7]) as:

FAI(f) = min{2AI(f), min
1≤deg(g)<AI(f)

(max[deg(g) + deg(fg), 3deg(g)])}.

Definition 1 (Bit-fixing Descendants and Bit-fixing Families). Let f be a Boolean
function in n variables (xi, for i ∈ [n]), let ` be an integer such that 0 ≤ ` < n, let
I ⊂ [n] be of size ` (i.e. I = {I1, . . . , I`} with Ii < Ii+1 for all i ∈ [` − 1]), and let
b ∈ F`2, we denote as fI,b the `-bit fixing descendant of f on subset I with binary vector
b the Boolean function in n− ` variables:

fI,b(x
′) = f(x) | ∀i ∈ [`], xIi = bi, where x′ = (xi, for i ∈ [n]\I).

ForF a family of Boolean functions,F is called bit-fixing stable, or stable relatively
to guess and determine, if for all f ∈ F all its descendants belong to F .

Definition 2 (Direct Sum of Monomials and Direct Sum Vector). Let f ∈ Bn, we
call f a Direct Sum of Monomials (or DSM) if the following holds for its ANF:

∀(I, J) such that aI = aJ = 1, I ∩ J ∈ {∅, I ∪ J}.

We define its Direct Sum Vector (or DSV) mf of length k = deg(f) where mi

,i ∈ [k], is the number of monomials of degree i:
mf = [m1,m2, . . . ,mk], mi = |{aI = 1, such that |I| = i}|.

By default when we refer to the vector mF = [m1,m2, . . . ,mk], it corresponds to
the function in N =

∑k
i=1 imi variables with constant term being null.
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Remark 1. Some properties of two particular families of DSM have been studied
in [36], the family of triangular functions, i.e. mF is the all-1 vector of length k, and
FLIP functions, i.e. ∀i ∈ [3, k] mi = mk, m1 > mk, and m2 > mk.

Note also that DSM functions form a bit-fixing stable family: fixing ` < n variables
(influencing f(x) of not) does not change the property on the ANF defining a DSM.

2.2 Fully Homomorphic Encryption.

We recall here the definition of (fully) homomorphic encryption, a kind of encryption
enabling to perform computations on plaintexts only manipulating the ciphertexts,
without requiring the ability of decrypting. We introduce the vocabulary relative to
homomorphic encryption we will use in this paper. For more details we refer to [22]
for FHE, and to [31, 36] for hybrid homomorphic encryption.

Definition 3 (Homomorphic Encryption Scheme). LetM be the plaintext space, C
the ciphertext space and λ the security parameter. A homomorphic encryption scheme
consists of four probabilistic polynomial-time algorithms:

– H.KeyGen(1λ). Generates a pair (pkH , skH), public and secret keys of the scheme.
– H.Enc(m,pkH). From the plaintext m ∈M and pkH , outputs a ciphertext c ∈ C.
– H.Dec(c, skH). From the ciphertext c ∈ C and the secret key, outputs m′ ∈M.
– H.Eval(f, c1, · · · , ck,pkH). With ci = H.Enc(mi,pkH) for 1 ≤ i ≤ k, outputs a

ciphertext cf ∈ C.

Homomorphic encryption: simple, leveled, somewhat, fully. Different notions of
homomorphic encryption exist, depending on the set over which the function f can
be taken, that is, on the operations which are possible. For all these kinds we assume
a compactness property: |C| is finite, and the size of a ciphertext does not depend on
the number of operations performed to obtain it. When only one kind of operation
is permitted the scheme is simply homomorphic, it is called somewhat homomorphic
when more than one operation can be performed, at least partially. Leveled homomor-
phic schemes correspond to f being any polynomial of bounded degree (defining the
level) and bounded coefficients. Fully Homomorphic Encryption (FHE) corresponds to
f being any function defined overM. Gentry [22] proved that FHE can be constructed
by combining a leveled homomorphic scheme with a bootstrapping technique. As this
technique is still a bottleneck for homomorphic evaluation, we consider a framework
where no bootstrapping (or at least less bootstrappings) are performed, and then when
we refer to FHE or HE it refers more precisely to this context.
Noise or error-growth. Any known FHE scheme is based on noise-based cryptography,
so that an homomorphic ciphertext is associated to a part of error (or noise). The more
homomorphic operations are performed, the higher is the noise (if no bootstrapping
is used), this quantity of noise can be measured in terms of standard deviation of the
distribution followed by the error part. The error-growth involved in an homomorphic
evaluation is then the evolution of this parameter.
FHE generations. Since Gentry’s breakthrough [22], various FHE schemes following
this blueprint appeared. We call second generation the schemes where the error of the
product is symmetric in the factors, as BGV [9] which is often considered for efficiency



6 Pierrick Méaux1, Claude Carlet2, Anthony Journault1, François-Xavier Standaert1.

comparisons as implemented in the HElib library [28]. We call third generation the
schemes where the error of the product is asymmetric in the factors, the most recent
generation of FHE, initiated with GSW [23].

2.3 Filter Permutators and FLIP Instances.

The Filter Permutator or FP is the general design of stream ciphers introduced in [36],
and FLIP is an instance of this design where the filtering function is taken from a sub-
family of DSM functions. The main design principle of FPs is to filter a constant key
register with a variable (public) bit permutation. More precisely, at each cycle, the key
register is (bitwise) permuted with a pseudo-randomly generated permutation, and then
a non-linear filtering function is applied to the output of this permuted key register. The
general structure of FPs is depicted in the left part of Figure 1. It is composed of three
parts: A register where the key is stored, a (bit) permutation generator parametrized by
a Pseudo Random Number Generator (PRNG) which is initialized with a public IV, and
a filtering function which generates a key-stream.

3 Improved Filter Permutators: a New Design for Better Security
and Better Performances.

Two main tweaks are performed on the Filter Permutators blueprint to increase its
security and its performances as a SE scheme in the SE-FHE framework. The first
goal of these modifications is to generalize the original design, in a way which provides
more flexibility to choose the functions used, and the number of variables involved in
the computations. The second goal consists in simplifying the security analysis, erasing
some particularities of the FP which make the security difficult to evaluate.

