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Summary

Noise is an important ingredient for side-channel-analysis countermeasures security.
However, physical noise is in most cases not sufficient to achieve high security levels.
As an outcome, designers traditionally aim to emulate noise by harnessing shuffling
in the time-domain and algorithmic noise in the amplitude-domain. On one hand,
harnessing algorithmic-noise is limited in architectures/devices which have a limited
data-path width. On the other hand, the performance degradation due to shuffling
is considerable. A natural complement to operation-shuffling is the hardware-based
intra-cycle shuffling (ICS) which typically shuffles the sample-time of bits within a
clock-cycle (instead of micro-processor operations). Such architecture eliminates the
performance overhead, due to shuffling within a single cycle, it is algorithm inde-
pendent, i.e. no need in partitioning of operations, and as it is hardware-based, the
data-pathwidth can be tailored to better exploit algorithmic-noise. In thismanuscript,
we first analyze the noise components in physical designs to bettermodel the algorith-
mic noise. We then perform an information-theoretic (IT) analysis of both shuffling
countermeasures. The last part of the manuscript deals with real world architectures
analysis: IT analysis of an AES core implemented over a 32- and 128-bit wide data-
path embedded with intra-cycle shuffling and two flavors of shuffling generation
(memory-based and on-line permutation generation). The manuscript is concluded
by underling the benefits which can be achieved with the ICS architecture.
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1 INTRODUCTION

Noise is an important ingredient for the security of embedded cryptographic devices against Side-Channel-Analysis (SCA)
attacks. It is needed for example in masked implementations to deliver its security guarantees , i.e. an exponential amplification
of the noise, which can only work if you have noise in the first place. In many devices, the amount of physical noise is not enough
for ensuring high security levels. Therefore, various solutions have been introduced to add/emulate noise in the time domain
(e.g. Random-Process-Interrupts (RPI), Random Delay-Insertion 1,2 and execution order shuffling3,4) and amplitude domain
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(a) (b)

FIGURE 1 (a) Algorithmic noise vs. operation shuffling: attack (data) complexity as a function of the data-path width and
permutation size; (b) Operation shuffling (CS) vs. intra-cycle shuffling (ICS): performance overheads (in cycles).

(e.g. algorithmic-noiseI, additive noise generators etc.). In the current state-of-the-art, shuffling is usually considered over oper-
ationsII, denoted by cycle-shuffling (CS), and mostly useful for serial (i.e. software) implementations, while algorithmic-noise
is more dedicated to parallel (i.e. hardware) implementations.
The security guarantees of algorithmic-noise increase with the number of algorithmic-noise elements (#alg.-elem) and

decrease with the adversary’s guessing power (complexity). In turn, the number of algorithmic elements increases with the data-
path width (widtℎDP ) of the device, #alg.-elem = widthDP [bits]

adv. compl [bits]
. Parallel implementations enjoy larger algorithmic-noise than

serial implementations, in which the data-path width (in bits) is quite limited. It leads to the type of tradeoffs demonstrated in
Fig. 1(a), which essentially means we can hardly combine shuffling and algorithmic noise. The attack data complexityIII as a
function of the data-path width and the number of shuffled time-samples (#t-perm) is illustrated in Fig. 1(a). It increases lin-
early both with the number of algorithmic elementsIV and with the number of shuffled time-samplesV (assuming uniform time
permutations).
Ideally, designers would like to exploit both knobs. In practice, taking the example of the AES algorithm, shuffling the sub-

stitution layer into 16 one-byte operands is architecturally easy. By contrast, the mixed-columns layer which operates over
32-bits words is more challenging to shuffle, which typically leads to a cost overhead of 4X the number of cycles. How-
ever, the most limiting part of the system is in fact the key-scheduling procedure where, it is quite challenging to partition
it into bytes of independent operations. This scenario of inefficiency due to algorithm dependence actually scales up badly
(e.g. consider an AES-256). Fig. 1(b) illustrates a lower-bound of the performance overheads (# cycles) for a CS implementa-
tion with different data-path widths (32-, 64- and hypothetical 128-bits) as a function of the permutation-size. As shown, the
number of cycles increases linearly with the permutation size (the possible number of permutations is bounded by the num-
ber of algorithmic-elements, for a given data-path width). Recently, in CHES-20185 Papagiannopoulos has also demonstrated
the severe performance overheads of CS designs and discussed how to mitigate them by trading-off security with recycled
randomness when the design is masked.
For the above mentioned reasons, in this paper, we focus on hardware parallel implementations. A recently proposed scheme

which we investigate in this manuscript is denoted by intra-cycle shuffling, ICS (originally dubbed pAsynch)6 (elaborated in
section 3). In this scheme, the time-samples containing leakage are distributed within a single clock cycle. The ICS design brings
a natural complement to eliminate the tradeoffs discussed above with a considerable performance gain. First, it is applicable
for parallel implementations (typically ASICs and FPGAs), which inherently benefit from algorithmic-noise. Second, the time-
manipulations are performed intra-cycle (on bits), instead on operations (or Bytes), as done in CS. Therefore, the ICS design
makes time manipulation possible in an algorithm-independent way. As an outcome, it has the potential to considerably reduce
the performance overheads of standard shuffling architectures. This is illustrated in Fig. 1(b): an ICS design with 128-bit data-
path needs only one computation cycle to perform bits-shuffling on subsets of up-to 128-bits and an ICS design with 32-bit

IHere, we denote by algorithmic-noise the noise induced by concurrent algorithmic elements which are not targeted by the adversary
IIOperations is specifically referred here to software or microprocessor instructions
IIIConsidering a univariate Pearson correlation distinguisher, the data complexity is proportional to 1

�2
IVThe noise variance increase linearly as demonstrated in the next section
VThe correlation of the modified design can be written by, �modif =

�un−prot
#t−perm⋅#alg−elem
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data-path needs only four cycles to perform shuffling on subsets of up-to 32-bitsVI. Protecting such architectures is motivating
since for example, in front of an adversary with 232 guessing power, we expect a best-case signal-to-noise (SNR) ratio of 1 (32-
bit) or 1/4 (128-bit) due to algorithmic-noise, which is far higher than the SNRs typically needed for proper masking. Therefore,
we aim to reduce the SNR by properly combining such schemes with ICS, for this important class of architectures.
Driven by the limitations discussed above, in this manuscript we deal with the questions, “how it is possible to jointly foster

both algorithmic noise and time-shuffling in an algorithm independent fashion?" and, “what security-gains we can achieve in a
strong multi-variate evaluation setting?". The contributions and organization of the manuscript are:

• We first show (in Section 2) that algorithmic-noise may not be enough for our target architectures to reach high security
levels by modeling it accurately.

• We then discuss Intra-Cycle Shuffling (ICS) as a natural solution to be combined with algorithmic noise.

• We analyze ICS and CS comparatively based on simulations in Section 3. We provide an intuitive study of the leakage dis-
tributions of these two solutions and a systematic information theoretic analysis, and conclude that both can theoretically
be used as noise emulators. We confirm this simulated analysis with experimental-data (FPGA measurements).

• We then examine the impact of additional limitations that concrete adversaries may face (Section 4).

• The paper is concluded by investigating 32-bit and 128-bit AES case studies (Section 5), and put forward that ICS can
bring significantly improved security quite efficiently, and that the performance overheads it implies are considerably
reduced compared to CS.

Notations: In this manuscript, variables are denoted with capital letters, sampled values with lowercase letters, functions
with sans serif fonts and vectors with bold letters.