3.1 Description.

The design of Improved Filter Permutators (IFPs) deviates from filter permutators
blueprint in two ways. First, the size of the key register and the number of variables
of the filtering function is not forced to be equal. The IFP key can be longer than the
number of inputs of the filtering function (in practice we consider a small factor between
both, between 2 and 32). Second, at each clock cycle a whitening of the size of F input’s
is derived from the PRNG and bitwise XORed with the permuted sub-part of the key.

It gives a new design depicted in the right part of Figure 1, with the following
particularities: N is the size of the key register, n ≤ N is the number of selected bits
from the key register at each clock cycle, and F ∈ Bn is the filtering function.

For a security parameter λ, to encrypt m ≤ 2λ bits under a secret key K ∈ FN2
(such that wH(K) = N/2), the public parameters of the PRNG are chosen and then the
following process is executed for each key-stream bit si (for i ∈ [m]):

– The PRNG is updated, its output determines the subset, the permutation, and the
whitening at time i,

– the subset Si is chosen, as a subset of n elements over N ,
– the permutation Pi from n to n elements is chosen,
– the whitening wi from Fn2 is chosen,
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Key register K Key register KIV IV

PRNG PRNG

Perm.
Gen.

Perm.
Gen.

Subset

Whitening

F F

m c m c

Fig. 1. Filter permutator and improved filter permutator constructions.

– the key-stream bit si is computed as si = F (Pi(Si(K)) + wi), where + denotes
the bitwise XOR.

Note that for each clock cycle i we consider that the PRNG gives enough pseu-
dorandom bits to independently determine the subset (log

(
N
n

)
bits), the permutation

(log(n!) bits), and the whitening (n bits). Its effect on the performances of IFPs in a
hybrid FHE framework is negligible anyway. Note that if the number of pseudorandom
bits given by the instance of the PRNG used is limited to b, it enables to compute
bb/(log

(
N
n

)
+ log(n!) + n)c bits of ciphertexts only. If this quantity is smaller than m,

then another instance of PRNG is used, and so forth until the m bits of ciphertexts
are produced (an instantiation of the whole scheme is given in Section 5). Any
pseudorandom sequence not adversarially chosen could be used instead of the PRNG’s
output, the use of the PRNG is only motivated by the storage limitation [36] of one of
the participants in the hybrid FHE framework.

3.2 Impact on Security.

The two modifications from FPs to IFPs, i.e. the register extension and the whitening,
are generalizing the design and strictly improving the security. The register extension
has two main advantages. First, it enables to increase the security without using more
complex functions (allowing then more flexibility in the design). Indeed, keeping
invariant the filtering function, increasing N decreases the probability of each key-
bit to appear in a key-stream equation, directly increasing the complexity of all attacks
known to apply on the Filtering Permutator. Second, the Hamming weight of F ’s input
is not constant anymore. Since N ≥ 2n, F can be evaluated on any element of Fn2
(being the weight of Si(K) at time i), it makes the attacks based on restricted input
considerations [12] even less efficient.

The main advantage of the whitening is to facilitate the analysis of security against
guess-and-determine attacks [20]. When a guess-and-determine strategy is used by the
attacker, some key bits (`) are fixed and then the key-stream bits do not correspond to
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evaluations of F anymore, but to evaluations of descendants of F , which are functions
acting on a number of variables between n and n − `. The complexity of these attacks
depends on the properties of the descendants rather than the ones of F . In the security
analysis of [36], the descendant with the worst parameter was considered for each
Boolean criterion, giving a lower bound on the complexity of the corresponding attack.
By randomizing the choice of the descendant, the whitening enables the security of
IFPs to be based on average properties rather than worst-case ones (as the probability
of getting a function with the worst parameters is not equal to 1).

Finally, note that increasing the register size makes the construction very similar
to Goldreich’s PRG [25]. For more details on this PRG, we refer to the initial
article of Goldreich and to the survey of Applebaum [5]. In the following we
give the necessary explanations to understand the connection between this PRG and
IFPs. Goldreich’s PRG is an asymptotic construction with interesting conjectured
security [4, 5, 6], and many implications such as secure computation with constant
computational overhead [29], or indistinguishability obfuscation [32,33]. We can define
this PRG in the following way: let n and m be two integers, let (S1, . . . , Sm) be a
list of m subsets of [n] of size d, and let P ∈ Bd (often called predicate), we call
Goldreich’s PRG the functions G : Fn2 7→ Fm2 such that for x ∈ Fn2 , G(x) =
P (S1(x)), P (S2(x)), . . . , P (Sm(x)). The integer d is called the locality of the PRG
and many works have focused on polynomial-stretch local PRG. Local means that d is
a constant, and polynomial-stretch means that m = ns where s is the called the stretch:
these PRG extend a short random seed into a polynomially longer pseudorandom
string. These local PRG are conjectured secure based on some properties of the subsets
and on the function P . Considering the (n,m, d)-hypergraph given by the subsets
(S1, . . . , Sm), the PRG cannot be secure if the hypergraph is not sufficiently expending
(we refer to [5] for the notions and references). In practice, an overwhelming portion
of (n,m, d)-hypergraphs are sufficiently expanding, making the choice of a random
(n,m, d)-hypergraph an usual and adequate strategy. For the function P , the PRG
cannot be secure if P is not resilient enough [39] or if its algebraic degree, or more
generally its algebraic immunity, is insufficient [6], both quantity being related to s. For
these constructions, the security is considered asymptotically, relatively to classes of
polynomial adversaries as linear distinguishers [39] or the Lasserre/Parrilo semidefinite
programming hierarchy. Regarding concrete parameters, very few is known up to now,
we are only aware of the recent work [17], which concretely studies the security of an
instance of a super-linear (but less than quadratic) stretch.