2 ALGORITHMIC NOISE MAY NOT BE ENOUGH

In this section we define the (exploitable) cryptographic signal and the noise components associated with physical leakages, e.g.
power-supply or electromagnetic measurements. The goals of this section are:

• To clearly identify the dominant noise sources in cryptographic implementations, i.e. to show that the logical part of the
algorithmic noise element dominates the noise and that the physical noise is at least 1.5 orders of magnitude smaller (on
a common 65nm technology node).

• To understand how to model the algorithmic noise as a function of the number of algorithmic elements in the design.

Let Y be an n-bit sensitive variable manipulated by a cryptographic algorithm, as illustrated in Fig. 2. During the device oper-
ation it leaks information which is associated with data manipulation and physical and/or environmental parameters throughout
side-channels; here, we focus on the power-supply current leakage. The security-level of physical devices goes hand-in-handwith
the abilities of the adversary (computational power, physical access, device knowledge etc.). Therefore, our security parameter
is the adversary’s guessing power in bits; i.e. assume an adversary who exploits a divide-and-conquer approach over a sub-set
of the secret variable of s bits (s ≤ n as illustrated in Fig. 2). Generally, the guessing power also defines the Unit-Under-Attack
(UUA). The reminder of the cryptographic algorithm (which is processed in parallel) is referred to as Concurrent-Algorithmic-
Operations (CAO). The leakage of the algorithmic elements (or CAO) is referred to as algorithmic noise. All of these leakage
components are filtered and accumulated while flowing through the power supply network grid as illustrated on the figure.
The leakage of both the UUA and CAO is divided into three components:
1. The logical part - induced by transistors and gates switching within the UUA / CAO (i.e. associated with logic activity).

The part of it which leaks from the UUA is typically referred to as the adversary exploitable signal and the part which
leaks from the CAO is the dominant noise element within the leakage and denoted as algorithmic noise.

VIThe cycle in this case is extended (denoted by a * on the figure) due to local shifting of clocks phases 6.
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FIGURE 2 Signal and Noise components of a leaking cryptographic device

2. The physical part - this leakage component reflects the true physical noise which is associated only with environmental
factors (e.g. temperature, voltage-supply variations, radiation) and technological parameters (e.g. manufacturing process
technology node, measurement setup and acquisition devices). This component is a pure data-independent noise factor
within the leakage.

3. An inevitable mixed part - some leakage components closely tie the last two factors. That is, they highly depend both
on the logical state of the device and on physical parameters. Perhaps the most eminent example is devices (transistors)
static leakage currents while in steady-state. These currents are highly sensitive to (e.g.) temperature variations7,8. In
some scenarios this element can be utilized to extract state-dependent secrets (e.g. Leakage Power Analysis, LPA9,10,11).

We first formulate the computation of the different leakage elements. Note that these definitions follow the Mangard et-
al. ones12 (pg. 73) for the cryptographic signal and noise and further extend them to separate the noise into physical- and
logical-noise components. As described above, the leakage (L) depends on logical activity within the UUA, the CAO and on the
noise (N), L(UUA,CAO,N). The signal (S), logical-noise (Nl), physical-noise (Np) and total-noise (Nt) are defined in Eq. 1-4,
respectively:

S = Var
UUA

( E
CAO

(E
N
(L))), (1)

Nl = E
UUA

(Var
CAO

(E
N
(L))), (2)

Np = E
UUA, CAO

(Var
N
(L)), (3)

Nt = E
UUA

( Var
CAO, N

(L)),

Nt = Nl +Np, (Nl >> Np when n ↑ )
(4)

where Var and E are the variance and expectation operators, respectively. In this section, we focus on a univariate analysis in
order to put forward simple intuitions.
Before discussing and evaluating the algorithmic noise measured on an FPGA device, which will be used for further exper-

iments in the following, we summarize here the main conclusion from an analog simulation environment which lets us isolate
and evaluate the different noise and signal components (i.e. Np,Nl and S) and more importantly, to understand the magnitude
and effect of the mixed leakage component (i.e. leakage which depends jointly on logical activity and physical parameters): Our
simulations indicate that the physical-noise is generally not sufficiently large and much lower than the algorithmic-noise (or
logical noise). To confirm these results and to evaluate the impact of the algorithmic noise in real-setting, this section continues
with measured FPGA results.
Our goal here is to understand the behavior of algorithmic-elements noise (CAO), as a function of the circuit-size. This

is not a trivial task because it depends on the leakage-function, which can take many formsVII, each of which induces quite
significantly different logical noise. In order to base our models and assumptions in the following on verifiable parameters,
an examination of the signal and algorithmic noise values of an AES-128 implementation (over a Xilinx Spartan-6 FPGA
embedded in the SAKURA-G board), is performed. In the experiments we capture the maximum exploitable signal, S in the

VIITraditional models are the Hamming Weight,W(⋅), the Hamming Distance, the identity leakage function.
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FIGURE 3 Signal and algorithmic noise values vs. time for different data-path widths of an AES-128 implemented on a Xilinx
Spartan VI FPGA, in [A].

relevant point-of-interest (POI) in time (denoted by Smax). We also compute the exploitable signal during transistors-leakage
in steady-state (denoted by Sstdy−st). Fig.3 shows S as a function of the data-path width (number of algorithmic elements
processed, denoted by p, in terms of 8-bit AES Sboxes). The computation of each curve in the figure involved an averaging of
1 ⋅ 106 traces per input (We detail on the evaluation and measurement environment in Subsection 3.3.). The examination of an
8-bit wide data-path (equivalently, one Sbox at a time, p = 0) shows the inherent maximum signal due to logical transition (Eq.
1), assuming in this case that eight is the guessing power of the adversary. The rest of the curves (p ∈ {3, 7, 15}), demonstrate
cases where a data-path of 32 bits (p = 3), 64 bits (p = 7) or 128 bits (p = 15) is available. It is observed that the logic part of
the algorithmic noise increases more rapidly than linearly (denoted by S on Fig.3, as the entire circuit is treated as the UUA).

Our experiments indicate that the inherent (UUA) noise components are (at least) 1.5 orders of magnitude smaller than the
exploitable signal which makes them an insufficient ingredient for security purposes. In turn, algorithmic-noise is an important
and dominant factor, making it more suitable for security purposes. However, it is not enough to gain concrete security levels.
Following the examination in this section, from this point and along the manuscript, the leakage function will be modeled

by ly = LUUA(y) +N0 + p ⋅ LCAO(r), where LUUA and LCAO represent the actual leakage functions which primarily depends
on the functionality of the UUA and the CAO logic, and on the sensitive-variables y and r, respectively. Where, r represents a
secret variable outside the enumeration power of the adversary, which therefore is treated as a random computation. The physical
noise generated by the entire circuit (UUA and CAO), i.e. Nt − Nl, is represented byN0. The logical noise due to algorithmic
elements (CAO) is modeled as proportional to the number of CAO elements, where each of which is in the size of y, |r|=|y|,
denoted by p for parallel. That is, it representsNl.

3 INTER AND INTRA-CYCLE SHUFFLING

In this section we elaborate on operation shuffling (CS) and on bit-shuffling (ICS) through a simplem=3 bit architecture example.
The goals of this section is to build understanding and intuition about the leakage characteristics of these designs. For this
purpose, first, we analyze the leakage distribution of these designs in an idealized setting.We then perform information-theoretic
analysis and the section is concluded with real-life experiments over an FPGA platform to confirm the relevance of the proposed
leakage distribution models. One of the main messages of the section is that the ICS design is preferred in low physical-noise
environments and in high noise scenarios, the different shuffling architectures are quite equivalent, which is encouraging due to
the low latency of ICS.
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FIGURE 4 Illustration of (a) 3-dimensions of 3-bit Sboxes Operations-shuffling or Cycle-Shuffling (CS) (b) 3-dimensions
of bits-shuffling or Intra-Cycle-shuffling (ICS) (c) m-dimensions Cycle-shuffling (CS) with alg. noise (b) an m-dimensional
Intra-Cycle-shuffling (ICS) with alg. noise.
3.1 3-Bit Example
We denote by cyclic-shuffling (CS) a shuffling scheme which is typically performed on operations, usually in software case-
studies. By intra-cycle shuffling (ICS), we denote shuffling which is typically performed over the bits of an operation, which
is usually more suitable to hardware case studies. ICS is performed (e.g.) using a set of locally generated delayed versions of
the main clock as was demonstrated in6 and was also examined in prior work13,14. Essentially, each bit of the m Sboxes’ bits
is sampled in a different time sample (intra-cycle). The set of m shifted clock phases is randomly permuted (per cycle) and
assigned to the m-bit registers.
From the security evaluation perspective, the CS approach was more concretely formulated and evaluated in15. In this

manuscript, we evaluate both CS and ICS in a more general view, taking into consideration the architecture (e.g. data-path width)
and practical physical constraints. Moreover, we aim to take the understanding and intuition regarding the leakage distributions
of these designs a step forward.
For simplicity we now assume that the shuffled module is a Substitution-box (Sbox) which is a common and practical setting.

For the ease of presentation and analysis we explore a small architecture of three elements shuffling,m = 3, (or three dimensions).
For CS, each element or dimension in the leakage is the leakage of an m-bit Sbox. For ICS, each element or dimension in the
leakage is the leakage of a bit manipulated within an Sbox. Fig. 4(a) illustrates the execution order (in time) of a series of 3
Sboxes over (an abstract) 3-bit microprocessor. For the CS approach, the element to be processed in a given clock cycle depends
on RP (1 ∶ 3) which is a random permutation out of the possible 3! orderings of [1:3], RP

R
←←←←←←←← P3. Fig. 4(b) schematically

illustrates the logic structure of the ICS design in which (as was originally proposed), each of the three bits of the module is
sampled in a different (delay permuted) time within the clock cycle. We denote by RP i(j) a random permutation draw number
i with j an element in the permutation (the index i is omitted when not strictly needed). In the original construction this was
achieved by generating local shifted versions of the main clock signal. In this 3-bit example, it is assumed that 3 clock phases
are locally generated in hardware and each of them is assigned (in each computation cycle) to a different register of one bit after
order permutation. For a fair comparison, both designs are of the same dimensionality (i.e. 3) and perform the same computation
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FIGURE 5 Leakage distribution contours for y = i, i ∈ {0..7},L =W(y) of (a) simplified 3-bit CS and (b) simplified 3-bit ICS
and of (c) 3-bit CS and (d) 3-bit ICS.

(processing of three Sboxes). In the ICS design, and as typical in hardware implementation, the processing of the different
Sboxes is done in parallel. Each bit of the 3 Sbox bits is sampled in a different time sample (intra-cycle), tRP (i), i ∈ {1..3}. Fig.
4(c) and 4(d) illustrate an m-dimensional CS and ICS shuffling with equivalent alg. noise level, correspondingly, highlighted in
gray. As denoted above, p represents the number of parallel algorithmic elements (CAO). For the CS architecture, p relates to
the number of elements above one Sbox and for the ICS (for fair comparison to CS) it is the number of elements above m.

3.2 Simulated Analysis
The first step in understanding the extent of information leakage is by analyzing the leakage probability distributions. In this
subsection, the leakage distributions of the exemplary 3-bits Sbox architecture of the CS and ICS designs are illustrated. In these
cases, the leakage is multi-dimensional of dimensionality 3 (three leakage samples).
In the simulated setting we assume that the leakage from a manipulation of a sensitive variable v follows the Hamming-

Weight of it,W(v). Let us consider the sensitive variable as the output of an Sbox, e.g. yi =Sbox(xi⊕k), where xi is a plaintext
chunk and k is a secret key chunk. Shuffling algorithms start with a random and uniform draw from the set of all permutations
of {1, ..., m} denoted by Pm, RP

R
←←←←←←←← Pm. The leakage in the CS case, where the permuted elements represent the execution

order of the Sboxes, can be written as, Lti ⇜ W(yRP (i)) + N i
0, where, N

i
0 represents an independent Gaussian noise of the

element in location i of the permutation in time ti. In the ICS case, the permuted elements represent the sampling order of the
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Sbox’s bits. In each clock-cycle j, there exist m leakage time instances (i ∈ {1...m}) where, in each only one bit is processed:
Lti ⇜ W(yRP (i)j ) +N i

0. In this case, yj is the computation taken in cycle j and the superscript RP (i) indexes one bit out of the
the vectorial Sbox output of m bits. The joint leakage is the concatenation of the set of m leakage time points which contain
information on the manipulation of y: L = {Lt1 , Lt2 , Lt3} in the case of m = 3.
Starting with an intuitive example for the leakage distribution, the leakage of a single 3-bit CS shuffled Sbox is discussed

where, on the remaining two cycles the system is in idle (no computation) and therefore, does not leak information. The leakage
distribution of the design is a Gaussian-mixture. For each value of y, the conditional distribution, Pr(L = l|Y = y), depends on
the random permutationwhere, if the permutations are not biased and equi-probable, the outcome probability density distribution
is shown in Fig. 5(a). For example, for y = 000 ∶ W(y) = 0 and therefore, the (noiseless) leakage means are at the origin
L = {0, 0, 0}. For y states which lead to W(y) = j, j ∈ {1, 2}, the leakage means will be situated with equal probability
in: L = {j, 0, 0}, {0, j, 0} or, {0, 0, j}. Note that the noiseless distribution spans over an area of (maxyW(y))2. An equivalent
(dimensionality and computation-wise) ICS design is schematically illustrated in Fig. 5(b) where the single Sbox bits are sampled
and shuffled within the computation (intra-cycle). By looking carefully at the figure, in this case for W(y) = j, j = 1 the
distribution is identical to the CS design. However, forW(y) = 2: L = {1, 1, 0}, {1, 0, 1} or, {0, 1, 1} with equal probability and
forW(y) = 3 the leakage distribution mean is at: L = {1, 1, 1}. As this example demonstrates, the ICS provide denser and more
centered distribution (constellation), which implies that with the same level of noise, different conditional distributions will
overlap more than with the case of the CS design. In other words, the distribution now spans over an area of only (maxyW(y))2,
which is 4x smaller than the CS design and it is also much more symmetrical.
Returning to the complete example of 3-Sboxes of 3-bits each (Fig. 4(c-d)), in the ICS design case, due to the bit-wise

computation, there are 3-dimensions; therefore, it is compared to a 3-cycle CS design. In the CS design the UUA (Sbox) is
processed in one (randomly selected) cycle. On other cycle, a random Sbox computation is performed, therefore shuffling the
manipulation of the set {y, r1, r2} where, ris are drawn at random. As discussed above, to preserve the data complexity of the
ICS design, the two other Sboxes (as of the 3-Sbox CS design) are processed in parallel, leading to leakages: Lti ⇜W(yRP (i)j ) +
N i
0 +