3.3 Impact on Homomorphic Evaluation.

The modifications from FPs to IFPs are almost free. The size of the key register does not
modify the function F so the homomorphic error-growth given by the evaluation of F
is independent of N . The whitening is given by the output of the PRNG, so considered
as public, therefore each bit of the whitening is encrypted as a zero-noise homomorphic
ciphertext. Adding homomorphically these zero-noise ciphertexts to the input of F does
not increase the error-growth, giving a final noise identical to the one obtained with a
FP instantiated with the same function. Only the time of the evaluation is modified, but
the search in a longer list and the addition of zero-noise ciphertexts has a minor impact
compared to the evaluation of the filtering function.
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3.4 Key-size Consideration.

A general idea behind FPs and Improved FPs is to have the main part of the encryption
process which would have no cost when homomorphically evaluated. This specificity
leads to consider longer keys than the traditional λ-bits key for a bit-security of λ.
We argue that in the SE-FHE context this specificity has a very low impact. Indeed,
even bounding the total key-size to 214 it is still way smaller that the size of only one
homomorphic ciphertext. Then, the encryption of each bit depending only on a subpart
of fixed length of the key, the total length of the key has no impact for the majority of
the hybrid FHE framework. Since the user can store a key of this size, and the server
can store this amount of homomorphic ciphertexts, the key size is not a bottleneck in
the considered framework. Note that for the schemes with key size of λ bits, more
computations are needed for the encryption or decryption, having an important impact
on the size of the homomorphic ciphertexts required, impacting the majority of the
hybrid FHE framework, and mostly the application part.

4 Security Analysis of the Improved Filter Permutators.

Due to the similarity of (improved) filter permutators to the filter register model, we
investigate the attacks known to apply on this model. We consider that no additional
weakness arises from the PRNG which is chosen to be forward secure to avoid
malleability. The subsets and the whitenings are chosen without any bias, and Knuth-
shuffle is used to choose the permutations. As a consequence, on this pseudorandom
system non adversarially chosen, the attacks applying target the filtering function and
they are adaptations from the one applying on filtered registers. The first part of the
security analysis is similar to the one in [36], the same kind of attacks are explored but
the complexity is computed differently, using new algorithms enabling to consider any
functions. We consider the attacks in the single-key setting, in the known ciphertext
model, focusing particularly on key-recovery attacks.

4.1 Algebraic-like Attacks.

We qualify as algebraic-like attacks the kind of attacks consisting in manipulating the
system of equations given by the key-stream to build a system of smaller degree, easier
to solve. Algebraic attacks [16], fast algebraic attacks [14], or approaches using Grobner
bases (such as [21]) are examples of this type. To determine the security of IFP relatively
to this class of attacks we study more particularly the complexity of algebraic and fast
algebraic attacks, as their complexity can be estimated from Boolean criteria.

The main idea of algebraic attacks as defined in [16] (in a context of filtered LFSR)
is to build an over-defined system of equations with the initial state of the LFSR as
unknown, and to solve this system with Gaussian elimination. The principle is to find a
nonzero function g such that both g and h = gF have low algebraic degree, allowing the
attacker to get various equations of small degree d. Then, the degree-d algebraic system
is solved, by linearization if it is possible, using Grobner basis method or SAT solvers
otherwise; linearization is the only method for which evaluating the complexity is easy.
The degree of g is at least AI(F ), and g is chosen to be a non null annihilator of F or
F + 1 of minimal degree. Then the adversary is able to obtain DAN(F ) (respectively
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DAN(F + 1)) equations with monomials of degree AI(F ) in the key bits variables, for
each equation. After linearization, the adversary obtains a system of equations in D =∑AI(F )
i=0

(
N
i

)
variables, where N is the number of original indeterminates. Therefore,

the time complexity of the algebraic attack is O(Dω) ≈ O(NωAI(F )), where ω is the
exponent in the complexity of Gaussian elimination (we assume ω = log(7) for all our
security estimations 3). The data complexity is O(D/DAN(F )).

Fast algebraic attacks [14] are a variation of the previous attacks. Still considering
the relation gF = h, their goal is to find and use functions g of low algebraic degree
e, possibly smaller than AI(f), and h of low but possibly larger degree d. Then, the
attacker lowers the degree of the resulting equations by an off-line elimination of the
monomials of degrees larger than e (several equations being needed to obtain each one
with degree at most e). Following [7], this attack can be decomposed into four steps.
The search for the polynomials g and h generating a system of D + E equations in
D + E unknowns, where D =

∑d
i=0{N choose i}, and E =

∑e
i=0{N choose i}.

The search for linear relations which allow the suppression of the monomials of degree
more than e, with a time complexity in O(D log2(D)). The elimination of monomials
of degree larger than e using the Berlekamp-Massey algorithm, corresponding to a time
complexity in O(ED log(D)). Finally, the resolution of the system, in O(Eω). This
attack is very efficient on filtered LFSR ciphers as the search of linear relations between
equations is simple. For IFPs, the first step could be trivial for our choice of F . Then,
as the subset of variables and the permutation chosen at each clock cycle are given by
the PRNG, there is no trivial linear relation between one equation and the next ones.
It is always possible to simplify some equations using the system, for example forcing
collisions on the monomials of higher degree, so other techniques of eliminations could
apply. We stress that the time complexity of these techniques would be higher than the
one of Berlekamp-Massey. Thus we consider the (time) complexity of the fast algebraic
attack, O(D log2(D) +ED log(D) +Eω) ≈ O(NFAI), as an upper bound on the time
complexity of any attack of the algebraic kind on IFPs, and a data complexity of D.

4.2 Correlation-like Attacks.

We qualify as correlation-like attacks the kind of attacks that use the bias of the filtering
function relatively to uniform, or to a low degree function. Correlation attacks, Learning
Parity with Noise (LPN) solvers, correlations based on the XL algorithm [15] are
examples of this kind. To determine the security of IFP relatively to this class of attacks,
we study more particularly the complexity of correlation attacks, and show how it
complexity can be estimated using Boolean criteria.