∑p
l=1W(rl). In this case p = 2 and r is a fresh random bit for each l. In this example, not only the conditional distribution

Pr(L = l|Y = y) depends on the random permutations, it also depends on the random values processed in the non-UUA elements.
Fig. 5(c) shows the CS conditional leakage distributions where each of the four figures illustrates the conditional distribution
conditioned on y. ForW(y) = j, j ∈ {0, 1, 2, 3} the (noiseless) leakage means can be any equally probable triplet of the form:
L = {0, j, j}, {j, 0, j}, or {j, j, 0} where j ∈ {0, 1, 2} as shown.
For the ICS design, the outcome probability density distributions are shown in Fig. 5(d). In this case, the distributions shown in

Fig. 5(b) serve as a carrier distribution where an equi-probable Gaussian-mixture of Sboxes number two and three modulates the
carrier distribution. The distribution of the algorithmic Sboxes (two and three) is with means at {j, k, m}, {j, k, m} ∈ {0, 1, 2}.
The outcome distributions clearly overlap considerably more (between different y states), which implies reduced information
leakages.
The analysis performed in this section can extend to more dimensions or alternatively to larger number of bits. In the following

sections we utilize these probability distributions to analyze information-theoretic (IT) characteristics of these designs.

IT Analysis of an Un-Bounded Adversary
To characterize the information-leakage of the CS and ICS designs, in this manuscript we utilize on information-theoretic (IT)
based metric, namely, the Mutual-Information (MI) metric16,17:

MI(Y ; LY ) =
H(Y) −

∑

yi∈Y
Pr[yi] ⋅

∑

l∈LY

P̃rcℎip[l|yi] ⋅ log2(Prmodel[yi|l]). (5)

where H[Y] is the entropy of the sensitive variable Y and Pr(l|yi) is the conditional PDF of the leakages, l, given the secret
manipulation of yi. If assuming a Gaussian noise, it can be written as a Gaussian mixture model, Pr(l|yi) =

∑

r∈R
N(l|yi, r, �2n ),

where R represents the set of all possible time permutations (in our designs)VIII. The conditional probability, Pr(yi|l), can be
computed byBayes’ theorem as done in16,17.When the setting represents a simulated environment, Prcℎip(l|yi) does not need to be
estimated, it can be computed or written in amathematical form, without model-estimation errors from a ‘chip’, reflecting theMI.

VIIIAnd inputs to algorithmic elements.
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FIGURE 6MI(Y;L) vs. �n, CS and ICS designs for 2- and 3-bits and UnP design of 2- to 8-bit p = 0,L =W(y)

When the leakage is derived from a real environment and it needs to be estimated, possibly suffering frommodel/estimation/PDF-
sampling errors, the resulting computation denotes the Perceived Information (PI)18.
As explained and demonstrated in16, the metric quantify how much can be learned on Y from the leakage LY. When the

analysis setting is simulated, the leakage distribution might be available in a continuous mathematical form where the second
summation in this case transforms to an integral:

MI(Y; LY) = H(Y) −
∑

yi∈Y
Pr[yi]⋅

∫∫∫
l1,...,lm∈LY

P̃rcℎip[l1, ..., lm|yi] ⋅ log2(Prmodel[yi|l1, ..., lm]).
(6)

In the case of multi-dimensional leakages the integral becomesmulti dimensional. In turn, the computations involved are com-
putationally expensive multi-dimensional integrals. It is important to highlight that numerically solving integrals of increased
dimensionality as needed in this work, is of extremely high (exponential) cost, in terms of computational complexity andmemory
requirements. Whereas uni-dimensional integrals (for an unprotected design) can be computed quite instantaneously. Already
for the three dimensional distributions of the complex Gaussian-Mixture (GM) of the I/CS designs (a mixture of about 80/48
Gaussian functions for only three bits!), the computation takes several days while utilizing 20 processing cores for different
noise levels. From this complex analysis we aim to derive trends for the security while increasing dimensionality (complexity),
as typically done in abstraction of complex systems.
In this subsection we evaluate the information leakage assuming a worst-case adversary who is not bounded in any aspect

(computational power, data storage complexity, measurements accuracy, device access etc.). The noise is assumed to be additive
and Gaussian with zero mean and the noise standard variation �n is a parameter which reflects the true physical noise of the
design. The leakage function used is the common Hamming-Weight function (denoted byW(⋅)).
Fig. 6 shows the MI that can be learned about the manipulated variable from the 3-bit (and 3-Sboxes) CS and ICS designs

(denoted by CS3b and ICS3b with a superscript of 3rd to denote a three dimensional analysis). In addition, to strengthen our
arguments, the MI of 2-Sboxes of 3-input and 2-output bits of CS and ICS is shown (denoted by CS2b and ICS2b with a
superscript of 2nd to denote a two dimensional analysis). The MI is computed as a function of the noise standard deviation �n
of the modeled Gaussian-mixture distributions. The CS curves appear in red line with square marks and the ICS curves are blue
with circle marks. On the same plot, the results obtained from an unprotected modeled design (UnP) of {2, 3, 8}-bit Sboxes are
shown in black (labeled with a star).
Several important observations can be made from these results:

1. For low noise variance, the MI of the ICS designs is smaller than that of the CS design considerably. This is due to the
more condensed distribution and the larger overlap between different conditional distributions.

2. For medium to large noise variance, from a certain level of noise the MI of the CS and ICS shuffling forms (2 and 3
bits) merge. It occurs with large noise levels as the conditional distributions merge to form one centered quasi-Gaussian
distribution while suppressing minor (local) distributions changes. Intuitively, for example in the 3-bit case, the multi-
dimensional means of these “merged distributions" will be distinct perW(i).
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FIGURE 7 (a) 3-bit CS design (3Sboxes, 3 cycle shuffling) scheme and (b) 3-bit ICS (1Sbox) design scheme. Implemented on
a SAKURA-G board over a Xilinx FPGA (Spartan-6).

For concreteness, an exemplary noise level that was measured in this work (as described in Section 5) is shown on the figure.
Two quite important general observations relate to item 2 in the list above: As m increases (e.g. m=8 for the AES Sbox), the
informativeness of the UnP design leakage, as compared to the shuffled designs, increase. For realistic designs, which target MI
levels below 10−1 the (quite different) shuffling approaches tend to be equally informative; using simple words, the ICS design
amplifies noise like the CS design with high noise levels.
In turn, these general observations underline the ICS design efficiency: from the implementation perspective (area, perfor-

mance, energy etc.), due to the efficient utilization of algorithmic noise and due to the algorithm-independence properties (as
discussed in details in Section 5).

3.3 FPGA Experiments
In this subsection, we evaluate the leakage distribution of physical implementations (FPGA based). We then confirm the simu-
lated leakages. The main message of this subsection is that the ICS design is superior in medium noise levels whereas, both the
shuffling architectures (CS and ICS) have similar benefits with high noise environments.

3.4 Designs and Intuition
The 3-bit exemplary CS design described in Subsection 3.2 was specified in HDL and implemented on a Xilinx Spartan-6
FPGA. The architecture (schematically illustrated in Fig. 7(a)) embeds three identical Sboxes (3 output bits each)IX with an
input and output sampling layer (Flip-flops). A programmable memory (within the FPGA) contains a table of the possible 3-bit
permutations (of three elements), in each clock cycle one of these permutations is chosen and assigned to three MUXes. The
three MUXes then select one permutation of the true input and two more random inputs (all asserted through a UART interface
to the FPGA). The three Sboxes and the input and output sampling layers instantiated occupied 15 LookUp tables.
The simplified 3-bit ICS design described in Subsection 3.2 (Fig. 5(b)) was emulated by a dedicated architecture (denoted as

bit-ICS) specified in HDL and implemented on the same Xilinx Spartan-6 FPGA. The architecture (schematically illustrated in
Fig. 7(b)) embeds one Sbox (similar to the one in the previous paragraph) with an input and output sampling layer (Flip-flops).
To mimic the original ICS design, each of the inputs and outputs was assigned with a different clock signal. As before, the
programmable memory contains a table of the possible 3-bit permutations. In each clock cycle, one of these permutations is
chosen and assigned to three MUXes. Those MUXes then select one permutation of the set of three clock phases. These clock
phases are generated by the programmable Phase-Locked-Loop (PLL) existing in the FPGA architecture. Each bit of the 3-bits
input is assigned to one of the FFs inputs, which in turn is sampled by one of the permuted sets of clock phases. To do so, each
of the three FFs is implemented utilizing a full FPGA tile (with an independent clock signal).

IXThe truth-table of the 3-bit Sbox {in,out} tuples is: {000,010},{001,110},{010,001},{011,000},
{100,101},{101,111},{110,100},{111,011}
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FIGURE 8 Exemplary current waveform of a CS-3bit (3 cycle shuffling) design measured over a Xilinx Spartan-VI FPGA. (a)
clock and trigger signals (b) normalized currents and (c) normalized and average currents

3.5 Validating the Modeled Distributions
In this subsection, we examine the measured leakage probability distribution of the multi-dimensional leakages (L =
{Lt1 , Lt2 , Lt3}) as defined in Sub-section 3.2, following the architecture from the previous subsection.
Fig. 8 shows exemplary measurements from the 3-bit CS design. The upper waveform in Fig. 8 demonstrates the measured

trigger (sent from the FPGA to the oscilloscope) and the logic-clock X. The middle plot shows normalized currents (with ampli-
tudes, which are relative to the oscilloscope vertical tuning). The lower plot shows the currents waveform after averaging of
100K traces. The computation occurs (as labeled on the plot) in the third to fifth clock cycles where the first and second cycles
are used to stall the measurement from the trigger signal (which induce substantial noise) and to load fresh inputs.
After filtering unwanted frequency components (from the measured currents), removing the measurement equipment tem-

perature drift and averaging, a tuple of three time samples (POIs) was chosen, one per clock cycle, Lt1 , Lt2 and Lt3 . These
leakages (sets of three samples per computation) were utilized to draw the current distribution means. One mean leakage value
exists per state which is composed of: yi state, permutation state and random inputs to the two algorithmic elements. Clearly, in
our settings, all the inputs are controlled and these (so called) random-inputs are programmable to capture the complete prob-
ability distribution. That is, we assert each state multiple times for averaging purposes and record the leakage. The complete
states-space was characterized. In the following we detail the outcome distributions.
We first analyze the measured leakages of the 3-bit CS design with p=2 from Fig. 5(c) which exhibited quite a complex

conditional distribution (but distinct per W(y) states). For the 3-bit ICS design with p=2, the conditional leakages overlap
substantially (as illustrated in Fig. 5(d)). Again, a visual separation of the conditional-distributions is not easy. Therefore, a
visually manageable example for the leakage distribution with p=0 is shown (as the one simulated and illustrated in Fig. 5(b)).
Fig. 9 shows themeasured three dimensional distribution of the CS design. On the upper line of sub-figures, each axis represent

one dimension of the leakage (Lt1 , Lt2 and Lt3). This 3-dimensional distribution is rotated (three upper scatter plots) to illustrate
how close it is from the simulated one (Subsection 3.2). On the figure, each point represents a leakage sample (after averaging).
Each color represents a different hamming weightW(⋅) of the input yi. Below the upper 3-dimensional plots, two-dimensional
leakage distribution histograms are shown forW(⋅) of {0,...,3} (from top to bottom). For each histogram column, the direction
of the two-dimensional projection is indicated on the upper scatter plot. Within these two-dimensional histograms, we place
black squares to highlight the centers of the distributions. A close examination of the histograms emphasizes the close match to
the simulated leakages. Several key features are:

• clusters: while looking at the modeled marginal distribution of the CS design (Fig. 5(c)), a two dimensional (4 by 4)
uniformly spaced grid of means is expected whereas, in practice (in the upper left distribution of Fig. 9), it is closer to a 3
by 3 grid of means. This is because the leakage does not completely follow theW(⋅) leakage model: as theW(⋅) increase,

XThey are not synchronized here as they were buffered within the FPGA prior to be sent to the pins-header where they were measured
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FIGURE 9 Multidimensional distributions of a 3-bit CS (3 cycle shuffling) measured on a SAKURA-G board utilizing Xilinx
Spartan-6 FPGA. The distribution is shown in three different angles and the marginal (projection) histograms of differentW(y) =
i, i ∈ {0, .., 3}

FIGURE 10 Multidimensional distributions of a 3-bit bit-ICS (bit shuffling) implementation. Red,Green, Blue and black
points corresponds toW(y)=0,1,2 and 3, correspondingly.

the distance between leakages decreases (according to a non linear relation). In our case the groups ofW(⋅)=2 and 3 start
to merge and appear more like one cluster.

• dependence: as shown in the upper middle distribution some dependence exists between dimensions. This is due to the
large time constant of the power-network (of our large FPGA-based setup), relatively to the clock period. In fact, the level
of dependence could be tuned/eliminated on an ASIC platform by design. For example, note the distinct independence of
the current peaks of the ICS design in Fig. 11(b) (adapted from6).

Fig. 10 shows the measured three dimensional distribution of the bit-ICS design. On the figure, each point represents a leakage
sample after averaging of 1⋅106 traces, totaling to 24⋅106 collected traces. The phase difference between the three clocks, in this
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FIGURE 11 (a) FPGA platform, 12 MHz clock cycle,(b) ASIC platform, 1 GHz clock cycle (c) acquisition systems limitations

example, is Δ = 20ns and the clock frequency is 4MHz. The reduced signal of the bit-ICS design is evident in the number of
traces which were needed to be collected in order to reduce the noise (as compared to the CS design). Each color represents a
different hamming weightW(⋅) of the input yi. For example, forW(yi) = 0, it is evident that different permutations are grouped
in one cluster. For all the other W(yi) states, the mean leakages clusters (marked with dashed circles) match the simulated
distribution in fig. 5(b) quite nicely.

4 CONCRETE ADVERSARIAL LIMITATION AND ASSUMPTIONS

In this subsection, we elaborate on several physical limitations that a concrete adversary may encounter such as, measurement
equipment constraints, in/dependence between leakage samples and integrated noise. In turn, these factors leads to the noisy
and reduced-dimensionality leakages, that an adversary will face in real settings. We then show the substantial information loss
in the leakage of these practical scenarios.