The principle of correlation attacks is to distinguish the output of IFPs from random.
For example if the filtering function is unbalanced an attack can consist in averaging the
key-stream and observing a bias towards 1/2. If the function is balanced, this strategy
does not apply, but instead of averaging on all the key-stream, the attack can target one
sub-part only, depending on a small portion of the variables. As the goal of these attacks

3 for a sparse system of equations we could use ω = 2, but, note that even if the filtering function
has a sparse ANF, it does not imply that this property holds on its annihilators. Then, the
systems targeted by the (fast) algebraic attacks have a lower degree but are denser, justifying
this more common choice for ω.



Improved Filter Permutators for Efficient FHE: Better Instances and Implementations 11

is to distinguish the key-stream from random, then we assume that key-recovery attacks
have at least the same complexity. Two points influence the effectiveness of this attack:
the possibility to get equations relatively to an unbalanced function, and the bias.

Two criteria enable us to study the functions relatively to these points: the resiliency
and the nonlinearity. The resiliency of a function gives the number of variables that
have to be fixed to make it unbalanced, and can be used for the first point. Then, the
nonlinearity gives the distance with the closest affine function, determining the bias to
1/2. Note that to detect the bias to 1/2 the data complexity would be O(δ−2), with
δ = 1/2 − NL(F )/2n. For LPN solvers, correlation based on XL, or other attacks
of this kind, a similar bias has to be observed. The smaller is δ, the more distant is
the algebraic system from a linear one, which decreases the efficiency of these attacks.
When combinations of vectors are required to observe a bias, the higher is the resiliency,
the higher is the attack complexity. We adopt a conservative approach to thwart this
variety of attacks: we assume that guaranteeing both δ−2 ≥ 2λ and a resiliency of λ−1
avoids any attack of this kind with time or data complexity of less that 2λ operations.

Note that in the context of Goldreich’s PRG only the resiliency is studied. The
underlying principle is, as the output is bounded (polynomial) and as the subsets are
well distributed, the probability of repetitively finding subsets of the key-stream bits
whose sum gives an unbalanced function is low, with enough resilience. In this context
the nonlinearity is not studied, as any bias is considered as giving a polynomial attack.

4.3 Guess-and-determine Strategies.

As shown in [20] guess-and-determine attacks apply on FPs. Thus, we consider this
class of attacks relatively to IFPs. The principle of the guess-and-determine attack
consists in guessing ` key bits in order to target simpler functions, obtaining a system
of equations easier to solve or with a distribution easier to distinguish. In our context
it can be less costly for an attacker to consider the 2` possible systems given by fixing
the value of ` variables than attacking the initial system of equation given by the key-
stream. Hence, both kinds of attacks presented before can be generalized with guess-
and-determine. We explain the principle relatively to the algebraic attack: the attacker
selects ` variables and gives a value of its guess, it simplifies the algebraic system. Then,
the attacker considers all equations such that the descendant function has algebraic
immunity at most k, and generates the corresponding degree k algebraic system. Once
linearized, the attacker solves the system, if it is not consistent, then another guess is
tried. As one of the 2` values of the guess is the correct one, the attack will succeed.
Similarly for the other attacks, once the value of the guess is fixed, the attack is mounted
on the new system relatively to a specific value of a parameter (the value of e and d for
the fast algebraic attack, the value of δ, or the value of the resiliency).

A bound on the complexity of these attacks can be derived from the complexity
of the attack without guess-and-determine. For the time complexity, it corresponds to
multiplying by 2` the complexity of the attack using the parameter of value k on a
system with N − ` variables. For the data complexity, the probability of getting a
function with parameter k is important, the whole complexity can then be bounded
by the inverse of this probability multiplied by the complexity of the attack using the
parameter of value k on a system with N − ` variables. To determine this probability, it
requires to determine the parameters relatively to the Boolean criteria of all descendant
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functions of F up to ` ≤ λ variables. Some descendants may have extreme parameters
(called recurrent criteria in [36]), but very low probability of appearing. Then for attacks
with guess-and-determine, it is important to investigate both time and data complexities.

Note that the particular guess-and-determine attacks investigated in [20] on FLIP
uses two properties. First, the fact that the filtering functions has a very sparse ANF so
the descendant obtained by fixing zeros is the one with worse parameters, and then, the
crucial fact that for filter permutators the guesses made on the key bits are directly in
input of F . The whitening changes the latter property, then targeting a weak function
requires to have both the guesses and the whitenings coinciding. It leads to an higher
data complexity, as shown by the algorithms estimating the complexity at the end of
this section.

4.4 Other Attacks.

Besides the previous attacks that will be taken into account quantitatively when
selecting concrete instances, we also investigated other cryptanalyses, so we develop
some explanations on those which are known to apply on filter permutators [36].

First, weak key attacks can be considered: if the Hamming weight of the key is
extreme the input of F is far away from the uniform distribution. The probability of
this weight to be extreme is very low due to the register extension, and as explained
before the whitening avoids simple attacks using the unusual distribution of F ’s inputs.
Restricting our instances to keys of Hamming weight N/2 handles these attacks.
Second, higher-order correlation attacks [15] consist in approximating the filtering
function by a function of degree d > 1 and to solve the approximated algebraic system
of degree dwith a Grobner basis algorithm such as F4 [21]. The attack could be efficient
if the function was very close to a degree d function (which corresponds to a small
nonlinearity of order d), and if d was low enough as one part of the attack consists
in solving a degree d system. This attack can easily be combined with guess-and-
determine techniques, but up to now for the filtering functions we tried, the complexity
of this attack is always superior to the one considered for fast algebraic attacks or for
correlation-like attacks. Eventually, restricted input attacks [12] using the behavior of
F on a restricted part of its input are handled by the register size and the whitening.
Since the input of F is not restricted to a subset of Fn2 , but to the whole set, it seems
unrealistic to adapt this attacks in this context. It would require to combine equations to
obtain a set of equations corresponding with high probability to a known small subset
of Fn2 . Moreover the function should also have some flaws relatively to this particular
subset, which we leave as a scope for further investigations.