4.1 Analog Band-Width Limitations - Reduced Dimensionality:
The analysis of high-dimensional leakages is a complex task. Nevertheless, in order to be able to perform it, an adversary needs
to first acquire the leakages of all those dimensions. On FPGA platforms this might not be a real constraint as the speed of these
platforms is quite limited. Fig.11(a) shows current waveforms of an FPGA device operated with a 12 MHz clock. As shown,
the different computations cycles (as well as the different dimensions of the leakage, separated by ∼83 ns) are easily sampled.
However, in many settings, such visibility of the leakages might be a concrete limitation. For example, on ASICs platforms, it is
possible to design circuits to operate at 1-10 GHz which induce time-separation of 1-0.1ns between the leakage dimensions (see
for example, Fig. 11(b) adapted from6). In turn, such high speed designs imply that measurement instruments should comply
with very high analog Band-Width (BW), as also discussed in19.
In practice, acquisition systems are quite limited due to physical limitations. There exists a clear trade-off for measurement

devices between analog Band-Width and accuracy. Perhaps the most-limiting part of the system is the Analog-To-Digital (ADC)
converter20. State-Of-The-Art devices can reach Analog Band-Width of 1GHz however, it comes with serious limitations in
terms of (amplitude) resolution and vice versa (as shown in Fig. 11(c) for a set of low-to-high grade oscilloscopes). Low-cost
acquisition devices typically trade-off analog BW with resolution. The reasons for this behavior is well known20: fast sample
rates (which are proportional to the Analog Band-width) imply that the ADC should compute fast, and on the contrary, if the
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resolution is high, the computation is slowXI. In practice, and especially for the ICS case, reduced dimensionality could therefore
be a concrete limitation. Therefore, the analysis in the following sections will also focus on reduced dimensionality.

4.2 Physical Filters, Independence and Noise Integration:
Amatter which relates to high-speed designs (and analog BW limitations) is leakage-samples in/dependencewhich goes hand-in-
hand with (physical) integrated noise. These points are discussed in this subsection, which motivates their analysis in following
sections.
We start with an adversarial view of the CS design and follow with the same view of the ICS design. We assume the adversary

can control the Device-Under-Attack (DUA) clock frequency, as illustrated in Fig. 12(a). The figure schematically captures a
simplified leakage waveform from a CS design. In this case an adversary can reduce the clock frequency as needed to induce
independent leakages (i.e. distinct leakage dimensions). A common approach against shuffling architectures, is to integrate the
leakage over time15. However, in order to reduce the level of the (also) integrated noise, optimally the adversary will integrate the
leakages around the POIs. Taking into account the clock jitter, noise and uncertainty of the POIs, modeled by a time uncertainty
span, Δ, an adversary will perform a piece-wise integration (p.w-int) as illustrated in the figure. This integration (or sum)
concludes in:

Lp.w−int =
m
∑

i=1
Li + m ⋅

Δ

∫
0

n(t)dt, (7)

where n(t) is the noise random-process and m is the number of integrated operations (or dimensions). In turn, this simplified
abstraction implies that the informativeness of the leakage is quite equivalent to an unprotected parallel design with p = m (if
Δ is small enough). Note, however, that the adversary is still facing:

1. Integration (or summation) of noise samples. In fact, depending on the uncertainty, the physical-noise and the duty-cycle
of the device, the noise might increase substantially. Fig. 13 shows the physical noise (Np) and the algorithmic-noise (S)
of an AES core over an 8-bit data-path, on the top and middle sub-figures. The lower sub-figure shows the integrated noise
of both elements over the number of time samples. It is shown that noise accumulation by integration is substantial.

2. Over shuffling architectures, which incorporate a certain amount of algorithmic elements, integration may be a very bad
choice for the adversary, as it also integrates algorithmic noise.

Concretely, the first point was already well demonstrated in15 and discussed in12. It was shown that, whereas, in simulated
settings the summation of leakages is informative, on real hardware (micro-controller), an attack by integration actually failed
in all examined scenarios (the attack Success-Rate stays on about zero, while increasing the number of traces). Therefore, multi-
dimensional analysis is preferred in such a setting. Nevertheless, the CS design provides the adversary with a concrete knob to
isolate leakages of different dimensions which is a concern.
Next we elaborate on the strengths of the ICS design from the adversarial point-of-view as illustrated in Fig. 12(b). In the ICS

architecture an adversary cannot tamper with the time-separation between the leakage dimensions. This is due to the internally
and locally generated clock-phases (by physical delay elements), the time separation between dimensions is denoted here by �.
Therefore, the internal-leakage-signal (prior to physical filtering) is a very high-frequency signal (the information lies in very
high-frequencies). Real physical setting and measurements environment adds parasitic elements (resistive and capacitive) to the
underling computation-logic. Several examples are the: device own power-grid, integrated-circuit pads, wire-bonds, package,
measurement probes and sensing amplifiers. These, de-facto, realize an inherent physical filter, as discussed in12 pg.58-59 and
in21. The effect of such filters is very similar to integration, which can be modeled by a weighted sum of leakages and noise
integration, as illustrated in Fig. 12(b).
The physical filter is typically characterized by a cut-off frequency (fco) and the coefficients of the filter (�i) depend on that

frequency as well as the integration duration: Lj =
m
∑

i=1,i≠j
�i(fco) ⋅ Li + ∫ 1∕fco

0 n(t)dt. If the induced filter is dominant, then the

leakage samples will become dependent. The more filtering, higher will the (integrated) noise become, as illustrated in Fig. 13.
By contrast, if the filter is not dominant, an adversary will be able to observe a leakage which is closer to the internal-leakage-
signal. In the latter case, however, the problem is reverted to analog BW limitations. We examine these two extreme cases. On

XIEven when interleaved ADC are used and complex signal processing algorithms are performed, there exists physical limitations which prohibit sufficiently high
analog Band-Width to follow tens and hundreds of pico-seconds changes
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FIGURE 13 measurement results of an AES core over an 8-bit data-path showing non-overlapping leakages (a) Np (b) S (c)
the integrated noise elements vs. the number of samples

the one hand, a non-dominant physical filter implies a large fco. This in turn, leads to negligible �i coefficients for all Li, i ≠ j
as denoted on Fig. 12(b). In this case, the specific leakages will be independent. Due to analog BW limitations (as discussed
above), the adversary will face: reduced dimensionality, decreased amplitude resolution and increased measurement noise. On
the other hand, a dominant physical filter implies a small fco. In the extreme case (i.e. taking �i=1) the situation will become
closer to an algorithmic-noise scenario but due to the small fco, the noise integration will dominate the leakage. It is important
to emphasize that in this case (of very high frequency logic) the integration takes place when the circuits’ switching-activity is
very high. As shown in Section 2, the noise element in this region is more substantial than in steady-states. In practice, a circuit
can be designed by controlling � and the physical filter (e.g. the power network grid of the device) to meet these scenarios.
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FIGURE 14 (a) 128-bit DP AES with corresponding waveform diagram and (b) 32-bit DP AES. Implemented on Xilinx FPGA
(Spartan-6) (c) MEM base permutation gen. (d) On-Line permutation gen.

Between these two extreme cases an adversary will typically face a mixture of: reduced dimensionality, decreased amplitude
resolution, increased measurement noise or high integration-noise.
To conclude, physical limitations such as analog BW constrains, inherent filters and post-processing filters (such as an inte-

gration by an adversary), ties noise-integration and reduced dimensionality together. In Appendix B we provide more examples
for these scenarios, leakage distributions of reduces dimensions, along with an IT examination, In the next section we analyze
a concrete scenario of a full encryption core taking this factors into account. A detailed analysis of the trade-off between these
factors and the information content of the leakage is outside of the scope of this manuscript however, it is an important direction
for future work.