4.5 Estimating the Attacks Complexity.

Based on the previous parts of this section, relatively to a Boolean function F and the
register size N , we can estimate the security of IFPs by computing the parameters of
each descendant up to λ variables. We describe the principle of the algorithm used
to determine the complexity of an attack relatively to a parameter. To illustrate it, we
consider (a simplified version for) the attack based on the algebraic immunity.
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Algorithm’s Principle. Determining the security from any filtering function F :
1. From F and λ, the profile of the function relatively to algebraic immunity is
computed. The profile corresponds to the probability of getting a descendant of F with
algebraic immunity less than or equal to k (0 ≤ k ≤ AI(F )) by fixing ` bits of F inputs.
The probability is taken over all choices of ` over n variables (0 ≤ ` ≤ λ) and over the
2` possible values taken by these variables. To compute the profile, the probability of
getting each descendant is computed iteratively, from step 0 to λ. Step 0 corresponds
to the function F with probability 1, the profile for 0 guess gives a probability of 0 for
k < AI(F ) and 1 for k ≥ AI(F ). Then, from step ` to step ` + 1, for each descendant
of step ` and its probability, all descendants obtained by fixing one of its variables (to
0 and to 1) are computed, together with their probability. It gives then all descendants
of step ` + 1, the algebraic immunity of each one is computed, and the profile for `
guesses at value k is the sum of the probabilities of all these descendants with algebraic
immunity less than or equal to k.
2. From the profile and N , for each L with 0 ≤ L ≤ λ, and for each possible value k
of the algebraic immunity (0 ≤ k ≤ AI(F )), we compute the time and data complexity
of the attack targeting functions with AI less than or equal to k. The time complexity is
then 2L multiplied by the time complexity of an algebraic attack with AI equal to k on a
system inN−L variables. The data complexity depends on the probability of obtaining
an equation with such a parameter of AI. This probability depends on the profile and on
N . It corresponds to P =

∑L
`=0 PL=` · P(AI≤k) |`, where PL=` =

(
L
`

)(
N−L
n−`

)(
N
n

)−1
is

the probability that ` over the L guesses of the adversary are in the n input’s variables
of F . The quantity P(AI≤k) |` is the probability that the function has algebraic immunity
less than or equal to k conditioned on the number of variables fixed in F to get this
function. This probability is what the profile gives. The data complexity is finally P−1

multiplied by the data complexity of an algebraic attack with algebraic immunity equal
to k on a system in N − L variables.
3. For each pair (L, k), we determine the maximum between the time and data
complexity, the minimum over all pairs gives the final complexity of the attack.

Potential Modifications. The advantage of this methodology is to apply on any
filtering function F , and any register size N , giving a general framework to determine
the security of IFPs instances. This general algorithm being exhaustive, it has a high
time and storage complexity. Indeed, note that the number of descendants of a function
is exponential. The algorithm can be modified in order to be more efficiently evaluated,
but sometimes at the cost of underestimating the cost of the attacks.

A first modification, which does not underestimates the cost of the attacks, consists
in finding the descendants which are equivalent. That is, the ones which have exactly
the same parameters for each criterion and that give the same descendants with identical
probabilities. When such equivalent descendants are found, which can be handled
through the representation of the function, the number of descendant at step ` can be
less than the initial bound of 2`

(
n
`

)
. A second modification, underestimating the cost

of the attacks, consists in replacing each value of the parameter (which can take in
some cases numerous values) by the nearest one among those which are more favorable
to the attacker in a shorter list, and summing the probabilities corresponding to each
such approximation. A third modification, also underestimating the cost of the attacks,
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can be achieved by not considering all descendants but only descendants which have
worse parameters. It is possible when, for each number of guesses considered, for each
criterion, the profile of a function is worse than the profile of another one. Then the
probability of the function with better profiles can be added to the probability of the
function with worse profiles. In other words, a (stronger) function can be neglected
and its probability added to another one, if the probability of its descendants to reach a
particular weak value of parameter is always inferior than the corresponding probability
for the descendants of the other (weaker) function.

5 Instantiating the Improved Filter Permutators with DSM
Functions: FiLIPDSM Instances.

We now instantiate the IFP paradigm with filtering functions being direct sums of
monomials, and denote these instances as FiLIPDSM. This choice is motivated by the
functions considered in [36] under the name of FLIP functions, which are a sub-
family of DSM functions. DSM functions are very structured functions, are easy to
represent through their direct sum vector, and we can determine all their parameters
relatively to Boolean criteria. Recall that to estimate the most correctly the security
given by a filtering function, it is necessary to determine the parameters of all its
descendants (up to λ variables). As DSM are bit-fixing stable (see remark 1), knowing
the standard properties of all the family enables to determine the bit-fixing properties
of any DSM filtering function, giving a very accurate estimation of the security against
guess-and-determine attacks. Finally, it is a good choice in terms of homomorphic error-
growth due to their low multiplicative depth, which is considered as the main parameter
influencing second generation FHE schemes such as BGV [9]. Evaluating DSM
functions consists in summing products of binary ciphertexts only, which corresponds
to a very low error-growth, both in second, and in third generations. More precisely,
the evaluation of a DSM function with a 3G scheme produces only a quasi-linear (in n)
error-growth ( [35], Lemma 22).

We instantiate the forward secure PRNG following Bellare and Yee [8] construction,
using the AES as underlying block cipher. The PRNG is set with two constants C0 and
C1, For each Ki the first block AES(Ki, C0) gives the key Ki+1 of the next iteration
and the second block AES(Ki, C1) gives 128 bits being the i-th part of the PRG’s
output. For each key-stream bit the PRNG outputs dlog

(
N
n

)
e bits used to select the

subset considering the variables in lexicographic order. Then, the permutation over n
bits is instantiated with the Knuth shuffle [30] with the following bits output by the
PRNG. Finally, n last bits are used to generate the whitening. If the number of ciphertext
bits m ≤ 2λ requires more pseudorandom bits that the secure limitation of the PRNG,
another instance is used with other constants. The number of possible instances for the
PRNG makes that for the parameters we consider the limitation comes from m.

5.1 Simplifying the Attack Complexities Algorithms for DSM Functions.

In Section 4 we give the general framework to compute the complexity of the
attacks. Even if DSM functions form a bit-fixing stable family, computing exactly the
parameters of all descendants of a non trivial DSM in more than 300 variables is out of
reach. Then, we use general properties proven on these functions in [35] to modify the
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algorithms as explained in Section 4.5. We describe in the following these modifications
which greatly improve the complexity and finally enable to find concrete instances.

First note that the criteria of resiliency, nonlinearity, algebraic immunity and fast
algebraic immunity can exactly be determined using the DSV notation (for the DAN
the constant term of the function matters). Therefore, two functions with the same DSV
are considered as equivalent, and the number of descendants to consider decreases using
this property, it corresponds to the first modification mentioned in Section 4.5. Then,
the number of descendants with different DSV is still very important, and the number of
different parameters also. consequently, we use the second modification relatively to the
nonlinearity, the DAN and the fast algebraic immunity. For DSM functions, the exact
value of the bias δ varies a lot, hence we consider only the values of −b(log(δ)c. For
the DAN we use an upper bound (compatible with the DSV notation), considering the
maximum over all DSM of degree at most k. For fast algebraic attack we consider only
1 and 2 as possible values for e and the reached algebraic immunity as possible value
for d. Finally, we decide to not consider all descendants, and attribute the probability
of the ones with good parameters to others (third modification). It is the modification
affecting most the complexity of the algorithm. It is realized through proving relations
between the parameters of DSM functions and an order on their DSV. In the case of
DSM, the descendants obtained by fixing zeros are always with worse parameter.

First Modification, Parameters Given by the Direct Sum Vector. As far as we
know DSM functions constitute the first bit-fixing stable family for which all the
parameters (mentioned in Section 4) are determined. Note that for a DSM function
f with mf = [m1,m2, . . . ,mk] there are at most M =

∏k
i=1(mi + 1) different DSV

in the descendants obtained by fixing zeros (as fixing a variable to 0 decreases one of
the mi by 1). To compute the profiles of a DSM, we use the following representation,
as only the descendants obtained by fixing zeros are considered, we store a vector of
length M and each index represent one descendant. The number of descendants at each
step being the most expensive part of the algorithm in term of storage and time, the
algorithm is better suited for function with relatively small M . It justifies why we will
focus on instances with sparse DSV.

Lemma 1 (Direct Sum of Monomials and Boolean Criteria, [35] Lemmata 2, 3 and
Theorem 1). Let f ∈ Fn2 be a Boolean function obtained by direct sums of monomials
with associated direct sum vector = [m1, . . . ,mk], its parameters are:

– Resiliency: res(f) = m1 − 1.

– Nonlinearity: NL(f) = 2n−1 −
1

2

(
2(n−

∑k
i=2 imi)

k∏
i=2

(
2i − 2

)mi

)
.

– Algebraic immunity: AI(f) = min
0≤d≤k

(
d+

k∑
i=d+1

mi

)
.

Second Modification, Bounding FAI and DAN. We recall the lower bound on the
FAI and the upper bound of theDAN of a DSM in the following proposition. The bound
on the FAI is tight for most functions, whereas the situation is opposite for the bound on
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the DAN. It is very common that all descendant of a DSM with a different DSV have
a different value of DAN. Hence, the bound allows us to reduce from

∏k
i=1(mi + 1)

possible values to 2k only. This modification simplifies greatly the estimation of the
algebraic attack complexity, as it requires to jointly use AI and DAN profiles.

Proposition 1 (Bounds on FAI and DAN, [35] Propositions 4 and 5). For any DSM
function f of degree k > 0:

FAI(f) ≥ bFAI(f) =

{
AI(f) + 2 if AI(f) = deg(f),AI(f) > 1, and mk > 1,
AI(f) + 1 otherwise.

DAN(f) ≤ bDAN(f) = kk + 1 if m1 = 0, and kk−1 + 1 if m1 > 0.

Third Modification, Determining DSM Descendant with Worse Properties. In the
previous paragraphs we consider the number of descendants obtained by fixing zeros
and not the total number of descendants, the reason is that a relation between the
descendant greatly decreases the algorithms complexity. We use this relation between
the 2` descendants to bound the parameters relatively to the standard criteria of
all descendant functions on a same subset by the parameters of only one of these
descendant. The purpose of these results is to be able to upper bound the number
of descendants of a function which parameter is equal to a targeted value. More
specifically, for all b ∈ F`2, the parameters of all descendant functions relatively to the
same subset can be bound using the direct sum vectors of the all-0 or all-1 descendant:

Proposition 2 (DSM Descendants Properties, [35] Proposition 6). Let ` ∈ N∗, 0`
and 1` denote the all-0 and all-1 vectors of F`2 .Let f be a DSM function in n variables,
for any ` | 1 ≤ ` < n, and any subset I ⊆ [n] such that |I| = `, and for any b ∈ F`2:

res(fI,b) ≥ res(fI,0`), NL(fI,b) ≥ NL(fI,0`), AI(fI,b) ≥ AI(fI,0`),
bFAI(fI,b) ≥ bFAI(fI,0`), bDAN(fI,b) ≤ bDAN(fI,1`).

5.2 Concrete Instances with DSM Functions.

Based on the security estimations we propose the following instances of FiLIPDSM

in Table 1, mF is the DSV notation of F , n is the number of variables of F , N is
the size of the key register, d is the multiplicative depth of the function, and λ is the
conjectured security parameter.

mF n N d λ Name
[89, 67, 47, 37] 512 16384 2 80 FiLIP-512

[80, 40, 15, 15, 15, 15] 430 1792 3 80 FiLIP-430
[80, 40, 0, 20, 0, 0, 0, 10] 320 1800 3 80 FiLIP-320
[128, 64, 0, 80, 0, 0, 0, 80] 1216 16384 3 128 FiLIP-1216

[128, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64] 1280 4096 4 128 FiLIP-1280

Table 1. FiLIPDSM Instances.
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6 Performance Evaluation.