5 32/128-BIT AES IMPLEMENTATIONS CASE-STUDIES

In this section we finally extend the analysis from above to several practical cases for designers and real-life security evalua-
tions. Namely, we examine several architectures of the AES algorithm over different data-path widths and possible shuffling
mechanisms. As described in the introduction, we would like to harness both the width of the data-path to generate large
algorithmic-noise and time domain manipulation (shuffling).
It is important to highlight that the number of dimensions in the ICS architecture is independent of the underling algorithm

(it shuffles bits and not operations). In practice, we next examine a case of eight-dimensions while shuffling bits within bytes
(e.g. each set of eight bits of an AES Sbox is shuffled).
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We examine two architectures for the logical and control parts of our test-cases:

1. 128-bit: as shown in Fig. 14(a), a full parallel 128-bit data-path width, which enjoys eight algorithmic elements (in the
case of ICS)XII. In this single pipeline-stage (fully rolled implementation), in order to meet timing constraints with our
multi-clock signals architecture, the sampling units (denoted by R1 on the figure) are as follows: each memory element is
in fact a Master-Slave configuration of Flip-Flops (where each of which is in fact a master-slave latch). The master flop is
triggered by the input clock signal and the slave flop by the inverted clock. This ensures a correct by design timing scheme
(which clearly has a timing cost). On the right side of the figure a waveform diagram illustrates the signals behavior from
the inputX of the master flop, through the intermediate registers signalXint sampled by mclkp[7 ∶ 0] to the master-slave
register output, O sampled by mclkp[7 ∶ 0]. The maximum possible combinational delay is T ∕2 − (n− 1)� − tcq − tsu as
denoted on the figureXIII.

2. 32-bit: as shown in Fig. 14(b), a 32-bit data-path width, in which the number of algorithmic elements is three. This
architecture is rolled (four iterations) with two pipeline stages. There exist two 128-bit state registers (one intermediate
and one final). To manage storing and updating only one different word (32 bits) in each round the state-machine induces
two control signals, i.e., index1 and index2. These serve as inputs to a Switch-Unit (Fig. 14(b)) which directs the 32-bit
inputs to the correct word to be updated. In order to save energy and reduce clock-signals Fan-Out, the Switch-Unit also
generates four enable signals whereas in each cycle only one of them is set to one (corresponding to one out of the four
words on the 128 bit state register). This could also be achieved with clock-gating mechanisms.

For each of these architectures, we consider two mechanisms to generate the required clock-phases for ICS. The two options
represent quite different approaches. One is memory intensive (permutation memory-based) and the other relies on combina-
tional logic to generate on-line permutations of the clock phases required. It is important to note that there is quite a large
optimization space in between and it is possible to substantially reduce the requirements of each of the solutions (memory or
number of random bits required). Nevertheless, as discussed next, the on-line phase permutation generation is quite efficient on
all aspects, i.e., it requires negligible combinational logic area, no performance overheads and almost zero memory.

1. Permutation MEM-based: as shown in Fig. 14(c), after generating 8 shifted clock phases, {clkp0, .., clkp7} in this case
generated with a LUT5-based tapped delay line, delivering a time separation � between phases of ∼2ns. We utilize a
random permutation of the sequence {0, .., 7} (each value represented by 3-bits, summing to 24-bits) to randomly shuffle
the clocks yielding {mclkp0, .., mclkp7}, which are used in our design. A random sequence of 8-bits in each cycle is
required or alternatively approaches like random-start-index can be utilized3. The cost is 8 8-bit MUXes and the memory
of a permutation. Below, we show the cost in terms of memory size for all possible permutations. Clearly, many other
solutions exist which trade uniformity for memory size. Here we aim to show the maximum memory cost of such an
approach.

2. On-line Permutation gen.: as shown in Fig. 14(d), after generating the eight clock phases, we apply the Fisher-Yates
algorithm 22 to generate random permutations. With FPGAs (and ASICs) the algorithm, which typically requires n cycles
(where n is the number of clock phases or required elements to permute), can be unrolled to a pure-combinational circuit to
achieve a throughput of 1 permutation/cycle. Doing so, this implementation completely eliminates memory requirement
(besides having a negligible number of register needed to store more random bits), requires only quite small area to
implement the combinational logic and does not imply any performance overhead, which we consider as our preferred
method.

The four architectures were tested while embedding the AES 8-bit Sboxes represented by (1) a finite tower Galois-field (GF),
GF ((24)2) and (2) by a standard look-up table. In essence, for FPGAs, in many cases the latter is quite efficient as the synthesis
to LUTs with a specific number of inputs (e.g. 6) will induce area-overheads when subjected to logical constraints of a specific
GF (e.g. with field elements of four). In ASICs the situation is often opposite.
In terms of hardware and architectural complexity, these two designs greatly differ, as follows: whereas the 128-bit data-path

design is very fast and dynamic-energy efficient, we can estimate that it will cost roughly three to four times more than the 32-
bit one in terms of area and in static/leakage power. The 32-bit data-path design requires to store intermediate values and to

XIIAssuming here the adversary’s guessing power is smaller than 216
XIIIWhere, T is the clock period, n the number of clock phases, � the delay difference between phases and tcq , tsu are the clock-to-q and setup delay of the registers.
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perform computations on chunks, and in our case it is also pipelined with two stages. Therefore, we can expect a performance
degradation of a factor of 4 ⋅ 2 = 8. Table. 1 lists the area components (FPGA-LUTs, -Registers and -Slices) of these two
architectures. The table also lists the maximum frequency and performances (in units of #clock cycles). Due to the proposed
clocking scheme, these values are identical for the unprotected (UnP) designs with only negligible changes due to larger setup-
and hold-time constraints needed for the 32-bit architecture case to ensure correct operation (hold-time of (n − 1)� which only
impacts min-delay constraints). For the 128-bit architecture case the max-frequency is roughly X2 smaller due to the one stage
pipeline and the double master-slave register architecture. These constraints are set to include margins on the maximum phase-
shift of the set of clocks, which only affect the first and last rounds of the encryption (thus negligible). An inspection of the values
in the table indicates that a significant area savings can be made moving from the 128-bit to the 32-bit architecture. Though, not
the theoretically expected ×4 which is due to the large (relative) size of storing elements as compared to combinational logic.
However, securing the proposed shuffled implementations is extremely cheap in terms of area: between as little as 15% to 25%
area overhead as compared to the UnP designs. This overhead is more evident in the 128-bit architecture, mainly due to the
added registers (i.e. R1 in Fig. 14(a)). Performance results meets the expected values.
In the followingwe advancewith a security analysis of these architectures with the information theoretic tools and algorithmic-

noise models developed in this work. However, to evaluate noise levels needed for the analysis, we have first implemented a
complete unprotected AES engine on the Xilinx Spartan-6 FPGA, embedded in the SAKURA-G board, with different architec-
tures: vary in the number of algorithmic elements, p ∈ {0, 1, ..., 8}. Then following current traces acquisition, their averaging,
etc., we have computed the underlingmeasured noise level of these architectures. The base-line noise level (p = 0) is �n = 6⋅10−1
and marked by a vertical dashed black line on Fig. 15. The computed noise levels of other values of p, which correspond to
different number of algorithmic elements, were computed.
The analysis from section 3.2 was projected to the case of eight dimensions. Fig. 15 shows the MI curve of a serial ICS

design (p = 0) with eight dimensions (shuffling 8-bits of e.g. Sboxes) with a circle marked blue line. The MI curves of designs
with different p′s are also visible with gray lines (triangle marked) on the figure. The noise-levels which were computed for the
architectures discussed in the previous paragraph were utilized to verify the intersection points of these curves with the base-line
noise level.
The limiting factors from section 4.1 and computational complexity limitations may conclude in: 1) leakages with less effec-

tive-dimensions and 2) less noise removal abilities (algorithmic and thermal noise). Taking these two challenges, the following
analysis provides insights about the amount of information that a bounded adversary can extract.
Reduced dimensionality is a practical scenario (and may lead to concrete limitations for actual adversaries), especially in the

case of an ASIC-based ICS design. The MI curves which correspond to an adversary which is able to collect information from
five or two dimensions (out of eight) are shown in the figure with an orange line marked with upward triangles. It is computed
by projecting the conditional leakage distributions from the 8-bit CS design (8 dimensions) to a lower-dimensionality space
(marginal distributions).
It is evident from the results that utilizing both shuffling architectures and algorithmic noise elements(with large data-paths)

can lead to substantial security gains. In addition, practical ASIC designs can also benefit from reduced-dimensionality, which