Ultimately, the goal of SE-FHE applications is to obtain the result of the homomorphic
computations with the best latency and throughput. However, such performance
metrics can only be evaluated if the functions to be evaluated by the Cloud are
known in advance. In previous evaluations of symmetric ciphers for FHE evaluation,
this issue was (partially) circumvented by studying the latency and throughput of
homomorphic ciphertexts that will just enable decryption or a fixed number of levels of
multiplications. This allows getting lower bounds on the timings necessary to evaluate
any function, and the performances are reasonably accurate for simple functions with
the given multiplicative depth. Yet, one important drawback of this approach remains
that optimizing latency and throughput requires to fix parameters such as the size
of the ciphertexts and the quantity of noise (which set the security of the FHE
scheme). More precisely, in HE, it is the quantity of noise that determines the size
of the ciphertexts required to correctly handle the operations. This size is in turn the
main factor determining the latency and throughput of the homomorphic operations.
Therefore, optimizing throughput and latency is ideal for one specific function, but it
looses its accuracy when the application deviates from this particular function. We next
propose an alternative comparison methodology, based on the homomorphic noise, that
aims to be more independent of the applications.

6.1 Methodology.

Considering the performances of SE-FHE relatively to the homomorphic noise is
based on two simple principles. The smaller is the noise, the wider is the class of
functions still evaluable on these ciphertexts. The smaller is the noise, the smaller are the
homomorphic ciphertexts, the faster are the evaluations. It means that the homomorphic
noise dictates the ciphertext parameters, and eventually the latency and throughput of
the final application. Consequently, an appealing performance evaluation could consist
in determining exactly the error-growth (in average or with overwhelming probability)
given by an SE scheme for a specific FHE scheme. As there is no simple parameter
(such as the multiplicative depth) which encompasses totally the error-growth, we
use a simpler methodology consisting in measuring the noise just after evaluating the
symmetric decryption or after some additive levels of multiplications.

In contrast with the aforementioned latency/throughput oriented methodology,
which leads to fix the homomorphic parameters to optimize the timings for a given
target function, a noise-oriented methodology can ensure that the ciphertext parameters
are the same for all SE schemes to be compared. This has two advantages. First,
all homomorphic ciphertexts obtained have the same security, that we fix to λ, the
security level of the SE scheme. Second, once the symmetric decryption is performed,
the evaluation time of any function will be independent of the SE scheme used for
the transciphering. Such a scheme is then only limited by the ciphertext noise, which
determines the quantity of operations that can be performed until decryption becomes
impossible. Consequently, with this methodology, the smaller is the measured noise, the
better suited is the SE scheme. We believe this approach provides interesting insights
for the comparison of SE schemes in an application-dependent manner.
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Additionally, and for completeness, we give some indications on the time perfor-
mances, using the strategy of previous works. To do so, for each SE scheme we select
homomorphic parameters that are sufficient to evaluate the decryption circuit, but no
more. It gives an idea on the minimal size of homomorphic ciphertext and minimal
evaluation time required for each SE scheme relatively to the library used. The result
corresponds to a minimum as for any application, bigger ciphertexts are necessary to
make the evaluations of the computation part.

6.2 Performances and Comparisons.

We chose to compare the following symmetric schemes: LowMC [2], FLIP [36],
Rasta and Agrasta [19] and FiLIPDSM, all designed for the SE-FHE framework. We
did not consider Kreyvium [10] as its implementation is very different (based on
previous studies the related numbers would be slightly better than the one of LowMC
due to a multiplicative depth of 12 and 13). All implementations were made with
the HElib library [28]. The LowMC implementations were taken from the publicly
available code (https://bitbucket.org/malb/lowmc-helib). The one of
Rasta were built from this implementation and the publicly available one (https:
//github.com/iaikkrypto/rasta). We use the same code for computing the
“Four Russians” method, used for multiplying binary matrices. The FLIP and FiLIPDSM

implementations were made ad hoc. These implementations were evaluated on laptop
computer with processor Intel(R) Core(TM) i5-4210M CPU at 2.60GHz.

Accordingly to the previously described methodology, we chose parameters in
HElib enabling to evaluate the decryption of all these schemes. These parameters
are dictated by LowMC (due to its higher multiplicative depth), so we choose the
minimal parameters such that LowMC ciphertexts can be decrypted while keeping
an FHE security of at least the security of the symmetric ciphers. The noise level
after evaluation is estimated thanks to HElib function log of ratio() which returns
the difference log(σ) − log(q) where σ2 is the noise variance (derived from bounds
on the error-growth of addition, product, automorphism, and switchings) of the error
part of the ciphertext, and q is the modulus. In order to have a glimpse of what this
noise level represents, we also computed 1 (respectively 2) level(s) of multiplications
between ciphertexts (after the homomorphic evaluation of the symmetric schemes).
The results for 80-bit security and 128-bit security are given in Table 2 and Table 34.
Symbol d denotes the multiplicative depth of the decryption circuit of the SE scheme,
N is the key size, symbol b denotes the number of produced bits. The latency refers
to the time required to have the first ciphertext after evaluation, the noise columns
refer to the output of the log of ratio() function, with respectively 0, 1 and 2 levels
of multiplications (after evaluation of the SE decryption function).

From these results we can conclude that LowMC ciphertexts have the biggest error-
growth. For the 80-bit security instances the noise after evaluating FLIP, Rasta or
Agrasta is similar whereas the instances of FiLIPDSM enable 1 or 2 additional levels
of multiplications. For 128 bits of security, FiLIP-1280 ciphertexts are slightly less
noisy than Agrasta and FLIP ciphertexts, whereas FiLIP-1216 offers an additional
level of multiplications. In terms of evaluation time, the parameters are more suited

4 These security levels are the one given by HElib, more accurate estimations are given in [1].

https://bitbucket.org/malb/lowmc-helib
https://github.com/iaikkrypto/rasta
https://github.com/iaikkrypto/rasta
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Cipher d N b Latency (s) noise noise × noise ×2

LowMCv2 (12, 31, 128) 12 80 128 329.38 -2.966 n/a n/a
LowMCv2 (12, 49, 256) 12 80 256 699.10 -2.495 n/a n/a

Agrasta (81, 4) 4 81 81 67.48 -155.722 -139.423 -119.459
Rasta (327, 4) 4 327 327 290.99 -154.502 -139.423 -119.459
Rasta (327, 5) 5 327 327 366.30 -135.727 -119.459 -100.641

FLIP-530 4 530 1 42.06 -157.201 -139.423 -119.459
FiLIP-512 2 16384 1 33.74 -194.342 -177.739 -158.241
FiLIP-430 3 1792 1 31.25 -176.039 -158.241 -139.423
FiLIP-320 3 1800 1 21.41 -176.588 -158.241 -139.423

Table 2. Noise comparison for 80-bit security. HElib parameters: LWE dimension
15709, HElib Depth L 14, B = 28 (Bit per level parameter that influence BGV security),
BGV security 84.3, Nslots 682, log of ratio() of fresh ciphertext -237.259.

Cipher d N b Latency (s) noise noise × noise ×2

LowMCv2(14, 63, 256) 14 128 256 1629.03 -3.418 n/a n/a
Agrasta (129, 4) 4 128 129 207.68 -207.478 -190.086 -169.011
Rasta (525, 5) 5 525 525 1264.30 -185.885 -169.011 -148.313
Rasta (351, 6) 6 351 351 967.62 -164.945 -148.313 -129.716

FLIP-1394 4 1394 1 272.31 -207.831 -190.086 -169.011
FiLIP-1216 3 16384 1 251.28 -227.93 -210.437 -190.086
FiLIP-1280 4 4096 1 325.04 -208.112 -190.086 -169.011

Table 3. Noise comparison for 128-bit security. HElib parameters: LWE dimension of
the underlying lattice = 24929, HElib Depth L = 16, B = 30, BGV security = 132.1,
Nslots =512, log of ratio() of fresh ciphertext = -293.929.

for LowMC, but relatively to this size of ciphertexts we can conclude that Agrasta
evaluations produce more ciphertexts per second. The instances of FiLIPDSM produce
the ciphertexts one by one, and have then a throughput around 50 times slower for 80-
bit instances and 200 for 128-bit instances. These results confirm the excellent behavior
of FiLIPDSM in terms of noise, enabling 1 or 2 supplementary levels of multiplication
(at the cost of a moderate decrease of the time performances detailed next).

Note that the gain in depth of FiLIPDSM relatively to Agrasta or Rasta is obtained
at the price of larger key sizes. When choosing which scheme to use in the hybrid
homomorphic framework, a trade-off can be considered between these schemes,
depending on the number of levels of multiplications required (computation phase) and
constraints on the key-size (initialization phase). The more computations over the data
will be considered, the more important will be the influence of the error-growth, making
negligible the impact of the key-size.

We also note that in [19], instances with a smaller multiplicative depth are
considered, but the authors recommend a depth at least 4 for security reason. These
instances always involve way bigger keys than FiLIPDSM instances with the same
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multiplicative depth, and due to the high number of XORs in these instances, the error-
growth is higher. Rasta ciphers were not optimized for the metric we consider, instances
designed for the error-growth could lead to better performances. We argue that minor
modifications would benefit to evaluation over HElib, but by design the noise remain
larger than the one from IFPs. For example, the high number of additions occurring at
different levels between multiplications prohibits Rasta design to be used in a SE-FHE
framework using 3G FHE, whereas IFPs are performing well for all known FHE.

We also study the performance results in time for the different SE ciphers
considered. For this purpose, we chose the HElib parameters such that the ciphers can
just be decrypted (by setting the appropriate L value), while keeping a similar security
level for the HE scheme (by modifying with trial and errors the other parameters). These
numbers have to be taken as a global behavior of the achievable performances of the
ciphers. Optimizations can still be made in the code itself but also in the choice of
the FHE parameters. We report the results in Table 4, B is the bit per level parameter,
m is the LWE dimension, L is the HElib depth, λ′ is the BGV security estimated by
HElib, ns the number of slots. The latency refers to the time required to have the first
ciphertext after evaluation, the noise columns refers to the output of the log of ratio()
function after evaluation of the decryption. These results show that, adapting the FHE
parameters to the decryption of the SE scheme only, the throughput can be sensibly
increased. Note that, for some lines the ciphertexts are still usable for more evaluations,
it comes from the fact that HElib rejects smaller values of L, whereas the multiplicative
depth of the scheme is inferior.

Cipher B m L λ′ ns Latency (s) noise
LowMCv2(12, 31, 128) 28 15709 14 84.3 682 329.38 -2.966
LowMCv2(12, 49, 256) 28 15709 14 84.3 682 699.10 -2.495

Agrasta (81, 4) 26 5461 5 82.9 378 12.97 -2.03
Rasta (327, 4) 26 8435 5 84.6 240 76.33 -1.903
Rasta (327, 5) 25 7781 7 85.1 150 90.78 -14.42

FLIP-530 21 4859 5 85.3 168 6.48 -1.23
FiLIP-512 21 4859 5 85.3 168 7.05 -29.09
FiLIP-430 21 4859 5 85.3 168 6.01 -15.457
FiLIP-320 21 4859 5 85.3 168 5.04 -16.02

LowMCv2(14, 63, 256) 30 24929 16 132.1 512 1629.3 -3.418
Agrasta (129, 4) 27 7781 5 134.7 150 20.26 -3.03
Rasta (525, 5) 27 10261 7 128.9 330 277.24 -20.441
Rasta (351, 6) 27 10261 8 128.9 330 195.40 -1.92

FLIP-1394 28 8191 6 146.8 630 26.53 -5.11
FiLIP-1216 22 7781 5 186.3 150 24.37 -15.94
FiLIP-1280 28 8191 6 146.8 630 26.59 -5.11

Table 4. Performances for minimal FHE parameters.
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approximation for boolean functions related to flip. In: Chakraborty, D., Iwata, T. (eds.)
INDOCRYPT 2018. pp. 282–303 (2018)
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