TABLE 1 Area utilization and Performance comparison of the 32- and 128-bit data-path AES128 with embedded ICS architec-
tures. Unprotected (UnP) architectures, ICS with memory-based (MEM) and On-line Fisher-Yates (FY) permutation generation
architectures.

Slice LUTs Regs BRAM fmax #cycles
[MHz] (Perf.)

AES128 32bit DP
UnP. 349 898 532 0 99.1 90

ICS-FY 606 1024 530 0 60
ICS-MEM 629 1160 537 56 60

AES128 128bit DP
UnP. 1249 2428 389 0 37.1 12

ICS-FY 1668 2260 517 0 18
ICS-MEM 1802 2377 524 56 18
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FIGURE 15 MI(Y;L) vs. �n, of 8-dimensions ICS design embedded within different AES architectures and an un-protected
(UnP) 8-bit architecture

depend on the technology node and on the hardware designers (with the ICS design). For example, out of each byte, an adversary
can learn maximum of 9 ⋅ 10−2- or 2.5 ⋅ 10−2-bits, for a 32- or 128-bit architecture, respectively. If the adversary can only get
access (effectively) to five or two dimensions he can learn 3.5 ⋅ 10−3 or 1 ⋅ 10−3 bits, respectively. Consequently, a divide-and-
conquer adversary is able to extract maximum of {1.44, 4 ⋅ 10−1, 5.6 ⋅ 10−2, 1.6 ⋅ 10−2}-bits for the 32-bit, 128-bit architectures
with 5-dimensions and 3-dimensions, respectively. For reference, the MI of an unprotected 8-bit architecture is shown on the
figure with a black line marked with stars. Under the same setting (and assuming a binomial distribution ofW(⋅) leakage) such
design may leak 20-bits of information (where the maximum it will leak in a noiseless world is about 40-bits). An important
conclusion of this security analysis is that it is possible to foster shuffling and algorithmic-noise to emulate significant noise,
reaching security-levels which are typically only achieved with very high cost (e.g. masking).

6 CONCLUSIONS

In this paper, we analyze the applicability of utilizing both algorithmic-noise and shuffling to foster higher security. The analysis
starts with a detailed examination of the physical and algorithmic-noise sources to better understand their extent. We then show
that conventional shuffling countermeasures (e.g. CS) are limited and explore the applicability of a new hardware-oriented
shuffling scheme (i.e. ICS), for the first time. A detailed information-theoretic (IT) analysis and comparison between the two
methods is performed and the analysis (and leakage distributions) are verified on an FPGA-based experimental environment.
The performed analysis and the intuition that is build along the manuscript are then extended to practical (physical) scenarios. In
these situations, an adversary is facing real-life physical filters (on-chip, on-board etc.,) and measurement equipment limitations
(in addition to practical computation and data complexity issues). These factors are then considered from the IT point-of-view.
The tools, methods and insights developed along the manuscript are then used to evaluate a real-life AES core with embedded
ICS (with a 32- and 128-bit data-path width architectures). An IT analysis is performed taking into consideration different
architectures, algorithmic-noise, reduced-dimensionality and the target device noise level (Xilinx Spartan-6 FPGA). The cost
in terms of area and performance is detailed. It highlights the potential of the ICS architecture both in terms of security and in
terms of hardware efficiency together with its operating simplicity (algorithm independence) as compared to standard shuffling
architectures. The extension of the analysis of adversarial (physical) limitations initiated in this work is an important research
scope. Similarly, the better quantification/bound of (sometimes hard to characterize) physical defaults and their impact on the
time separation of the dimensions of an ICS-protected implementation, or the physical filter characteristics, are interesting
directions for further research.
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Pr(l|y), W(y)=1Pr(l|y), W(y)=0

Pr(l|y), W(y)=2 Pr(l|y), W(y)=3

Prob. contours ICS-3bit – 2dim projection , 
L=W(y).

(a) (b)

FIGURE A1 Leakage distribution contours of CS 3-bit, p = 0,L =W(y) over (a) 2-Dim space and (b) 1-Dim space

(a) (b)

FIGURE A2 MI(Y;L) vs. �n, 3-bit CS and ICS, 3-bit UnP with p = 0,L = W(y) and ICS with (a) reduced dimensionality (b)
reduced dimensionality and algorithmic noise

APPENDIX

A EXAMPLES OF REDUCED DIMENSIONALITY DISTRIBUTIONS AND ALGORITHMIC
NOISE

The information-theoretic analysis from section 3.2 is taken a step forward to evaluate the IT extent against a bounded adversary
(one which is expected in realistic settings).
The limiting factors from above and computational complexity limitations may conclude in: 1) leakages with less effective-

dimensions and 2) less noise removal abilities (algorithmic and thermal noise). Taking these two challenges, the following
analysis provides insights about the amount of information that a bounded adversary can extract.
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Less Dimensions: Fig. A1 illustrates the probability density contours (and probability density curve) of the 3-bit CS design
projected to a 2-dimensional plane (resp. 1-dimensional curve). In this case, the adversary can collect and process information
from two (resp. one) dimension(s) only.
The marginal probability distributions of these settings were computed and the MI was evaluated as shown in Fig. A2(a). It is

clear that when an adversary can process less dimensions, the amount of information he can extract rapidly reduces (similarly for
the CS and ICS designs). As was discussed in the previous section, the MI of a full-dimensionality distribution is independent of
the number of dimensions (number of bits in an ICS design) when the noise is large. That is, the full-dimensional MI converges
to the same curve of the one of smallerm designs, for large noise levels. However, while observing less dimensions, an adversary
would gain substantially less information. This is due to the fact that as the dimensionality decrease, more collisions (between
different conditional probabilities) exist in the marginal distributions (for both the CS and ICS designs). As shown in Fig. A2(a),
across noise levels the impact of reduced dimensionality is considerable.
Algorithmic noise: considering inherently parallel architectures (such as the ICS design) the algorithmic noise plays an impor-

tant role (as discussed in Section 2). If the guessing-power of the adversary is not large enough, the noise can not be removed and
the MI will decrease. Notably, as discussed above, the system can be designed in a fashion which makes the algorithmic-noise
part hard to hinder (e.g. 1st order masking). Fig. A2(b) shows (with gray pointed-down triangle markers) the MI an adversary
can get with a varying number of noisy algorithmic elements (p ranging from 2 to 8) for the 3-bit ICS design. Clearly, the impact
of both the algorithmic noise and reduced dimensionality is substantial, as demonstrated jointly.
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